
Stealth DoS Attacks on Secure Channels

Amir Herzberg∗ and Haya Shulman†

Bar Ilan University
Department of Computer Science

Ramat Gan, 52900, Israel

Abstract

We initiate study of the use of ‘secure tunnel’ proto-
cols, specifically IPsec, and its availability and perfor-
mance guarantees to higher-layer protocols, in particular
TCP, against Denial/Degradation of Service (DoS) attacks.
IPsec is designed to provide privacy and authentication
against MITM attackers, and employs an anti-replay mech-
anism to ensure performance. For our analysis, we define
a new family of adversaries, the stealth denial and degra-
dation of service (DoS) adversaries. These adversaries are
weaker than the classical MITM adversary, and may be of
interest in other works. We analyse their ability to launch
(DoS) attacks on secure channels, and show realistic am-
plification attacks, disrupting TCP communication over se-
cure VPNs using IPsec. In particular, we show that anti-
replay mechanism is critical for performance by launching
a DoS attack on communication over IPsec without anti-
replay window. We present attacks exploiting insufficient
IPsec anti-replay window size, and show how to calculate
correct window size. Finally we present attacks on IPsec
with correctly adjusted anti-replay window size thus show-
ing that even large anti-replay window does not ensure per-
formance to TCP flows. We then suggest a fix to TCP in
IPsec gateway designed to prevent the above attacks, and
to provide secure channel immune to degradation and other
DoS attacks. Our solution involves changes (only) to the
sending gateway machines running IPsec. In addition to
their practical importance, our results also raise the chal-
lenge of formally defining secure channels immune to DoS
and degradation attacks, and providing provably-secure im-
plementations.

∗Amir.Herzberg@gmail.com
†Haya.Shulman@gmail.com

1. Introduction

Denial/Degradation of service (DoS) attacks pose an
ever growing threat to Internet services and applications.
Secure channel protocols, with IPsec [27, 38] being the pre-
dominant one, are used to securely connect virtual private
networks (VPN), i.e., authenticate data and origin, ensure
confidentiality, and performance. IPsec is designed to pro-
tect against man-in-the-middle (MITM) adversaries that can
eavesdrop on the communication and inject spoofed seg-
ments into the message stream. It is widely believed, and
also specified e.g., in [27], that IPsec also defends higher-
layer traffic from DoS attacks when attacker has limited
resources (e.g., can only block, inject or reorder a limited
number of packets). Defense against DoS attacks is often
an important consideration in adopting IPsec for protecting
a VPN (rather than say using SSL/TLS [22, 14]). We show
that this belief is not precise and that IPsec does not deliver
on its performance guarantees, by presenting several DoS
attacks on TCP when used over IPsec.

TCP [35] is the transport layer communication protocol
that underlies most Internet applications, e.g., web, mail,
file transfer, remote access. TCP provides a reliable and
connection oriented service to its users, allows fair sharing
of network resources with mechanisms for flow and con-
gestion control. However, TCP does not provide security
guarantees against network adversaries.

Our attacks raise the following question: what are the
properties that secure channel should satisfy to protect
against performance degradation attacks? Existing works
do not analyse the properties that secure channel protocols
should possess to protect against denial of service attacks.
There are works that attempt to define what secure channel
is, e.g., [12], but they fail to capture performance analysis
of secure channel, i.e., efficiency and resistance to denial of
service attacks. Herzberg and Yoffe [21] present a frame-
work that allows to define specifications that capture such
properties, and suggest further research on defining secure
channel protocols within that framework. However, they

do not present such specifications for DoS-preventing se-
cure channel protocols, or demonstrate that existing secure
channel protocols fail to protect against DoS. Our work pro-
vides such demonstration; we hope that it will prompt re-
search leading to such specifications and provably-secure
DoS-preventing channels. Specifically, we show that al-
though IPsec employs an anti-replay mechanism that is tar-
geted at ensuring performance by detecting and discarding
spoofed duplicate packets injected by a MITM adversary, it
fails to counter denial/degradation of service (DoS) attacks.
We show DoS attacks that exploit congestion control mech-
anism of TCP.

In each section we present different techniques for
exploiting the vulnerabilities of TCP congestion control
mechanism, which rely on slightly different adversarial
model. The attacks we present rely on standard behaviour of
correctly implemented TCP congestion control mechanism.
We then analyse the impact that these attacks can have on
TCP performance (when run over IPsec). In addition, we
demonstrate the necessity for and motivate the anti-replay
mechanism of IPsec, by presenting simple attacks on TCP
congestion control mechanism when IPsec is used without
the anti-replay window. We also investigate the correct size
of IPsec’s anti-replay window, and show attacks when in-
correct window size is used. We also show how to compute
correct anti-replay window size. Yet, we show degradation
of service attacks by stealth adversary (defined in Section
2.2), even when sufficient anti-replay window size is used.

In Section 5.3 we discuss solutions to combat the re-
ordering attacks (whether by malicious adversary, or due to
benign network congestion), and present a fix in IPsec gate-
way, to address the reordering of packets. Our goal is not
to require changes in the TCP protocol in every host sepa-
rately, but to apply the modification to the firewall, and as
a result to protect subnet of hosts. Many private networks
connected to the Internet are protected by firewalls. Firewall
protection is based on the idea that all packets destined to
hosts behind a firewall have to be examined by the firewall.
When applied to firewall, our mechanism requires minimal
changes to existing implementations, to combat the attacks
presented in the rest of this paper. Our solution is comprised
of two phases: first detection and then prevention of an at-
tack, and is based on delaying congestion notification, i.e.,
duplicate ACKs, and discarding if turned out to be false.

Our stealth attacks can be applied to other tunneling pro-
tocols, e.g., to the widely used tunneling Generic Routing
Encapsulation (GRE) mechanism, see [15]. According to
[15], GRE specifies a protocol for encapsulation of an arbi-
trary protocol over another arbitrary network layer protocol,
and is a common way to achieve tunneling of IP encapsu-
lated inside IP. GRE does not provide authentication, i.e.,
it is vulnerable to spoofing adversary; to perform denial of
service against GRE, an attacker can simply send a segment

with a higher sequence number. To prevent this type of at-
tacks, it is suggested to run GRE over IPsec, however, as we
show in this work, IPsec does not protect against this type
of attacks.

