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Abstract

Sharing data between widely distributed intrusion detec-
tion systems offers the possibility of significant improve-
ments in speed and accuracy over isolated systems. In this
paper, we describe and evaluate DOMINO (Distributed
Overlay for Monitoring InterNet Outbreaks); an architec-
turefor a distributed intrusion detection system that fosters
collaboration among heterogeneous nodes organized as an
overlay network. The overlay design enables DOMINO to
be heterogeneous, scalable, and robust to attacks and fail-
ures. An important component of DOMINO’s design is the
use of active-sink nodeswhich respond to and measure con-
nections to unused | P addresses. This enables efficient de-
tection of attacks from spoofed IP sources, reduces false
positives, enables attack classification and production of
timely blacklists.

We evaluate the capabilities and performance of
DOMINO using a large set of intrusion logs collected from
over 1600 providers across the Internet. Our analysis
demonstratesthe significant marginal benefit obtained from
distributed intrusion data sources coordinated through a
system like DOMINO. We also evaluate how to configure
DOMINO in order to maximize performance gainsfromthe
perspectives of blacklist length, blacklist freshness and IP
proximity. e perform a retrospective analysis on the 2002
NL-Shake and 2003 SQL-Sammer epidemics that high-
lights how information exchange through DOMINO would
have reduced the reaction time and false-alarm rates dur-
ing outbreaks. Finally, we provide preliminary results from
our prototype active-sink deployment that illustrates the
limited variability in the sink traffic and the feasibility of
efficient classification and discrimination of attack types.

*The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes, notwithstanding any copyright no-
tices affixed thereon. The views and conclusions contained herein are
those of the authors, and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or implied,
of the above government agencies or the U.S. Government.

1 Introduction

Internet intrusions and large-scal e attacks can have catas-
trophic affects, including stolen or corrupted data, wide-
spread denial-of-service attacks, huge financial losses and
even disruption of essential services. For example, it has
been estimated that the Code Red | virusinfected more than
359, 000 hosts, resulting in financial losses of over $2 hil-
lion [16, 28]. Given their potentially profound impact, de-
tecting network intrusions and attacksis an important goal.

However, protecting networks from nefarious intrusions
and attacks remains challenging for a number of reasons.
First, and perhaps the foremost, is the fact that the problem
is a constantly moving target due to continued innovation,
easy access to new portscanning tools and the Internet’s
basic vulnerahility to widespread intrusions from different
classes of worms|[44]. Second, even when new exploitsare
identified, the primary means for propagating this informa-
tion is through organizations, such as CERT [8], which can
result in unacceptably slow response times for installing
countermeasures. Third, while infrastructures such as IP-
supported traceback [41] or pushback [26] offer promisein
combating intrusions and attacks, these and other similar
measures are not yet widely deployed.

Current best practice for protecting against intrusions is
through the use of firewalls or network intrusion detection
systems (NIDS) [31]. Firewalls are choke points that filter
traffic at network gateways based on local security poli-
cies [6]. NIDS passively observe the local network traffic
and react to specific signatures (misuse detection) or sta-
tistical anomalies(anomaly detection). Examples of NIDS
that employ misuse detection are Snort [39] and Bro [34].
One of the fundamental weaknesses of misuse-detection-
based NIDS is their inability to detect new types of in-
trusions. Anomaly detection techniques establish statisti-
cal profiles of network traffic and flag any traffic deviating
from the profile as anomalous. The high variability com-
mon in network packet traffic limits the effectiveness of
this approach [23]. In general, current NIDS suffer from
two major drawbacks: high false alarm rates and perspec-



tive from a single vantage point, which limits their ability
to detect distributed or coordinated attacks.

One promising approach to addressing the above-
mentioned shortcomings is through the use of distributed
network intrusion detection systems (DNIDS). In this envi-
ronment, alerts from different NIDS are combined to ad-
dress above-mentioned shortcomings. Valdes and Skin-
ner [47] show that “merging” alerts from different NIDS
deployed in a single administrative domain can reduce the
overal false alarm rate. Improvements even from this lim-
ited perspective indicate the potential for DNIDS.

1.1 Contributions

The first contribution of this paper is in the description
of a new architecture for distributed intrusion information
sharing. The DOMINO architecture enables NIDS de-
ployed at diverse locations to securely share intrusion in-
formation. DOMINO's overlay design facilitates scalable
data sharing, heterogeneous participation and robustnessto
nodes joining and leaving the infrastructure. DOMINO’s
data sharing architecture describes the methods of transfer
and summarization of information between nodes. This ar-
chitecture is flexible so as to enable consideration of local
policies.

An important part of DOMINQO'’s architecture are nodes
that monitor unused | P addresses. We call the collection of
these nodesthe DOMINO active- sinks. These datasources
are devoid of false positives since they monitor unused IP
addresses. The active-sinks provide better mechanisms to
detect spoofed sources and allow for efficient classification
of attack packets into well defined categories. Thereis an
important additional benefit in monitoring unused 1P ad-
dresses in that there may be fewer privacy concerns associ-
ated with collecting this data.

The second contribution of this paper isin the evaluation
of the DOMINQO'’s design and performance characteristics.
Our evaluation is based on the use of a set of intrusion
logs gathered from over 1600 different networks across
the Internet over a four month period. To our knowledge,
thisis the first evaluation of the DNIDS capability using a
large, distributed dataset, and it provides key insights into
effectiveness of distributed intrusion detection. We have
completed an architectural specification of DOMINO and
implementation is ongoing. Monitoring components have
been devel oped while the implementation of message pass-
ing components are ongoing. Therefore, we performed an
ex post facto analysis based on DOMINQO’s specification.
We also evaluate data from a prototype active-sink deploy-
ment. Our experimentsfocused on eval uating thefollowing
aspects of DOMINO:

1. The margina utility of adding measurement nodes
in detecting worst offenders and creating port sum-
maries.

2. Ideal configuration parameters for the DOMINO ar-
chitecture focused on blacklist size (a sorted list of
the worst offending sources) and frequency of black-
list generation.

3. Thereaction timein identifying worm outbreaks.
4. Theeffect on false alarm rates.

5. The effectiveness of DOMINO in identifying slow
scanners.

6. The variability in payload distributions in active-sink
data.

1.2 Results

There are several important results of our experimental
investigation:

e Improved summaries: Through our marginal utility
experiments we demonstrate that through a small net-
work of collaborating peers (approximately 40), indi-
vidual networks can significantly improve their per-
spective on global attack behavior. The size of the
individual peering nodes is less significant than the
number of collaborating peers.

e Blacklists (worst-offender list): We show that few
(approximately tens) attack sources are responsible
for a significant portion of al scans on any given
day and that substantial benefit can be achieved even
through relatively stale blacklists.

e Decreased reaction time: We evaluate the reac-
tion time of our system using data from two differ-
ent outbreaks: SQL-Snake 2002 and SQL-Sapphire
2003 [27]. We provide examples of rules that
DOMINO could employ to react favorably to each of
these scenarios without significant false alarms. We
demonstrate that reaction time to exploit recognition
can be substantially reduced in DOMINO under each
of these conditions.

e Slow scanners: Our results suggest that relatively
small daily blacklists of around 40 sources can have
asignificant impact in deterring slow scanners.

e Utility of active-sink data: We provide preliminary
results from our active-sink deployment that highlight
the limited variability in observed payloads of mali-
cioustraffic and motivate our approach towards build-
ing arobust classifier.

Our results have a number of important implications.
First, the DOMINO architecture demonstrates a frame-
work within which systems from different administrative



domains can participate in coordinated intrusion detec-
tion. Second, the clear improvementsin ability to identify
intrusions through coordinated data sharing should make
thisacompelling consideration for network administrators.
Third, the deployment of active sink nodes on unused ad-
dress space in the Internet would significantly increase the
fidelity and speed of alert generation in intrusion detection
systems. As a widely deployed infrastructure, DOMINO
itself must be considered a target for attacks. To be effec-
tive, DOMINO must be resilient to a variety of attacks. A
discussion of possiblethreats and corresponding mitigating
measuresin DOMINO are discussed in section 5.

2 Reated Work

There are severa techniques for intrusion detection,
such as misuse detection [34, 38], statistical anomaly de-
tection [25, 43, 48], information retrieva [4], data min-
ing [22], and inductive learning [45]. For a survey of in-
trusion detection reader can consult existing literature on
thistopic[1, 31, 33]. A classification of intrusion detection
systems appearsin [18, Section I1].

Severa researchers have started investigating distributed
network intrusion detection [5, 11, 19]. In [2], the authors
propose COVERAGE, a cooperative virus response mech-
anism that reactsto highly virulent viruses. Indra[19] pro-
poses a fully peer-to-peer approach to intrusion detection.
Its organization is completely ad-hoc, does not take local-
ity into account and the infrastructure serves primarily as
a rule dissemination mechanism. Current state of the art
for aggregating intrusion logs and observing global trends
isthrough the DSHIELD project [46]. The number of par-
ticipants and volume of data collected makes this a very
attractive resource. However there are certain weakness:

e Datacollectionisstatic and isdevoid of real timeanal-
ysis or rule generation capabilities.

e Payload information and complete protocol headers
are not captured. This often makes attack classifica-
tion impossible.

e |P addresslocality isignored. There is no mechanism
to adjust queriesto account for | P address space prox-
imity.

e A monolithic database limits scalability and also in-
troduces a single point of failure.

Our infrastructure seeks to address some of the defecien-
ciesin this approach. DOMINO’s design uses a combina-
tion of peer-to-peer and hierarchical components provid-
ing significant advantages over a purely hierarchical ar-
chitecture. These advantages include simplified informa-
tion sharing, scalability and fault tolerance. Currently,
DOMINO uses a “flat tuple space” to express various

aerts. Several researchers are devel oping languages to ex-
press alerts [12]. As these languages are standardized, we
plan to incorporate them into DOMINO. Merging alerts
from various sources has also been studied by severa re-
searchers [10, 47]. The merging algorithm in DOMINO
is influenced by our experimental results. We are aso in-
vestigating algorithms from data fusion [14] for this pur-
pose. The goal of intention recognitionisto correlate alerts
(possibly emerging from different sources) to infer the plan
of the adversary [11, 21]. In the context of DOMINO we
are not working on this problem. However, we plan to
incorporate an existing intention recognition module into
DOMINO. We are also investigating the use of structures
to reason about sequences of attacks, such as privilege
graphs [13] and attack graphs[42], for the purposes of in-
tention recognition.

Our work is aso influenced by empirical studies of in-
trusion and attack activity. Moore et al. [30] examined
the prevalence of denial-of-service attacks using backscat-
ter analysis. In [28], the authors analyze the details of the
Code Red worm outbreak and provide important perspec-
tive on the speed of worm propagation. In a follow-on
work, Moore et al. [29] provide insights on the speed at
which counter measures would have to be installed to in-
hibit the spread of worms like Code Red. The work that
is perhaps most closely associated with DOMINO is [50].
In that paper, we explored the statistical characteristics of
Internet intrusion activity from a global perspective. That
work informs DOMINO’s design from the perspective of
the potential use of multiple sites in coordinated intrusion
detection.

3 DOMINO Architecture

3.1 DOMINO Overview

A DOMINO network is a dynamic infrastructure com-
posed of adiverse collection of nodes located in a network
spanning the Internet. The objective of this system is to
provide a framework for information sharing aimed at im-
proving intrusion detection capability for all participants.
There are several overarching requirements, properties and
challenges in organization of this network. These require-
ments are not unlike those of other large information shar-
ing infrastructures and include the following:

e Availability: Since al networks are prone to sys-
tem failures, congestion and attacks, the infrastruc-
ture must be resilient to temporary network instabil-
ities. Furthermore, it is crucia that the network re-
main available in the face of worm outbreaks, denial-
of-service attacks and other Internet catastrophes.
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Figure 1. DOMINO Node Organization. Axis
Nodes participate in a peer to peer overlay.

e Decentralization: A decentralized architecture pro-
vides for greater flexibility and eliminates any single
point of failure.

e Heterogeneity: The network must be able to harmo-
nize systems from disparate networks of varying sizes
that run a wide range of NIDS and firewall technolo-
gies. This would alow DOMINO to overcome any
weaknesses associated with individual NIDS rules or
organizationa topologies.

e Pervasiveness. The network would be most effective
in identifying attack trends and characterizing global
Internet intrusion phenomenon, if it obtains represen-
tative participants across a“moderate size” portion of
| P address space.

e Privacy: The network should not reveal data that in-
dividual participants consider sensitive. It should also
not increase the likelihood of attack against individual
participants.

e Inducement: Finally there must be anincentive (adi-
rect benefit) for networks to join this infrastructure.
The critical mass of participants required for obtain-
ing immediate benefit should be reasonably low.

Asshownin Figure 1, aDOMINO network is comprised of
three sets of participants. axis overlay, satellite communi-
tiesand terrestrial contributers. We describe each of these
in the following sections. All communication between the
axis overlay nodes and the satellites is encrypted. We pro-
vide a brief description of the key distribution strategy in
Section 3.3.

3.1.1 AxisOverlay

The axis nodes are the central component of the DOMINO
architecture. They are responsible for the bulk of the in-
trusion information sharing. Hence, their scalability and

availability is vital to the resilience of the infrastructure.
Two important requirements are 1) resilience to failure of
axis nodes and 2) the ability to quickly detect and adapt to
topological changes resulting from nodes joining and leav-
ing.

Overlay networks have been shown to be highly resilient
to disruption and possess the ability to deliver messages
even during large-scal e failures and network partitions [3].
In order to enhance robustness and extend the availability
of the architecture, external connectivity (from nodes not
participatingin DOMINO) to the axisoverlay is maintained
through a set of DOMINO access points (DAP). Participa
tion at the axis node level in DOMINO is achieved through
an administrative procedure, described in Section 3.3.

Each axis node in the overlay is described in terms of its
following components:

Activity Database: The schema of the axis database has
fiveimportant relations: packet logs, local and global sum-
maries, vulnerabilities and alerts. Axis nodes will act as
intrusion data collection pointsin DOMINO and typically
belong to large and well-managed networks since thereis a
high level of trust required to participate at thislevel.