In all our attacks we assume a stealth attacker model,
presented in Section 2.2, that can with minimal effort sig-
nificantly degrade the performance of communication over
TCP. Our attacker may be restricted in its eavesdropping ca-
pability (may be able to eavesdrop on one network segment
but not the other), as well as in the number of (spoofed)
packets that it can inject. For instance, in wireless net-
work attacker can only eavesdrop on wireless communica-
tion, and may be able to inject segments in the wired access
network. Often attackers may be limited in their spoofing
ability, e.g., attacker is able to disrupt communication by
infiltrating a small device which has a limited power. In
addition, attackers typically prefer to avoid detection, thus
spoofing a limited number of segments. Note that our at-
tacks exploit the congestion control of TCP, by injecting
duplicate segments. This strategy allows attacker to evade
DoS detection mechanisms, e.g., consider a sequence of
routers on the path between source and destination, where
the attacker controls one of the routers. The router simply
duplicates some of the segments that traverse it, and reroute
them via an alternative path. Thus the malicious router can-
not be traced back. On the other hand, if the router sim-
ply dropped occasional segments, this could be detected,
and the attack would be traced back to the malicious router.
For more details on attacks on wireless networks by MITM
adversary (and limitations) can be found in [33]. Similar
attacker model was considered in [36], which investigated
an Explicit Congestion Notification (ECN) with IPsec. We
discuss this briefly in Related Works in Section 1.2.

1.1. Other DoS Attacks on IPsec

In this work we consider DoS attacks by stealth attack-
ers, that can eavesdrop and spoof packets, yet even weaker,
blind spoofing, attacker can mount a DoS on IPsec. For
instance, it is known that fragmentation can expose IPsec
to DoS attacks, e.g., IPsec cannot prevent attacks on frag-
ments’ buffer at the recipient if fragmentation is allowed.
Specifically, since authentication is performed prior to frag-
mentation, spoofing attacker could launch a DoS attack by
swamping the receiving gateway with (maliciously crafted)
IP fragments, which could not be reassembled, thus legiti-
mate packets could not be accepted, e.g., in [25]. This attack
is made possible due to the fact that IPsec reassembles the
fragments prior to authenticating them, and the attack can
be prevented by defining minimal fragment size and not al-
lowing fragmentation; another solution is to only allow pre-
fragmentation, i.e., fragmentation by IPsec gateway prior to
applying IPsec processing on the outgoing packet.

Another attack is returning an ICMP port unreachable er-
ror message which would force the sender to reduce frag-
ments’ size until no (or minimal size, e.g., Byte) packets
can be exchanged, discussed in [16]. This attack is pre-
vented trivially against a spoofing attacker; IPsec packets
include the security parameters index (SPI), used to iden-
tify the security association (SA) used for the connection,
in packets’ headers. In addition, an ICMP port unreachable
error message includes the 8 bytes of the original packet
(which has the SPI). The SPI field is secret and random,
therefore cannot be known to spoofing attacker, and if in-
valid SPI is received it is ignored by the receiving IPsec
gateway. Yet this solution does not hold against our stealth
attacker since it can observe the SPI value in packets’ head-
ers, and can thus forge a correct and valid SPI. However,
this attack (as opposed to ours) can also be prevented, e.g.,
by defining minimal fragment size, and once reaching that
size gateway would ignore further ICMP port unreachable
messages. Another solution, against a stealth attacker (that
cannot drop packets) can be to check if ACKs arrive, in re-
sponse to transmitted messages, e.g., like in our our stealth
attacks, then ignore the ICMP port unreachable messages.

DoS attacks can also be launched on IKE (key establish-
ment protocol of IPsec), which was designed to run over
UDP in order to avoid DoS attacks on TCP. In [25], the au-
thors show an attack on IKE, by exploiting fragmentation.

A vulnerability of IPsec to DoS when using Explicit
Congestion Notification (ECN) is investigated in [36]. If
the IPsec gateway at the exit of the tunnel does not copy
the ECN bit, then it ruins the ECN mechanism; on the other
hand, if the gateway copies the ECN bit, then an attacker
can degrade performance. The attack can be launched since
the authentication that IPsec performs does not protect the
ECN bit. However, there is noanalysis of this attack; such
analysis is rather similar to the analysis we present, of sim-
ilar attacks. In addition, our attacks work even if ECN bit is
not used, as well as if the recommendation of the RFC not to
copy the ECN bit from tunneled packets is followed. Note,
that the authors of [36] consider similar adversarial model
to ours, i.e., they consider a ‘weaker MITM’ attacker model
like the one we present and define in Section 2.2, although
we also consider duplications, and do not consider modifi-
cations to legitimate packets, e.g., turning on/off ECN bit.

1.2. Related Works

1.2.1. Denial/Degradation-of-Service (DoS) Attacks

Denial/Degradation of Service (DoS) attacks, and espe-
cially Distributed DoS (DDoS) attacks, pose a serious threat
to Internet applications. In the last years, DoS attack meth-
ods and tools are becoming more sophisticated, effective,
and also more difficult to trace to the real attackers. We

briefly recap several types of DoS attacks, using different
(roughly, diminishing) adversarial capabilities.

The basic distributed denial of service attack is brute
force or flooding, see e.g. [23, 13], and SYN attack in
[37]. Flooding DoS attacks typically utilise a large num-
ber of compromised nodes in order to consume network re-
sources by flooding an Internet link, and thus shutting off
TCP flows. The shortcomings of this attacks from the at-
tacker perspective is that they are easy to detect due to high
volume of uniform traffic, e.g., network administrators can
identify performance degradation in infected machines and
eliminate the vulnerabilities that allowed the attack. Alter-
nately, an ISP can block the malicious traffic. In addition,
attacker may also be blocked by rate controls or limited
by bandwidth of a zombie. However, recently it has been
shown that attackers can achieve similar outcomes without
overloading the system in a persistent manner, using attacks
such as described next (and such as the attacks investigated
in this paper). TCP targeted (low-rate) Shrew attacks, [29]
exploit the retransmission timeout (RTO) of TCP, by trans-
mitting short traffic pulses of RTT scale length, of low av-
erage volume of RTO scale periods, causing TCP flows to
continually timeout. The result is near zero TCP through-
put. Due to the nature of the attack traffic it can be hard
to distinguish it from other legitimate traffic, e.g., video.
Low-rate TCP attacks are much harder to detect, and re-
quire much weaker attacker capabilities, i.e., the attacker
can simply generate bursty UDP flows of low average rate.