Active-Sinks: A sink holeis alarge chunk of unused (but
advertised) IP address space. An active-sink sniffs traf-
fic bound to these addresses addresses and simulates vir-
tual machines by supporting some level of interaction. A
naiveinstantiation of an active-sink isa LaBreatarpit [24].
LaBrea was developed as a mechanism for slowing Code
Red | propagation by creating a “ sticky honey-pot” or per-
sistent connections over sink-holes. These cause the infect-
ing machines to temporarily get stuck thus slowing propa-
gation of an outbreak. Other examples of active-sinks in-
clude Honeyd [36] (a highly customizable low-interaction
honeypot) and iSnk (a scalable sink hole responder) [49].

Thisapproach to monitoring hasimportant auxiliary ben-
efits to DOMINO that includes the following:

1. Active-sinks enable examination of the payload pack-
ets. This helpsin associating an attack with a partic-
ular vulnerability. For example, examination of the
“GET” request helps distinguish between Code Red,
Nimda and other variants. Thisis not possiblein tra-
ditional NIDS unless you have a service running on
that port.

2. Spoofed sources behave differently to an active-sink
response. They do not send the payload packet. In-
stead, they respond with a reset or simply drop the
SYN/ACK received from the sink. Thus any source
that sends a payload to the active-sink can be consid-
ered to be malicious or misconfigured. This enables
creation of high confidence blacklists and attachment
of greater accountability to the attack sources.



To assess the feasibility and scalability of a large scale
active-sink deployment, we have been running a version of
an active-sink (analogousto atarpit) on 3 class B networks
over 4 weeks. The number of monitored | Pswere increased
fromaround 50,000 to 100,000 during the measurement pe-
riod. Characterization and analysis of data captured at the
sink is discussed in appendix D.

Each axis node ideally maintains both an NIDS and an
active-sink over large unused |P address space. Our ex-
perience with similar datasets, as discussed in Section 4,
indicates that a collection of around 20 such data sources
is sufficient to identify global attack characteristics with a
high degree of accuracy. Hence, we expect the number of
axis nodes to be consistently over 20 in order to maximize
effectiveness of the system.

NIDS/Firewall: NIDS and firewall rules provide data
on specific intrusion signatures and on rejected packets.
Both of these are fundamental intrusion data sources in
DOMINO.

DOMINO Query Engine: The DOMINO axis nodes ex-
port a queriable interface that can be used to tune firewall
parameters and to expeditiously react to outbreaks. Queries
from externa sources are directed through the DAPs and
their accessibility is controlled to protect the integrity of
the infrastructure. Finally, the query engine also supportsa
“trigger” mechanism that allows the axis nodesto pull data
from the satellites on a real-time basis. Such mechanisms
can prove extremely valuable for gathering fine-grained in-
formation for analyzing new outbreaks.

DOMINO Summary Exchange Protocol: The DOMINO
axisnodesin the overlay participatein a periodic exchange
of intrusion information. We refer to the data sets ex-
changed as summaries - the actua format of the sum-
maries is described later in this section. The summaries
are exchanged at three levels of granularities: hourly, daily
and monthly. A summary exchange involves the following

steps:

1. Pulling data from the satellites. Alternatively this
could also be implemented as a periodic push. The
choiceis | €eft to the satellites.

2. Generation of the summary dataand multicast to other
axis nodes.

3. Executing the store operation to enable persistent
availability of this data.

3.1.2 Satellite Communities

Satellite communities are smaller networks of satellite
nodes that implement alocal version of the DOMINO pro-
tocol. Thereis potentially a wide disparity in the sizes of

these networks and their underlying NIDS and firewal | soft-
ware implementations. Extensions to provide support for
DOMINO would be implemented as plug-insfor these sys-
tems.

The satellite nodes are organized in a hierarchy such that
each node routes all communication with the larger net-
work through a parent node that is either another DOMINO
satellite or an axis node. Data collected at the satellite
nodes is transmitted to the axis nodes through a combina-
tion of push and pull mechanisms. The data obtained from
satellites is considered to be less trustworthy than what is
collected at the axis nodes.

The satellites have the potential to generate a large vol-
ume of spontaneousalerts. Duetotheir limited perspective,
these nodes may al so beincapable of performinglocal anal-
ysis or classification of attack severity. Hence, these nodes
are organized into ad-hoc hierarchies that allows for effi-
cient clustering of neighboring alerts and robust construc-
tion of pertinent digests. Preserving hierarchical attributes
towards the edges of the DOMINO overlay also facilitates
efficient data aggregation, intelligent routing of queriesand
responses, establishment of trust levels and simplifies ad-
ministrative demands.

Axis nodes and satellites enjoy a symbiotic relation-
ship. Therepresentation of the satellites allows the network
wider coverage across the IP space. The inducement for
the satellites is a global vantage point that allows for rapid
outbreak recognition, dynamic content filtering and appli-
cation specific source blacklisting to protect their networks
in atimely manner.

3.1.3 Terrestrial Contributers

The terrestrial contributers form the least trustworthy but
potentially avery large source of data. These nodes do not
implement the DOMINO protocol, may not have active-
sinks and are not bound to any particular software installa-
tion. Rather, these nodes could run any firewall or NIDS
software and simply supply daily summaries of port scan
data. Terrestrial contributers are simply a means for ex-
panding coverage by including intrusion data sets from out-
side of the infrastructure.

3.1.4 DOMINO Messages

To foster interoperability and maximize extensibility the
DOMINO protocol messages are represented in XML. We
extend the schema proposed by the IDWG (Intrusion De-
tection Working Group) in the IDMEF (Intrusion Detec-
tion Message Exchange Format) draft [17]. Our schema
addsfive new message typesto the two provided by the ID-
MEF (alerts and hearbeats). The seven message categories
in DOMINO are as follows: 1) Alerts 2) Summary Mes-
sages 3) Heartbeats 4) Topology Messages 5) Queries 6)
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DB Updatesand 7) Triggers. A description of each of these
message types and their formatsis given in Appendix A.

3.2 Information Sharing

Every axis node maintains alocal and global view of in-
trusion and attack activity. Thelocal view considers activ-
ity in its own network and its satellites. Axis nodes peri-
odically receive summaries from their peerswhich are then
used to create the view of global activity. Issuesin creating
these views include scalability, timeliness and trust. Each
axis node can employ its own strategy for creating both
local and global views. Strategies for data aggregation to
create local and global views are discussed in appendix B.

3.3 Authentication

The axis nodes in DOMINO are associated with a high
degree of trust so authenticating all inter-axis communi-
cation is vital. We currently use public-key cryptography
(specifically RSA [37]) for this purpose. However, other
schemes for source authentication could aso be used. We
do not anticipate the number of axis nodes to scale at the
same rate as the overall DOMINO infrastructure, so key
distribution among these nodes is not envisioned as a big
hurdle. In fact, there could easily be a specia certificate
authority (CA) for the DOMINO network, and when a new
axis node joins DOMINO, it can engage in a key distribu-
tion protocol with the DOMINO CA.

When an axis node multicasts an intrusion summary, it
first computes a SHA-1 hash of the summary and appends
the digital signature of the hash to the summary which
is verified by all recipients. This approach is scalable in
DOMINO because axis nodes broadcast summaries rela-
tively infrequently and the summaries are lightweight (or-
der of KBs). For example, in our current implementation
the broadcasting period is approximately one hour. How-
ever, we plan to undertake an experimenta evaluation of
the overhead of computing digital signatures in the context
of DOMINO. We are aso investigating other mechanisms
for source authentication (eg. [35, 40]), including elliptic-

curve based public-key systems[20]. The public-key of an
axis node can aso be used for authentication using a stan-
dard challenge-response protocol (for example, see [32]).

Finally, authentication schemes based on secret key ex-
changes could also be considered. We chose not to pur-
sue an authentication scheme based on sharing secret keys,
since this would entail sharing a secret key between every
pair of axis nodes. This approach would be less scalable
and require more maintenance than our choice of using a
public-key system.

4 Results

In this section, we first provide background results that
demonstrate the utility of sharing intrusion information. In
particular, we measure the amount of information that is
gained by adding additional measurement nodes. Next we
investigate temporal attributes like the stability of black-
lists, effectiveness of blacklist in terms of its size and the
similarity of blacklists with respect to destination IP prox-
imity. We also explore how information sharing infras-
tructure would affect reaction times during a worm out-
break. The aforementioned results are al based on data
obtained from DSHIELD [46]. We used a set of firewall
and NIDSlogs of portscans collected over a4 month period
from over 1600 firewall administratorsdistributed through-
out the globe as the basis for analysis. Detailed descrip-
tion of the data appears in appendix C. Description and
analysis of the data captured at the active-sink is given in
appendix D.

4.1 Marginal Utility

We use an information theoretic approach to quantify the
additional information that is gained by adding new nodes
in a distributed intrusion detection framework. Our ap-
proach utilizes the well known Kullback-Leibler [15] dis-
tance metric for probability distributionsto measurethein-
formation gain.
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Figure 3. Effectiveness of Blacklists.

A framework for evaluating the marginal benefit of em-
ploying additional measurement sites in the context of In-
ternet topology discovery has been presented in [7]. They
presented two methodologies for quantifying the marginal
benefit obtained by incorporating results from an additional
experiment: online and offline marginal utility metric. The
offline metric considers the benefit of each experiment on
an ex post facto basis, measuring each experiment’s useful-
ness after al the experiments have been conducted. In our
study, each experiment corresponds to an additional intru-
sion log submitted from a different network and we choose
the offline metric as we are not concerned with the order in
which the logs are submitted.

Assume that we have n intrusionlogs S, - - -, S™. Each
log S defines a distribution P¢ over the source ports that
originate a scan, i.e., Pi(s) is the probability that a scan
originated from port s given the intrusion log S¢. We rank
the intrusion logs by the entropy of the corresponding dis-
tribution, i.e., for i < j, P* hashigher entropy than P7. In-
tuitively, a probability distribution with higher entropy con-
tributes “more” to the overall distribution. Let P be
thedistributionwhentheinformationinthelogs S!, - - -, S
are combined and let P bethe overal distribution (when all
theintrusion logs are combined). Themarginal utility of S
(denoted by U (S?)) is:

U(S*) dr (P % P)

) [1,,4] s

In the equation given above, the sum ranges over all the
source ports that appear in the intrusion log.

We use this framework to measure the effectiveness of
sharing logs in identifying the worst offenders and the ef-
fectiveness of identifying the most frequently scanned tar-
get ports. For each day in the month of June, we randomly
selected 100 /24's and 100 /16’s from the DSHIELD logs
to determine the number of participating networks that are
required to obtain a stable distribution.

Figure 2(a) depicts the diminishing marginal benefit of
adding additional network logs for developing port sum-
maries. The curves for /16 and /24 networks show a very
similar trend with the additional benefit declining to almost
zero at 20 and 40 networks respectively. The message here
isthat thereis some benefit to having abigger measurement
networks, but clearly it is more important to have measure-
ments from multiple vantage points.

The graph of the marginal benefit for developing worst
offender list (or blacklist) isgivenin Figure 2(b). The mes-
sage is even more pronounced in this graph; clearly size
does not matter, but more is better! Together the graphs
imply that a collaboration of 40-60 networks is adequate
to develop port summaries and blacklists with a high de-
gree of confidence. It is also interesting to note that the
actual marginal utility values for worst offendersis higher
than that for port summaries. This suggests that it is more
important to add additional sites for devel oping blacklists
thanit isfor creating port summaries.

Summary: Marginal utility of information used to detect
target and source ports (for port scans) is minimal after 40
nodes. This suggests that with respect to identifying target
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ports and the worst offenders for port scans, a DOMINO
network with approximately 40 axis nodes will suffice.

4.2 Blacklist Effectiveness

One of the crucial operationa parameters for the
DOMINO overlay is the size of the blacklists that are ex-
changed between the participants. The DOMINO axis
nodes develop and exchange service specific blacklists at
multiple granularities.

To study this, we generated a combined blacklist for
al the DSHIELD providers at three different granularities
(daily, weekly and monthly). Figure 3(a) illustrates the re-
lationship between the blacklist length and its effectiveness
in terms of the percentage of all scans blocked.

The graph shows that at any given hour, around 90%
of all scanning activity can be attributed to about 1024
source IPs. More surprisingly, a global daily blacklist of
16 sources, account for more than 60% of al scans. Sim-
ilar benefits can be achieved by a stale (monthly) blacklist
of around 250 sources.

Summary: Few sources are responsible for a large fraction
of all scans and many sources persist. Therefore, the size
of the blacklistsin the DOMINO network does not haveto
be very large.

4.3 Blacklist Aging

Figure 3(b) providesanother meansto visualizethe aging
of blacklists. We again create blacklist of thetop 60 sources
at multiple granularities and graph the “ average daily num-
ber of scans’ generated by each rank. For the higher ranks
(top 10), the hourly blacklists clearly deliver superior per-
formance. However, for the lower ranksthere are instances
where the monthly blacklist performsas well or better than
the daily blacklist. This validates the need for maintain-
ing blacklists at multiple granularities, and suggests that
at lower granularities there is greater benefit to creating
longer blacklists.
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4.4 |P Address Proximity

I P address proximity is an important consideration in the
organization of the DOMINO topology. There are two con-
flicting issues that must be resolved in the allocation of
satellites to axis nodes. First, to minimize false alarms and
to effectively cluster related scans and attack episodes, it
would be beneficial to organize nearby nodes (or networks)
under the same hierarchy (since scanning and attack tools
are often designed to sequentially traverse | P space). How-
ever, for every axis node to obtain a composite view of the
attack activity, it would beideal to have datafrom adiverse
set of IP blocks. We would like to understand the appropri-
ate granularity of aggregation that maximizes this tradeoff.

We randomly selected 100 /24 networks and measured
the similarity in their monthly blacklists for June 2002.
We defined the IP address distance between two networks
A.B.Cand X.Y.Z asfollows:

Dist = |A — X|%256° + |B — Y| %256 + |C — Z|

To express the similarity between blacklists of two net-
works, we needed a metric that provides greater weight
for a match of higher rank. The asymmetric similarity
of list By to By is denoted by sm(B;, B2). The sym-
metric similarity between lists B; and B, (denoted by
SymSmilar(Bj, Bs)) is the average of sim(By, B;) and
sim(B5,B1). Formally, the similarity metrics are defined
asfollows (I denotesthe length of thelists B; and Bs):

sim(B1,B2) = Z [l — rank(s;, B2)]
s;€B1NBy
sim(B1, B2) + sim(Bz, B1)

SymSimilar(Bi, B2)

2

Figure 4 shows the similarity between blacklists as a
function of the IP address distance between two networks.
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The figure clearly showsthat thereis a high degree of sim-
ilarity between the blacklists of /24 networks that are close
together (in the same /16) and little similarity farther awvay.