Low-rate TCP targeted Reduction of Quality (RoQ) at-
tacks are another type of low-rate TCP attack, introduced in
[18, 19, 32], where attacker exploits the TCP AIMD mecha-
nism causing TCP performance degradation. The main dif-
ference is that RoQ attacks do not require precise timing
(to tune to the RTO frequency). The RoQ attacks are even
more difficult to detect and block, since they do not operate
at specific intervals. In [32] authors suggest a type of at-
tacks similar to RoQ attacks, i.e., the pulsing attacks, which
are targeted at TCP applications. The pulsing attacks can
be categorised into two models: timeout-based attacks, and
AIMD-based attacks, depending on the timing of the attack
pulses w.r.t. congestion window of TCP. During the attack,
pulses of malicious traffic are sent to a victim, resulting in
packet losses. Authors of [32] show that even a small num-
ber of attack pulses can cause significant throughput degra-
dation. Recently, in [1], a new denial of service attacks,
dubbed JellyFish, were exhibited. JellyFish attacks target
TCP congestion control mechanism of TCP flows, by hav-
ing the relay nodes misorder, delay or drop packets which
they are expected to forward.

Low rate TCP targeted attacks can be prevented by using
secure channel protocol between the gateways, e.g., LOT in
[16], and using mechanisms that provide quality of service
by differentiating traffic, e.g., DiffServ [7]. Namely, when

employing DiffServ, flows are given different priority, and
flows over a secure channel can be given higher priority,
and will be reserved space in routers buffers. Alternately,
non-conforming packets can be dropped or given a lower
priority and placed in different queues.

1.2.2. Making TCP Robust to Reordering

Some of our attacks, e.g., Section 5, are based on (ma-
licious) reordering of network packets, and we propose a
fix to TCP in IPsec gateways. Our solution may also be
integrated in TCP in each host, to handle benign network
reordering (yet further research is required to present ex-
perimental work and analysis).

A wide range of TCP modifications has been proposed to
improve robustness to reordering, e.g., [8, 41, 10, 6, 40, 11];
see a survey in [30] and an analysis in [8]. Existing works
focus on benign network reordering. In [4] authors describe
a collection of techniques that provide one way reordering
measurements in both directions between a client and most
TCP based servers on the Internet, and propose a metric
to summarise reordering activity. In [30] the authors con-
sider the impact of packet reordering on TCP, and survey
approaches to handle the issue. Authors identify two ap-
proaches: the ordinal approach and the temporal approach.
Eifel and DSACK based algorithms are experimental RFCs.

1.2.3. Internet Protocol Security (IPsec)

Internet Protocol Security (IPsec), in [27], provides net-
work layer security against MITM attackers, offering pri-
vacy and/or integrity to the exchanged communication, and
authenticates source of IP packets, i.e., prevents spoofing of
IP addresses. IPsec can be used in two modes: transport
or tunnel, and has two security protocols ESP, providing
encryption and optional authentication, and AH, providing
authentication. IPsec employs an anti-replay window to en-
sure performance by preventing duplicates, i.e., replays of
the communication exchanged by the legitimate parties, by
discarding duplicate segments at the receiver. In a replay
attack an adversary sends a copy of previously transmit-
ted, legitimate message between a sender and a receiver, see
[39] for more details. When the replayed packet reaches the
destination, it will be passed to the transport layer buffer.
Duplicate messages degrade performance and is an obvious
motivation for anti-replay window. Maintaining and man-
aging an anti-replay window can require significant mem-
ory resources,; optimisation of anti-replay mechanism, e.g.,
[24, 17, 43] try to come with more efficient implementa-
tions. Yet some solutions, e.g., [17], that attempt to save
resources by decreasing window size are susceptible to at-
tacks, which may result in more damage than not using an
anti-replay window at all. According to [27, 24, 17, 43], the

anti-replay mechanism of IPsec is used to secure IP against
an adversary that can insert possibly replayed messages in
the message stream, and as a result prevent denial of service
attacks. In particular, the authors of [43] present robustness
to DoS attacks as one of the requirements of anti-replay
mechanism, and claim that the possibility that packets will
be dropped is traded with the prevention of replay attack.
We show that even large enough anti-replay window cannot
prevent DoS attacks, and in Section 5 we present a new type
of low-rate TCP attacks, the reordering attacks, which sig-
nificantly degrade performance even when sufficiently large
IPsec window is used.

1.3. Contributions

We show that IPsec alone cannot provide protection
against DoS. The contributions of this work can be sum-
marised as follows:

• We identify an important attack model, the stealth at-
tack, which was not explicitly defined prior to this
work.

• We justify and analyse IPsec’s anti-replay mechanism,
Section 3, and show how to compute optimal IPsec
anti-replay window to prevent packets loss due to re-
ordering attacks in Section 4.

• We present degradation of service attacks on TCP
when running over IPsec, which work even when a
large IPsec anti-replay window is employed, Section 5.
We analyse our results with a simple analytical model
of TCP performance degradation.

• We propose a fix to TCP in IPsec gateways, Section
5.3, to prevent the stealth reordering attacks.

• Conceptual contribution: we initiate investigation of
the performance properties that secure channel proto-
cols should provide.

2. Model

In this section we present the scenario which we consider
in the paper, we model and motivate the attacker, and give
assumptions on the communication.

2.1. Scenario and Attack Model

Consider the scenario presented in Figure 1, with a vir-
tual private network between two branches, both connected
via gateways GW1, GW2 to the Internet. All the commu-
nication between the branches is over IPsec, using IPsec’s
ESP mode with authentication. For simplicity, we assume

NYC site
Web Server

GW1 GW2

attacker

Public
Internet

LA site

FTP Server

Mail Server

Figure 1: Virtual private network behind gateway GW1 with
users accessing servers located behind GW2. IPsec is used for
protection, and a stealth adversary is located on the Internet, and
attacking a Virtual Private Network (VPN) between two sites.

that the clients are located behindGW1, and the servers are
located behind GW2. The clients send requests to down-
load files from servers, and servers send the requested files
in response. We assume that all communication is over TCP,
and upon each correctly received data segment, a client gen-
erates and sends an acknowledgment (ACK). An attacker
located on the Internet between the two gateways, GW1
and GW2, in Figure 1, is able to eavesdrop on the commu-
nication and inject (a limited number of) packets into the
message stream, but cannot drop legitimate packets. More
details on the attacker are presented in the next subsection.

2.2. Stealth Adversary Model

In this work, we define and consider the stealth adversary
model that can eavesdrop on communication, and spoof
packets (based on packets it observed), but cannot delay or
drop packets; the ‘classical’ man-in-the-middle (MITM) ad-
versary can eavesdrop, intercept communication, drop and
inject spoofed packets into the message stream. Attacker
that drops packets, i.e., MITM, can disrupt communication
and mount a denial of service attack, e.g., by blocking all
communication, yet we are interested in sophisticated am-
plification attacks where attacker spends considerably less
resources w.r.t. the resulting damage. In addition, in real-
ity attackers often do not have MITM capabilities; and even
when attackers can drop packets they often prefer to refrain
when an alternative exists, in order to avoid detection.

Like in low rate attacks [29], we restrict the attacker’s
ability to send (inject) spoofed and/or duplicated packets.
Specifically, we believe a realistic model would be to define
a quantified, (ρ, σ)-limited stealth adversary following the
‘leaky bucket’ approach. Namely, an (ρ, σ)-limited stealth
adversary is one who can send, during any interval of length
T , at most ρ · T + σ spoofed and/or duplicated packets.
These limitations are weaker compared to those of low-rate
attacks, e.g., [29, 19, 32], since the attacker is not just lim-
ited in the amortised traffic, but also cannot create bursts
of traffic. In particular, the bursts are limited by σ, i.e., an

(ρ, σ)-limited stealth attacker can create a σ−burst which
is a burst of σ segments. We show that even this weaker
attacker can dramatically degrade performance, even when
communication is protected by IPsec.

We consider stealth (i.e., weak MITM) attackers, and
packets they inject can depend on the packets they eaves-
drop. In fact, since the communication between the two
gateways is authenticated (using IPsec), it follows that the
adversary can effectively only duplicate packets, and possi-
bly ‘speed up’ delivery of a duplicate so it will arrive before
the regularly-sent packet, e.g., via an alternative path. Note
that the attacker may be limited in the direction in which it
can inject spoofed segments, e.g., can only duplicate seg-
ments sent from NYC site to LA site in Figure 1, but cannot
duplicate segments in the other direction.

In each attack we present we use a slightly different
variant of the (ρ, σ)-limited stealth attacker; the different
variants of the attacker model are illustrated in Figures 2,
and 3 and defined below; The weakest stealth adversary
(Figure 2) can duplicate packets. A stealth attacker in
Figure 3, can also reorder packets1 by speeding them
up, e.g., via a faster route, in addition to its ability to
duplicate packets. We now model the attackers based on
the definitions above:

σ-Duplicating stealth attacker (Figure 2): this is the
weakest adversary model we consider. As the name im-
plies, the duplicating attacker can duplicate packets, so they
are received σ number of times instead of once. Specifi-
cally, let i be a sequence number of some packet. Packet i
was duplicated if σ identical copies of packet i arrived (in
addition to the original packet i) with sequence duplicate
packets.

We use the duplicating attacker to motivate the use of
anti-replay window mechanism in IPsec; for this attack, we
only need to send σ = 3 duplicates of a few packets.

s-Reordering attacker (Figure 3): our next attacker
can duplicate σ packets and cause the duplicate(s) to be
delivered via a faster route to the destination, i.e. faster
than the delay of other packets (including the original du-
plicated packet). Let 1, 2, 3, ... be a sequence of transmit-
ted packets (bounded by the maximal number of packets
in transit, see Claim 4). An s-reordering occurs if packet
with sequence number i arrives before packet with sequence
number i − s. We later show how such an attacker can
disrupt communication over IPsec implementations which
use an insufficiently-large anti-replay window. We believe
that such reordering capability may often be available to
attackers and is therefore a reasonable model, e.g., an at-

1Further research should be conducted to consider the damage that at-
tackers without speed-up capabilities, i.e., with the same delay as the legit-
imate communicating parties, can inflict.

123n n-1 444

Figure 2: Duplicating stealth adversary.

123n n-1

n

Figure 3: Reordering stealth adversary.

tacker may receive services from a better ISP that provides
a faster communication channel than the channel used by
the communicating parties, thus attacker can reorder pack-
ets by sending duplicates over a faster route; or attacker
may control zombie computers that will send more traffic
on the route between the two gateways, causing significant
queuing delays there, while the attacker speeds-up the du-
plicate packet via a different path to the destination gateway.
We assume that attacker has some non-zero delay, which is
smaller than that of the legitimate parties. Specifically, ad-
versary is said to be an s-reordering stealth attacker, if it can
cause delivery of the duplicate packet with sequence num-
ber i, before packet with sequence number i− s (before the
delivery of the original packet i). The reordering parameter
is a function of attacker’s delay and the delay of the legiti-
mate parties. The justification of our adversarial model, is
that we focus on the use of IPsec, and IPsec is necessary
only when there is concern about MITM. In particular, the
anti-replay mechanism that IPsec employs is used to prevent
injection of duplicate segments, by identifying and discard-
ing replayed packets. This type of attack can be performed
by attacker that can eavesdrop and inject spoofed packets,
i.e., a MITM attacker.

As we mentioned before, we are not interested in triv-
ial ‘flooding’ attacks where the attacker achieves degrada-
tion by spending resources proportional to the performance
degradation achieved, e.g., attacker injected two packets
thus the link carries additional load, and IPsec has to in-
spect two more packets, resulting in some degradation per-
formance but also attacker’s ‘cost’ is proportional. We are
focus on amplification attacks where the attacker pays min-
imal resources with respect to the inflicted damage, e.g.,
injects three packets, but with a devastating result on the
attacked flows.