Summary: Similarity of the two blacklists is positively
correlated with the | P distance between their respective net-
works. This observation has several consequences in the
context of DOMINO. First, satellite nodes in the same /16
I P address should be organi zed under asingle axis nodeand
that the set of /16 address spaces should be randomly dis-
tributed among the axis participants. Second, when an axis
node generates its version of global summary, simple ag-
gregation would be likely to work just as well as weighted
merging.

45 Retrospective Analysis: SQL Snake

Inthis section, we perform aretrospective analysison the
SQL-Snake Outbreak from May 2002. Unlike its prece-
dents (Code Red and Nimda) SQL-Snake was a relatively
slow-spreading worm, due to the small size of the suscep-
tible population and its mode of propagation (TCP). We
wanted to measure how information sharing through a sys-
tem like DOMINO would affect reaction time and alarm
rate during such an outbreak. We randomly selected 100
124 networks and trained them with the port summary data
of port 1433 (used by MS-SQL server) for the first two
weeks of May. In particular, for each network we mea-
sured the hourly average number of scans and the average
number of sources.

Figure 5 shows the hourly scanning rate in terms of the
number of scans and the number of distinct sources scan-
ning port 1433 during the 48 hours surrounding the out-
break. We denote the first visually apparent point of an
outbreak (5/21, 00:00) as the inflection point.

We simulated 100 random iterations of DOMINO net-
works of axis nodes and in each iteration we measured
the number of outbreak alarms generated in networks of
size ranging from 1 to 100 nodes. We assumed that the
DOMINO nodes exchange hourly summaries of scanning

Figure 7. Change in Alarm Rate as we add
more networks.

activity but did not have any triggers that fired appropri-
ate spontaneous aerts. In this experiment, we used a vot-
ing scheme to generate an outbreak alarm, i.e., an outbreak
alarm is generated if atleast 20% of the nodes vote for an
alarm. A node votes for an alarm if the following holds:

e 200% increase in number scans from the hourly aver-
age, and

e 100% increase in the number of sources from hourly
average, and

e number of sourcesis greater than five.

Thereaction timeis defined as the elapsed time between
the inflection point and the first alarm after that point. Fig-
ure 6 showsthe decrease in observed reaction time from an
average of more than an hour with a single node to almost
zero as we add sufficient axis nodes (approximately 50).
Figure 7 displays the average number of alarms, which de-
creases with topology size and stabilizes at about 8. These
alarms are not false alarms, but correspond exactly to the
8 preceding hours before the inflection point that show a
gradual increasein the source rates and are points when the
outbreak could have been predicted earlier by DOMINO.
The oscillatory behavior of the alarm rate is an artifact of
therulethat requires at least an integral 20% of the partici-
pants to vote for an outbreak.

Summary: By adding sufficient nodes, outbreaks can be
detected early with minimal reaction time and few false
alarms.

4.6 Retrospective Analysis: SQL-Sapphire

The SQL-Sapphire worm also known as SQL-Slammer
was released in January 2003, and wreaked significant
havoc on the networking infrastructures in under ten min-
utes. The worm distinguished itself from its predecessors

1We could have chosen amore complicated rule for generating alarms
(for example, one based on statistical anomaly detection). However, this
simple rule suffices to illustrate our point.
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by its small payload size (single UDP packet of 404 bytes)
that enabled a rapid propagation rate in spite of a small
susceptible population (75000) [27]. The redlity of such
high speed worms [44] implies that distributed architec-
tures, such as DOMINO, might have the best opportunity
to detect and react to such worm outbreaks.

Figure 8(a) showsthe exponential increasein the number
of scans and number of sourcesin the minutesfollowing the
outbreak. For such epidemics, alarms generated through
hourly axis summaries do not suffice. DOMINQO’s mech-
anism to deal with such scenarios are spontaneous alerts
that are issued through triggers.

Whenever possible, DOMINO nodes associate related
packets with episodes, e.g., horizontal scan episode (se-
guential scan of several machinesin the same subnet aimed
at the same target port), vertical scan episode (scan of mul-
tiple ports of single IP to survey several vulnerabilities),
and a coordinated scan episode (distributed scan of a sub-
net through multiple sources). For episodes on every port,
DOMINO nodes maintain the average number of scans, the
average number of attack sources and the duration. A trig-
ger for a spontaneous alert can be defined as an episode
that deviates from the average as follows:?

e number of sourcesis > 5, and

e the number of scansis > 10 times the average, or

o the number of sourcesis > 10 timesthe average, or
e thedurationis > 10 times the average.

We recogni ze the existence of an outbreak when at least
10% (rule 1), 20% (rule 2) or 30%(rule 3) of the partic-
ipants generate a spontaneous alert in the last hour. We

2Asin the previous subsection, we can use a more sophisticated rule
to generate a spontaneous alert. However, a simple rule will suffice to
illustrate our point.

repeated the previous experiment with 100 random itera-
tions. In each iteration, we picked 100 random class-C
subnets and used the data from first 2 weeks of January
to train the system. We measured episode rates, simulated
spontaneous alerts and then cataloged the change reaction
time as we add additional subnets under each of the 3 rules.
Figure 8(b) shows that by adding sufficient nodes, the re-
action time can be reduced to a few seconds. The goal of
DOMINO is not outbreak containment but rather outbreak
recognition and insulation of maximal number of partici-
pants [29].

In [51] the authors show that the worm infection rate and
susceptibility can be accurately predicted by observing data
collected from a single network that spans a small fraction
of the entire address space.

4.7 Slow Scanners. Blacklist Evasion

In this section we evaluate the ability of slow scan-
ners to evade blacklists generated by the infrastructure.
DOMINO axis nodes periodically exchange blacklist sum-
maries which contain a finite list of Top-N local worst of-
fenders and their volume of activity. For simplicity, we
assume that summaries are generated at networks on the
order of /16-s. To ensure that a source does not appear in
the global blacklist, it must ensure that it does not appear
in any of the local blacklist summaries.

The optimal strategy for an omniscient adversary would
be to simultaneously scan all subnets, such that the rate at
each /16 would be below the blacklist threshold (volume of
the N-th offender). In this scenario, the time to completely
scan a single subnet would essentially be the same as the
timerequiredto scan theentire| P address space. Theutility
of DOMINO in such scenarios is in its ability to prolong
this scanning process.

We perform a worst case analysis using logs from
DSHIELD. We constructed hourly and daily blacklistson a
/16 for an entire month and computed the 90-th percentile
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values as the basis for blacklist thresholds for N from 1-
100. Figure 9 shows the blacklist thresholds and how
the time to scan an entire subnet (or |Pv4 address space)
changes with the blacklist size (N) and granularity (hourly,
daily). Thereare several noteworthy characteristicsin these
graphs.

First, hourly and daily blacklists can be an effective de-
terrant for evasive scanners. The figure showsthat to evade
adaily blacklist of 100 sources it would take almost 1000
days (little less than 3 years) and more than 400 days to
evade an hourly blacklist of top 40 sources. Secondly, for
larger values of N, daily blacklists seem to be more effec-
tive than hourly blacklists. Finally, the staircase behavior
of the hourly blacklist is due to the heavy-tailed nature of
hourly sources. For example, for 60 < N < 100 we have
sources that have exactly 4 scans during the hour, and 50
< N < 60 corresponds to 5 scans. The flat region at 0 <
N < 20 in the daily blacklists corresponds to sources that
horizontally scan the entire /16 exactly once (65K scans).