2.3. Communication Model

We assume that packets arrival is organised in FIFO (first
in first out) and that they are delivered with fixed latency
which is known to the attacker. The delay of packets is be-
tween delayMIN and delayMAX (if a packet does not ar-
rive within delayMAX seconds it is assumed to have been
loast) which the attacker can choose. Delivery of attacker’s
packets may not be in FIFO but their but the delay is at

least delayMIN . In addition, we assume that the attacker
(similarly to other network entities) is subject to some non-
zero network delay, which may be smaller than that of the
legitimate parties, and which the attacker cannot change.
Throughout the paper we denote by RTT (Round Trip Time)
the time it takes to transmit a segment from a client into the
network and to receive an acknowledgment (ACK) for it in
response. Namely, RTT is the sum of segment’s transmis-
sion time, propagation delay, transmission of ACK and its
propagation delay back to the sender, including any queu-
ing and processing delays involved. The attacks we present
apply to standard TCP implementations [35]; TCP state
machine is in Figure 5 (from [28]). We assume that the
connection is always open, and that the sender sends full
sized segments as fast as its congestion window allows. For
simplicity (only), assume that the recipient acknowledges
every segment received from the sender, i.e., no delayed
ACKs2. For ease of exposition, we work with segments in-
stead of bytes (which is what TCP actually sends). We also
assume that flow control does not restrict congestion win-
dow growth. Let cwnd(t) be the congestion window size at
time t. We analyse TCP throughput in terms of transmission
rounds, each round starting with the sender transmitting the
first segment in a window of size cwnd(t) at time t. Each
round ends when the sender receives an ACK for one of
the segments in a window. In this model, the duration of a
round is the round trip time (RTT), and is independent of
the window size. Notice that at any time t holds that the
number of ‘pending’ packets in transit at time t is smaller
(or equal) to congestion window size at time t (unless the
sender is in ‘fast recovery’ phase at time t).

3. Motivating Anti-Replay Window

In this section we consider a general question of anti-
replay mechanism. More specifically, should a secure chan-
nel protocol that aims to protect against denial/degradation-
of-service (DoS) attacks, employ an anti-replay mechanism.
IPsec employs an anti-replay mechanism although replay
sensitive protocols over IP are typically robust to replay,
e.g., TCP. Our answer to this question is positive: we claim

2When receiver sends an ACK for every other segment, i.e., uses de-
layed ACK, the congestion window grows in less than one segment per
RTT; this does not significantly change our results.

Slow start
Congestion
avoidance

Fast
recovery

(1.e) dupACKcnt==3

thresh = cwnd/2
cwnd = thresh+3
retransmit missing
segment

(1.d) timeout

ssthresh = cwnd/2
cwnd = 1MSS
dupACKcnt = 0
retransmit missing
segment

(3.b) timeout

thresh = cwnd/2
cwnd = 1
dupACKcnt = 0
retransmit missing
segment

(3.c) new ACK

cwnd = thresh
dupACKcnt = 0

(2.c) timeout

thresh = cwnd/2
cwnd = 1MSS
dupACKcnt = 0
retransmit missing segment

(3.a) duplicate ACK

cwnd=cwnd+MSS
Send (cwnd-unACKed) new bytes

(2.d) dupACKcnt==3

thresh = cwnd/2
cwnd = thresh+3
retransmit missing
segment

(2.b) duplicate ACK

dupACKcnt++

(1.f) cwnd ≥ thresh

ᴧ

(2.a) new ACK

cwnd = cwnd+MSS(MSS/cwnd)
dupACKcnt = 0
Send (cwnd-unACKed) new bytes

(1.b) new ACK

cwnd = cwnd+MSS
dupACKcnt = 0
Send (cwnd-unACKed) new bytes

(1.c) duplicate ACK

dupACKcnt++

(1.a) ᴧ

cwnd = 1MSS
Thresh = 64KB
dupACKcnt= 0

Figure 5: TCP congestion control state machine of the sender (based on [28]).

that anti-replay mechanism is essential to counter DoS at-
tacks, and we show that protocols that provide only confi-
dentiality and authentication are vulnerable to DoS attacks.
In particular, we focus on IPsec, which is often used to pro-
vide solutions at the channel layer. IPsec standard, [26],
requires anti-replay mechanism to identify and discard re-
played packets in order to prevent DoS attacks, e.g., [43],
claim that the reason for anti-replay mechanism is to save
CPU cycles which will be wasted on replayed packets, as
well as to prevent incorrect billing information. Yet to ob-
tain access to a service or resource, attacker will have to
obtain secret keys used to encrypt (and possibly authen-
ticate) the communication, and it will not gain much by
merely replaying already sent messages. In addition, typ-
ically, replay-sensitive applications check for freshness of
messages and discard (or ignore) replayed messages. We
present an additional motivation for IPsec anti-replay win-
dow; more specifically, we show that without the anti-replay
window, (amplification) degradation of service attacks on
congestion control of TCP can be launched with signifi-
cant performance damages. In what follows we describe
the attacks that could be launched if no anti-replay mecha-
nism were used. These attacks require merely a duplicating
stealth attacker (see Figure 2).

3.1. ACK Duplication Attack: Stealth DoS on
Channel without Anti-Replay Mechanism

Client behind GW1 requests to download a file from
server behind GW2, as in Figure 1. The attack is presented
in Figure 6. The main idea of the attack is to duplicate a
legitimate ACK sent by the client in response to some seg-
ment, and retransmit three duplicate copies of that ACK.
TCP considers the receipt of three duplicate ACKs as an
indication of lost segment, which in turn can be a sign of
congestion (see Figure 5). As a result, TCP at the sender
halves its congestion-control window. Furthermore, if prior
to the attack TCP connection were in ‘slow start’ phase
(where the congestion window grows exponentially), TCP
also moves to the linearly-growing ‘congestion avoidance’
(CA) mode, thus prematurely aborting the slow-start phase.
As a result, connection uses a small congestion window,
which results in severe bandwidth underutilisation. By re-
peating this attack periodically, attacker can ensure that the
connection continuously uses very small, suboptimal win-
dow. In Figure 6 we present an attack on a TCP connec-
tion in CA mode. For simplicity assume that the congestion
window at the beginning of first attack epoch at time t0 is
cwnd(t0) > 4 ∗ MSS. Since this is the first attack, ad-
versary did not inject any duplicate packets in the interval
(t0−T, t0) (and hence can send three packets at any interval
beginning from t0). Assume that the server sends a window
of k + 1 segments i, ..., i + k, and the client upon receipt,
transmits k + 1 ACKs such that ACK on segment i + k is

i+2k+k/2

i+2k+3

i+2k+k/2

Server ClientAttacker

ACK: i+k

i+k+1

i+2k+1
i+2k+2

i+k

i+k

ACK: i+k
ACK: i+kcwnd/2

i+2k+3

ACK: i+k

ACK: i+k+1

ACK: i+2k+1

ACK: i+2k+2

cwnd=k+1

ACK: i+2k+3

ACK: i+2k+3

ACK: i

i

...
i+1

ACK: i+1

...

...

ACK: i+5k/2

cwnd=k+2

t0

t0,0

t0+RTT

#Pending segments
before 3 dup ACKs, at
(time t0

—) is cwnd(t0
—)

Fast retransmit
cwnd(t0

+)=cwnd(t0
—)/2+3

Sender cannot transmit new
segments

t0,cwnd/2

cwnd((t0+RTT)—)<cwnd(t0
—)/2+2

#Pending segments at time
((t0+RTT)—) is cwnd(t0

—)/2+3

Sender can resume
transmission, and
will send at most
cwnd(t0

—)/2+2
segments

Figure 6: ACK duplication attack on TCP congestion control mechanism when no IPsec anti-replay window is employed (Section 3.1).
The attacker duplicates a legitimate ACK segment (sent by the client to the server in response to receipt of a data segment) and sends three
duplicate copies of that ACK to the server. The server takes the three duplicate ACKs as an indication of network congestion, retransmits
‘missing segment’ and reduces its sending rate.

last in the window. The attack begins when the attacker cre-
ates three duplicate copies of last ACK (for segment i+ k)
sent by the receiver in recently transmitted window of ACK
segments. At time t0 (in Figure 6) the server receives three
duplicate ACK copies injected by the attacker. Since we ig-
nore transmission delays, three duplicate ACKs arrive at the
same time, with no other ACK segment arriving between
the most recently transmitted legitimate ACK and the re-
ceipt of three duplicates of that ACK, that were injected by
the attacker. This deceives the server into believing that the
three duplicate ACKs are transmitted as a result of a lost
segment in last transmitted window of segments. Receipt
of three consecutive ACKs for segment i + k is taken as
an indication of congestion which resulted in loss of seg-
ment i + k. As a result, once the server receives three con-
secutive duplicate ACKs, (according to step (2.d) in Figure
5, if the TCP at the sender is in CA, or step (1.e) if the
TCP is in slow-start) it performs fast retransmit of the seg-
ment which it believes to have been lost (step (2.d), Fig-
ure 5), i.e., transmits the ‘lost’ segment for which duplicate
ACKs were generated, and sets the congestion window to
cwnd(t+0) = cwnd(t−0)

2 + 3 and thresh = cwnd(t0)
2 . The

server then enters fast recovery mode (Figure 5) until receipt
of an ACK for new data (i.e., on segment i+ k + 1, in Fig-
ure 6). Since triple duplicate ACKs were not generated due

to congestion, ACK segments for all pending segments at
time t0 eventually arrive at the server. Once ACK acknowl-
edging new data arrives, the congestion window is deflated
(step (3.c), Figure 5), i.e., set to half of its value before the
receipt of three duplicate ACKs, i.e., cwnd = thresh, and
the server enters congestion avoidance phase during which
the sending rate grows linearly (step (2.a), Figure 5).

3.2. ACK Duplication Attack: Analysis

We consider a (ρ, 3)-limited duplicating stealth adver-
sary (see Figure 2), with constant delays; notice we require
σ = 3 since the attack requires the adversary to duplicate
three3 ACK segments. Attacker can repeat the attack once
every T = 3/ρ seconds; we refer to T as the length of each
attack epoch (or the frequency of attack epochs), i.e., the
time elapsed between two consecutive duplications of three
ACK segments by the attacker. We analyse the operation of
TCP in the T seconds from one duplication to the next.

In Claim 1, we show that when connection is under
packet duplication attack, average steady state congestion
window cwndATKMAX is bounded by 6

ρ·RTT (average conges-
tion window growth between attack epochs is in Figure 7).

3Injecting more than 3 duplicate segments will not have the maximal
amplification effect.

1

cwnd

time

1

t4

2 3 ... cwnd(t1)
ACKs
Sequence

t1 t2 t3 t1+RTT

4

cwnd  t2=cwnd t1
1

cwnd t1

cwnd  t3=cwnd t2 
1

cwnd t 2
cwnd  t1

2
cwnd  t1

cwnd  t4cwnd t1
3

cwnd t1

cwnd  t1RTT cwnd t11

Figure 4: TCP congestion window growth in congestion avoid-
ance phase upon receipt of each new ACK. Let t1 be the time
after a window of packets was sent and before first ACK was re-
ceived, and let cwnd(t1) be congestion window size at time t1.
Then at each time ti, for i ∈ {2, ..., RTT}, when each ACK ar-
rives, the congestion window set to cwnd(ti) = cwnd(ti−1) +

1
cwnd(ti−1)

. After a sequence of cwnd(t1) ACKs, congestion win-
dow cwnd(t1) ≤ cwnd(t1) + 1.

This window size results in data transfer rate of at most
cwndAT K

MAX

RTT = 6
ρ·RTT 2 (as we show in Claim 2), which can

be very small - in fact, negligible compared to the expected
throughput without attack, which is the average TCP con-
gestion window4 divided by the round trip time. The num-
ber of attack epochs i to reach steady state congestion win-
dow is i = cwnd(t−0) − 2T

RTT), which we derive in Claim
3.