5 Threat Vulnerability

As a widely deployed infrastructure, DOMINO itself
must be considered a target for attacks. To be effective,
DOMINO must beresilient to avariety of attacks. Whileits
design is robust, we have not attempted to address all pos-
siblevulnerabilitiesof DOMINO to attack. By virtue of the
fact that its architecture enables heterogeneous client par-
ticipation, it may well be infeasible to address al possible
vulnerabilities. We address threats to DOMINO through a
model that considers the most likely forms of attacks that

may be attempted. These include attacks intent upon deny-
ing serviceintheinfrastructure, attemptstoinfiltratethein-
frastructure, and attacks intent upon reducing DOMINQO'’s
effectiveness.

5.1 Denial of Service

Threat: An attempt to effectively remove node(s) through
DosS attack from systems outside of DOMINO.

Remedy: In the face of standard packet flood attacks, it is
certainly possible that some set of DOMINO nodes could
be effectively removed from the infrastructure. In fact, it
is a non-goal of the infrastructure to protect nodes from
DosS attack. However, the distributed, coordinated nature
of theinfrastructure makesit robust to the removal of nodes
through failures or attacks.

Threat: A compromised DOMINO node begins sending
large amounts of what appears to be legitimate data in an
attempt to mount a DoS attack on another axis node.
Remedy: An axis node can apply filters to incoming data
such that data sent by any node or set of nodes cannot ex-
ceed a specified threshold. The configuration of filters will
be dependent both upon system resources and upon histor-
ical variability. If multiple axis nodes have been compro-
mised, then filtering could cease to be effective.

5.2 Infiltration

Threat: An attempt to masguerade as an axis node.

Remedy: Asdiscussed in Section 3.3, we assume that axis
nodes are intermittently forced to participate in a mutual
authentication protocol by other axis nodes. If an axisnode



N fails the authentication protocol initiated by a specific
axis node, it broadcasts a message to axis nodes in the
DOMINO network informing them that axis node N might
be compromised.

5.3 Obfuscation

Threat: A compromised node sends data (perhaps large
amounts) that is supposed to be real in an attempt to obfus-
cate some other activity.

Remedies: There are two remedies for this threat. First,
nodes attach a SHA-1 digest with each block of data. The
collision resistant property of SHA-1 will makeit very hard
for the adversary to tamper with the data sent by an axis
node. The second remedy stems from the distributed na-
ture of DOMINO. When results are forwarded between
axis nodes, filters can be applied during the datafusion pro-
cess such that no single node has the ability to skew results
through simply increasing data volume. Filtering within a
node set below an axis node can also be applied at the dis-
cretion of the axis node. The effect will be the same as the
axis level filter. For obfuscation attacks not based on vol-
ume, the fusion process is designed to emphasize the co-
ordinated perspective which significantly reduces or elimi-
nates the effectiveness of this attack.

Threat: Attempts at stealthy and/or coordinated scanning.
Remedy: Perhaps the most important strength of
DOMINO isthe enhanced perspective afforded through co-
ordination of multiple sites. This enhanced perspective can
expose both stealthy and coordinated scans at much finer
granularity than detection at a single site. However, if the
adversary is willing to sufficiently slow their scanning or
employs sufficiently many nodes in a coordinated fashion,
they could still elude detectionin DOMINO. Theremedy is
toinclude enough nodesin DOMINO to makethethreshold
on stealthy or coordinated scanning high enough to render
this aternative infeasible.

Threat: An attempt to avoid active-sink nodes.

Remedy: The most basic function of active-sink nodes is
to track scanning activity on unused IP addresses. In this
sense, they will always be useful even if some adversaries
can isolate their use to specific networks or |P addresses
within networks. The combined use of an NIDS (on live
IP addresses) and active-sinks (unused 1P addresses) will
mean that al intrusion attempts have the possibility of be-
ing tracked. A simpleway to confuse active-sink identifica-
tion is to employ probabilistic responses. Namely, instead
of responding to al SYN packets in an IP block, only re-
spond to some number of them.

We believe that as long as attackers spoof source ad-
dresses and active-sink nodes monitor significant fraction
of the unused IP space, traffic captured by the sinks will
provide valuable insight into network intrusions.

6 Conclusionsand Future Work

In this paper, we describe and evaluate DOMINO, a
cooperative intrusion detection system. DOMINO is de-
signed to enable intrusion information sharing in aglobally
distributed network consisting of: 1) trusted axis nodes or-
ganized in a peer-to-peer overlay, 2) satellite nodes associ-
ated with each axis node that are hierarchically arranged,
3) terrestrial nodes, which are deployed at the leaves of
the infrastructure, that provide daily intrusion summaries.
DOMINQO’s design is based on heterogeneous data collec-
tion through NIDS, firewalls and active-sinks. This ar-
chitecture enables DOMINO to be secure, scalable, fault-
tolerant, and facilitates data sharing.

Our evaluation of DOMINO is based on data from two
sources. The first is a set of intrusion logs collected over
a four month period from over 1600 networks world wide.
The second is from a prototype sink implementation on a
single network which monitors over 100K IP addresses.
Our evaluation clearly demonstrates the utility of sharing
information between multiple nodes in a cooperative in-
frastructure. We use an information- theoretic approach to
show that perspectiveon intrusions can be greatly enhanced
by cooperation of arelatively small number of nodes. Us-
ing the 2002 and 2003 SQL-worm outbresks, we demon-
strate that false-alarm rates can be significantly reduced in
DOMINO and that reaction time for outbreak detection can
be similarly reduced. Finally, we provide an initial evalu-
ation of the effectiveness of active-sinks in discriminating
between types of attacks based on examining payload data.
Our results clearly demonstrate that active-sinks provide
important insight in this regard. Based on these analysis,
we conclude that DOMINO offers a significant opportu-
nity to improveintrusion and outbreak detection capability
in the Internet.

We intend to pursue future work in a number of direc-
tions. First, we plan to develop more interactive-sink-hole
responders that would further enhance attack discrimina-
tion capability. Secondly, we plan to deploy an operational
DOMINO infrastructure. This will enable us to test and
further develop the DOMINO topology creation and main-
tenance protocols. As we expand, the infrastructure will
enable case studies of future intrusion and outbreak activ-
ity. We also plan to investigate alternative methods for in-
formation merging and sharing with the goal of improving
efficiency and precision. Finally, we plan to develop tools
for automating firewall rule generation.
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A DOMINO M essages

To foster interoperability and maximize extensibility the
DOMINO protocol messages are represented in XML. We

extend the schema proposed by the IDWG (Intrusion De-
tection Working Group) in IDMEF (Intrusion Detection
Message Exchange Format) draft [17]. Our schema adds
five new message types to the two provided by the IDMEF
(alerts and hearbeats). The seven message categories in
DOMINO are asfollows:

Alerts - Alerts are spontaneous responses to events as de-
fined by NIDS and firewall or custom policies. Most derts
are generated at the small networks or satellites, however
they might get propagated to the axis level depending on
the pervasiveness and severity. Alert clustering and sup-
pression is avery chalenging problem and vital to the op-
erational success of the infrastructure. The IDMEF draft
defines a few dert classifications: tool aert, correlation
alert and overflow alert. The DOMINO axis nodes also ex-
change alerts when there is a significant deviation from the
periodic summaries. For example, outbreak alerts, black-
list aerts and denial-of-service attack alerts. The DTD for
an dertisasfollows:
<!ELEMENT Alert (CreateTime, DetectTime?,
AnalyzerTime?, Classification, Source*, Target*,
AdditionalData?) >

<!ATTLIST Alert version CDATA #FIXED ‘1’, ident
CDATA #REQUIRED, impact CDATA ‘unknown’>

Summary Messages - DOMINO summaries are typically
exchanged by the axis peers in one of three possible for-
mats relating to the type of information being transmit-
ted. The summary messagetypesinclude: Port Summaries,
Source Summaries and Cluster Summaries. DOMINO also
defines three levels of trust (low, medium and high) for
summary messages based on their source (axis/satellite).
The choice of three levels of trust is somewhat arbitrary
and are used as cues for intelligent aggregation. The DTD
for summary messagesis as follows:
<!ELEMENT Summary (CreateTime, SummaryDuration,
IPBlockSummary+) >
<!ATTLIST Summary version CDATA #FIXED ’1’, ident
CDATA #REQUIRED>
<!ELEMENT IPBlockSummary (MinIP, MaxIP, IPCount,
TrustLevel, PortSummary?, SourceSummary?,
ClusterSummary?) >
<!ELEMENT PortSummary (VulnID/PortNum, NumUnigSrcIP,
NumUnigDestIP, ScanCount>
<!ELEMENT SourceSummary (VulnID/PortRange, ScanCount,
AggregateScanCount, NumUniqgTargets) >

<!ELEMENT ClusterSummary (SrcIPList, DestIPList,
VulnlID/PortRange, ScanCount) >

Heartbeats- In DOMINO the Satellite Nodes periodically
exchange heartbeat messages with the parent nodes. These
are used to indicate the current status to higher level nodes
and vice-versa. Theseinterval of heartbeatsis left up to the
satellites, it could be say every 10 minutes or every hour.
<!ELEMENT Heartbeat (CreateTime, AnalyzerTime,

AdditionalData*) >
<!ATTLIST Heartbeat ident CDATA #REQUIRED>



Topology Messages - There are four different types of
topology messages. adopt, detour, recall, and divorce.
When a satellite node is disconnected from its parent, it
tries to reconnect through the normal heartbeat exchange
protocol. If thisfails, it issues an adopt message to a DAP
that is then multicast to the overlay of axis nodes. An axis
node might forward the adopt message to any applicable
children. The satellite analyzes the acknowledgments and
responds with adetour message to the most eligible parent.
When an axis or satellite parent restarts, it issues a recall
message to all its children. The child can accept the invi-
tation to rejoin by issuing a divorce message to the foster
parent and a simultaneous detour message to the original
parent.
<!ELEMENT TopologyMessage (CreateTime, Type,
IPBlockSummary?>)

<!ATTLIST TopologyMessage version CDATA #FIXED
’1’, ident CDATA #REQUIRED>}

Queries - The DOMINO Query Messages are exchanged
in XQuery format. Since the axis nodes maintain a consis-
tent schemainter-axis queries could be done in SQL. How-
ever, we chose to use X Query to maximize interoperability
with satellites. We provide an example query which is to
create a top 10 blacklist for port 1433 between two speci-
fied times:

for $src in distinct (document ("scans.xml"))//source
let $scan := document ("scans.xml")//:scan[source = $src]
let $time := $scan/timestamp, $port = $scan/port
where $port = 1433 and Stime > 1044206900
and Stime < 1044206960
return
<blacklist>
<source> {$src} </sources>
<num_scans> {sum{$scan/count}} </numscans>
</blacklist>
} sortby {sum{$scan/count}} limit 10

DB Updates - The DOMINO protocol also provides an
automatic mechanism for updating NIDS rulesets and the
axis vulnerability database. This can also be considered as
a means for dispensing timely content based filters to the
satellites. The format of these messages is straightforward.
<!ELEMENT DBUpdate (CreateTime, VulnerabilityID,
Signature) >
<!ATTLIST DBUpdate version CDATA #FIXED ’‘1l’, ident
CDATA #REQUIRED, description CDATA>

<!ELEMENT Signature (TargetPorts+, Payload?,
SourcePort*, Protocol+, Segno?)>

Triggers - Triggers can be issued by DOMINO axis and
satellites to nodes that are lower in the hierarchy. A trigger
hasthree components 1) Query 2) Constraint and 3) Action.
We define two types of actions. aerts and filter rules. An
example of an trigger is the generation of an outbreak alert
when the number of scans exceeds a certain threshold.

<!ELEMENT Trigger (CreateTime, Query, Constraint,

Action) >
<!ATTLIST Trigger version CDATA #FIXED '1l’, ident

CDATA #REQUIRED, description CDATA>
<!ELEMENT Action (Alert?, Filter?)>

B Information Sharing

Potential strategies for information sharing include the
following:

Local aggregation: Once intrusion information has been
gathered at the satellite nodes, the next step is to consider
how to organize and refine the data to create a coherent
picture of malicious activities. Moreover, if satellite nodes
send “raw aerts’, the axis nodes will get overwhelmed.
Therefore, aerts from the satellite nodes need to be “ag-
gregated” before they are communicated to the axis nodes.
Cuppens [12] describes a cooperative intrusion detection
module or CRIM as ameans for combining alerts from dif-
ferent IDSs. DOMINO adopts and extends this design for
the purposes of aggregating “raw aerts’.

Global aggregation: The most straight-forward way to
merge logs from multiple sites is through a simple addi-
tion or average across each dimension of data. While this
approach provides a simple means for organizing and sum-
marizing data, it aso has the risk of inaccuracy. As an
example, consider the case of a Port Summary. It seems
logical to add the the number of scans and the number of
unique destinations, but simply adding the set of unique
sources across axis nodes is amost certainly not appro-
priate. DOMINO currently performs simple aggregation
for Port Summaries (but does not consider the results for
Sources).

Weighted merging: A potentially important considera-
tion in fusing summaries is IP address proximity. In par-
ticular, summaries generated from “neighboring” 1P ad-
dress blocks might be more germane than those gener-
ated in a “distant” network (since it is not uncommon for
scans or attacks to proceed horizontally through 1P space).
A weighted merging approach that emphasizes proximity
might be more appropriate. DOMINO currently performs
avery simple weighted merging of blacklists.

Sampling: Sampling is the standard method for reducing
the scale of measurement data. The goal in any sampling
approach is to balance quantity of data with precision of
measurement. In the case of DOMINO, this is challeng-
ing since intrusions can take the form of attacks (which
would be easy to sample) and stealthy scans (rare events
which are hard to sample). Any sampling method used in
DOMINO would have to poses the ability to expose both
types of events. We are investigating the feasibility of em-
ploying sampling as a technique for data sharing.