Claim 1 Steady state congestion window cwndATKMAX of
TCP sender when under packet duplication attack is
cwndATKMAX ≤ 6

ρ·RTT

Proof Let ti,j be the jth ACK segment received by server,
at time ti after attack epoch i (described in Figure 6), i.e.,
after the receipt of three duplicate ACKs at time ti. At time
t0,1, (t0,1 > t0) first legitimate ACK segment sent by the re-
ceiver after first attack epoch, arrives. Since we assume con-
stant delays, the first ACK arriving at time t0,1 is essentially
a legitimate ACK generated by the receiver with a higher se-
quence number than the ACK duplicated by the attacker. As
a result the server will exit fast recovery, will set the con-
gestion window to cwnd(t0,1) = cwnd(t−0)

2 thus deflating
the congestion window, and will enter a CA phase during

4Average TCP window depends on the operating system and configu-
ration. Typical bound on window size, e.g., on windows 7, is 256KB.

cwnd

time
t0 t0+RTT t0+2RTT t0+3RTT

... t1=t0+T

cwnd SSmin=
cwnd SSmax

2

cwnd SSmax

cwnd SSmin2

cwnd SSmin1
T
RTT

cwnd SSmax=
cwnd SSmax

2
1 T

RTT

cwnd SSmax=2
2T
RTT

cwnd SSavg=
3
2
 3T
2RTT

Figure 7: Average congestion window size cwnd at steady state,
if TCP connection is under packet duplication attack when no
anti-replay window is employed (see Figure 6), resulting in data

transfer rate of at most cwndAT K
MAX

RTT
= 6

ρ
. Note that the growth

of window size is discrete, i.e., upon each packet arrival. When
T = RTT , cwnd = 3 and throughput is at most 3

RTT
.

which the congestion window increases linearly, approxi-
mately by one segment during each RTT; analysis of lin-
ear congestion window growth is presented in Figure 4, and
holds: cwnd(t+RTT) < cwnd(t)+1. At time t0,1 (when
first legitimate ACK arrives) the server cannot transmit new
segments into the network since cwnd(t0,1) < cwnd(t−0),
where cwnd(t−0) is the number of pending segments and

cwnd(t0,1) = cwnd(t−0)
2 , i.e., the congestion window does

not allow transmission of new segments. Let n be the num-
ber of pending segments at time t0, then n ACKs should
arrive at the sender at times t0,1, ..., tn at constant inter-
vals (since we assume constant delays). After arrival of
n
2 = cwnd(t−0)

2 ACK segments, t0,1, ..., t0,n
2

, the server can
resume transmitting segments with each new ACK arrival,
and upon receipt of cwnd(t−0) ACK segments, a total of
cwnd(t−0)

2 segments will be transmitted. After RTT seconds,
at time t0 +RTT the ACK on the retransmitted segment at
time cwnd(t+0) arrives, and the congestion window size is

cwnd((t0 +RTT)+) =
cwnd(t−0)

2
+
cwnd(t−0)
cwnd(t−0)

2

=

=
cwnd(t−0)

2
+ 2

Next attack epoch is initiated T = 3/ρ seconds later, i.e.,
it takes T = 3/ρ seconds until attacker can launch the
attack again, by sending three subsequent duplicate ACK
segments. Since connection at this time is in congestion
avoidance (CA) phase, i.e., congestion window grows by
one segment in every round-trip time (RTT), the congestion
window at second attack epoch, at time t1 = t0+ T

RTTRTT

will have reached cwnd(t1) = cwnd(t−0)
2 + T

RTT , where
T

RTT is the number of RTTs between each attack epoch.
Let ti = t0 + i T

RTTRTT for i ∈ N, be the time at ith attack
epoch. In Equation 1, we derive congestion window size
cwnd at time ti as a function of the attack frequency and of
the congestion window size cwnd(t0), prior to first attack
epoch.

cwnd(ti) ≤ cwnd(ti−1)
2

+
T

RTT
=

=
cwnd(t−0)

2i
+

(2i − 1)
2i−1

T

RTT
=

=
2T
RTT

+
1
2i
(
cwnd(t−0)− 2T

RTT

)
(1)

Since 1
2i is negligible, the whole expression approximates

2T
RTT , i.e., cwnd(ti) ≤ 2T

RTT . For T = 3/ρ, cwnd(ti) ≤
6

ρ·RTT . In addition, since for every ti, cwndATKMAX ≤
cwnd(ti), the bound on the steady state congestion window
size when under attack is given by: cwndATKMAX ≤ 6

ρ·RTT .�

Claim 2 Throughput of average steady state congestion
window is at most 6

ρ·RTT 2 .

Proof To compute throughput we take the steady state con-
gestion window long term data size derived in Claim 1, and
divide it by the RTT:

cwnd(t−0)
2i + (2i−1)T

2i−1RTT

RTT
≤ 2T
RTT 2

=
6

ρ ·RTT 2

�

Claim 3 Let i be the number of attack epochs required to
reach steady state congestion window cwnd(ti) at time ti.
Then i < log2(cwnd(t−0)− 2T

RTT − 2)− 1.

Proof Assume at time ti, steady state is reached, and ac-
cording to Lemma 1, cwnd(ti) − 1 < cwnd(ti+1); then
cwnd(ti) < 2T

RTT + 1. In Claim 1 we derived the expres-
sion for steady state congestion window to be cwnd(ti) =
2T
RTT + 1

2i

(
cwnd(t−0) − 2T

RTT

)
; by substituting cwnd(ti)

with 2T
RTT + 1 we obtain 2T

RTT + 1
2i

(
cwnd(t−0)− 2T

RTT

)
<

2T
RTT + 1; by solving the equation we obtain that upper
bound on the number of attack epochs to reach steady state
is i < log2(cwnd(t−0)− 2T

RTT). �

Lemma 1 Steady state congestion window cwnd(ti) is
reached when cwnd(ti) < cwnd(ti+1) + 1, during ith at-
tack epoch at time ti.

Proof We consider the following two cases related to con-
gestion window growth between each subsequent attack
epoch:

cwnd(ti)
2 > T

RTT The window size decreases between each
subsequent attack epoch; this is due to the fact that
the duration between attack epochs does not suffice for
congestion window to restore its size.

cwnd(ti)
2 ≤ T

RTT The congestion window size is restored
between each attack epoch; this occurs when steady
state is reached.