A related issuethat isimportantin DOMINO isthe aging
of local data. The packet data accumulated in large sinks
could be on the order of 100's of Megabytes per day. Sum-
maries, however, are meant to be light weight so simply
purging data older than a certain number of days might be
a reasonable approach in practice. However, care must be



Table 1. Monthly summary of DSHIELD logs

Month No: Scans | No: Dest IPs
May. 2002 | 48 million 375,323
June. 2002 | 61 million 382,224
July. 2002 | 68 million 402,050

taken to ensure that periodic patterns, such as the monthly
riseand fall of the Code Red worm, are not lost. At present,
we propose that DOMINO maintain summaries at several
granularities and uses weighted averaging to merge older
summaries with moretimely data.

C Intrusion Trace Data

We use a set of firewall and NIDS logs of portscans col-
lected over a 4 month period from over 1600 firewall ad-
ministrators distributed throughout the globe as the basis
for analysis of DOMINO. The logs provide a condensed
summary (lowest common denominator) of portscan ac-
tivity obtained from various firewall and NIDS platforms.
Some of the platforms supported include Blackice De-
fender, CISCO PIX, ZoneAlarm, Linux |Pchains, Portsen-
try and Snort. This approach significantly increases the
coverage and reduces reliance on individual NIDS's inter-
pretation of events.

Table 2 illustrates the format of a typical log entry. The
date and time fields are standardized to GMT and the
provider hash allows for aggregation of destination |P ad-
dresses that belong to the same administrative network.
Table 1 provides a high level summary of the data that
was used in this analysis®. The dataset was obtained from
DSHIELD.ORG - a research effort funded by the SANS
Institute as part of their Internet Storm Center [46]. The
goals of DSHIELD include detection and analysis of new
worms and vul nerabilities, notification to | SPs of exploited
systems, publishing blacklists of worst offenders and feed-
back to submittersto improve firewall rulesets. The datais
comprised of logs submitted by a diverse set of networks
and includes 5 Class B networks, over 45 Class C sized
networks and alarge number of smaller sub-networks. The
networks represented in this data set are widely distributed
both geographically and topologically in the autonomous
system space. This providesaunique perspective on global
intrusion activity highlighted by DSHIELD's contribution
in the detection and early analysis of Code Red, Nimdaand
SQL worm(s) outbreaks.

D Preliminary Resultsfrom the Active-Sink

Figures 10 and 11 show the number of packets and flows
per second respectively that were inbound and outbound

SWe also used DSHIELD data for port 1433 from January, 2003 for
our SQL-Sapphire analysis.

from the active-sink. The positive flows are outbound and
the negative are inbound. As might be expected, the num-
ber of inbound packetsis higher than outbound because the
active-sink does not respond to the persistent payl oad pack-
ets. Thedifferencein the number of inbound and outbound
flows is an artifact of the way flows are accounted over 5
minute intervals. It should not be surprising that there are
no outbound UDP packets. The number of inbound pack-
ets was typically between 200-300 packets or about 40-50
connection attempts per second. The active-sink running
on aPentium 4 Linux PC, had no problem coping with this
traffic rate since no per-connection state is maintained. The
connection attempts spanned a wide variety of ports and
originated from hundreds of thousands of sources. A typ-
ical summary of the top ports for a given week is shown
in Table 3. The ms-sgl-s and ms-sgl-m scans correspond
to the recent SQL-Sapphire worm and SQL -Snake respec-
tively. The HTTP probes are from Code Red and Nimda
infected hosts. The microsoft-ds scans, port 139, port 135
scans are from the Lioten worm [9]. These are followed
by scans for four different open proxy servers (often used
as ameans obfuscate Internet activity).

Tarpit 1/0, Packets by Protocol, one week (+outbound, -inbound)
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Figure 10. Protocol breakdown of active-sink
packets Jan 28 - Feb 4.

Tarpit I/0, Flows by Protocol, one week (+outbound, -inbound)
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Figure 11. Protocol breakdown of active-sink
flows Jan 28 - Feb 4.

An important application of the traffic captured by the
active-sink nodes is generating signatures for malicious
payloads, e.g., signature for a payload of a worm. Cur-
rently, NIDS use simple pattern matching to identify mali-
cious payloads. This method can lead to significant number
of false positives because variations in malicious payloads
cannot be detected. We demonstrate how the traffic cap-



Table 2. Sample log entries from portscan logs

Date Time Sub. Hash No: Scans SrclIP SrcPort  TargtIP  Targt Port TCP Flags
2002-03-19 18:35:18 provider2323 3 211.10.7.73 1227 10.3.23.12 21 S
2002-03-19 18:35:19  provider2323 16 211.10.7.73 1327 10.3.23.12 53 SF
Table 3. Sample weekly summary top probed services

Service Port Protocol Flows Octets Packets

ms-sgl-s 1434 UDP 548838 388453676 1371925

microsoft-ds 445 TCP 541528 42580046 545867

ms-sgl-m 1433 TCP 301428 115385725 997172

http 80 TCP 249569 66851055 728766

netbios-ss 139 TCP 99075 10894702 230539

AnalogX (Proxy Server) 6588 TCP 82707 8594185 134813

https 443 TCP 69025 7988260 158725

HyView Proxy 3128 TCP 27483 1146324 27970

http-alt 8080 TCP 27109 1109656 27374

Win NT/2000 RPC 135 TCP 6765 291224 7279

tured by the active-sink nodes can be used to create amore
“robust” signature for a malicious payload.

Our first step is to cluster the payloads of the traffic ob-
served at the active-sink nodes. Intuitively, each cluster
corresponds to malicious payload. Next, we construct a
classifier for each cluster. These classifiers can then be used
by a NIDS to identify malicious payloads. We have only
performed the clustering step. In the future, we will inves-
tigate constructing classifiers and their use in identifying
malicious payloads. However, the results of the clustering
are encouraging.

We performed clustering on data collected between Jan
6, 2003 and Jan 28, 2003. First, we constructed a finger-
print for each payload. A fingerprint for a payload is the
distribution over bytesbetween 0x1F and 0x7E (these are
the same bytes that are used by Snort in displaying pay-
loads). Each fingerprint also records the number of bytes
that were outside this range. The distance between two
payloadsisthe Kullback-L eibler distance between their fin-
gerprints. Payloads were clustered using the k-means [15]
algorithm and the sum of squared metric was used to deter-
mine the optimal number of clusters.

Our results show that there are six distinct clusters (see
Table 4). Figure 12 provides a cumulative distribution
function of the distance from the cluster centers. Clusters
1 and 3 are perfect clusters (distance of zero). The clus-
ters with port 80 (2 and 5) and port 1433 seem to have
little more variability. Port 8080 scans in cluster 2 and 5
appear to be Code Red/Nimda variants. The variability in
these clusters can be attributed to two reasons. each attack
of Code Red,Nimda and SQL-Snake is a series of similar
packets that attempt to open a shell and execute a series of
commands. There are several variants of these worms (es-

pecially true of port 80) that try a dlightly different search
path from the default for the presence of an exploit. There-
fore, our experiments demonstrate that clusters naturally
correspond to classes of malicious payload, so classifiers
generated from these clusters should be successful in iden-
tifying malicious payloads.
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Figure 12. Variability in the payload clusters.

Table 4. Cluster Summary

Port (No. Scans)

445 (1090338)

80 (1315982), 3128 (10995), 8080 (24066)
139 (160668), 443 (27377), 3128 (7181)
135 (5791)

23 (29108), 80 (2309958), 8080 (10770)
1433 (2167842)

Cluster

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6