Conside the case where cwnd(ti) > 2T
RTT ; congestion

window size decreases between each two subsequent at-
tack epochs ti and ti+1: at each attack epoch holds:
cwnd(ti+1) + 1 ≤ cwnd(ti). Once cwnd(ti) ≤ 2T

RTT ,
congestion window between attack epochs ti and ti+1 is:
cwnd(ti) < cwnd(ti+1) + 1, and the steady state win-
dow size is reached; then cwnd(ti+1) ≤ cwnd(ti) <
cwnd(ti−1), where cwnd(ti−1) is congestion window right
before steady state, and cwnd(ti) < cwnd(ti+1) + 1. �

3.3. Data Packets Duplication Attack: Stealth DoS
on Channel without Anti-Replay Mechanism

Packets duplication attack is symmetric to ACKs dupli-
cation attack presented in Section 3.1. In order to achieve
performance reduction, attacker tricks the receiver into gen-
erating duplicate ACKs by duplicating packets. Attacker in-
jects three duplicate copies of a previously sent packet. As
defined in [20], TCP receiver acknowledges every packet
received, thus three duplicate packets trigger three dupli-
cate ACKs at the receiver. Upon receipt of three consecutive
duplicate ACKs sender performs fast retransmit and slows
down its sending rate.

Attack on data packets duplication, albeit similar in na-
ture to attack on ACKs, serves several purposes: it may be
the case that the attacker can only duplicate and inject pack-
ets in one direction, in which packets flow and not in the
direction in which ACKs flow, i.e., can inject segments sent
from server to client but cannot inject segments from client
to server, e.g., if the attacker is located in one network and
can only duplicate and inject packets in that same network,
or if ingress filtering mechanism is employed. Another pur-
pose is related to assumptions on the power of the attacker:
duplicating packets attack can be carried out by a much
weaker (slower), attacker, than the attacker that mounts du-
plicating ACKs attack, since it does not require attacker to
inject the duplicates in limited time frame. In packets du-
plication attack attacker can inject segments that are much
older than the legitimate segments. This attack will not suc-
ceed with duplicating ACK segments, since the sender will
ignore outdated duplicate ACKs, i.e., if a new ACK has al-
ready arrived the sender ignores the old ACK that arrives.

4. Determining Anti-Replay Window Size

Attacks presented in Section 3 motivate the necessity for
anti-replay mechanism. Anti-replay mechanism would dis-
card duplicate packets, thus preventing amplification DoS
attack. IPsec standard [27], recommends using anti-replay
mechanism as a protection against denial of service (DoS)
attacks by a MITM adversary and to prevent replay of pack-
ets, however current specifications do not provide recom-
mendation on how to calculate proper window size. If anti-
replay window is incorrectly adjusted, i.e., too small, re-
ordered packets can result in packets’ loss, due to discarded
legitimate packets by IPsec implementation.

Packet reordering occurs when packets are received in
a different order from the one in which they were sent.
Packet reordering can significantly degrade TCP perfor-
mance. Upon duplicate ACKs the sender triggers fast re-
transmit and fast recovery. As a result the congestion win-
dow remains small relatively to the available bandwidth. As
specified in [2], out of order data segments should be ac-
knowledged immediately in order to accelerate loss recov-
ery. To trigger the fast retransmit algorithm the receiver
should send an immediate duplicate ACK when it receives
a data segment above a gap in the sequence space. If mes-
sages are reordered on transit, e.g., due to benign network
reordering or by malicious attacker, there will be a gap in
sequence numbers of the arrived packets, which may result
in anti-replay mechanism discarding valid messages if the
anti-replay window is incorrectly adjusted, i.e., too small.

Existing works propose more efficient implementations
of anti-replay window. In [17] the authors analyse cor-
rectness of anti-replay window in malicious setting, where
they assume a MITM adversary that is located on the In-
ternet and can inject duplicate segments. Authors conclude
that anti-replay window is designed to prevent such attacks.
Subsequent works, [24, 43], show that severe reordering of
messages, possibly maliciously by a MITM (e.g., control-
ling a router), can result in discarded legitimate packets by
IPsec implementation (due to reordering) and suggest alter-
native mechanisms that should reduce the number of dis-
carded packets, w.r.t. to IPsec anti-replay mechanisms.

In this section we show that if anti-replay window is not
correctly adjusted, a more severe performance degradation
could be induced to TCP flows, than not using anti-replay
window at all. We then show how to calculate correct win-
dow size in Section 4.3, given the relevant network param-
eters.

4.1. Packets’ Reordering Attack: Stealth DoS on
Channel with Small Anti-Replay Window

An adversary can cause an IPsec implementation to dis-
card valid packets by injecting replayed packets with higher

sequence number into the message stream thus advancing
the anti-replay window, and as a result legitimate packets
with low sequence numbers, i.e., to the left of the anti-
replay window, will be discarded by the IPsec. Discarded
packets result in three duplicate ACKs at the sender, which
then reduces the TCP congestion window. The throughput
of TCP connections under attack is significantly degraded.
The damage is a function of the frequency at which the ad-
versary can launch the attack. The attacker model we con-
sider in this section is presented in Figure 3.

Since we analyse worst case scenario, we assume
throughout the attack a single TCP flow which the attacker
attempts to attack, with no other communication (this is
equivalent to using a distinct SA per connection). The
course of the attack is presented in Figure 8. Assume that
IPsec anti-replay window consists of W = n packets and
TCP window is comprised of cwnd = k+1 segments, such
that n < k + 1; attack can be launched when IPsec anti-
replay window is smaller than TCP congestion window5.
We assume that the attacker knows when IPsec window is
smaller than TCP window, since IPsec anti-replay window
size is part of the design (thus is known to the attacker), and
due to the fact that attacker is eavesdropping on the commu-
nication it can observe the TCP window size at any given
time.

In Figure 8 sender receives k ACKs and transmits a win-
dow of k+1 segments, with ith segment being the first seg-
ment in the TCP window and i + k being the last segment,
i.e., with highest sequence number. Attacker reorders, i.e.,
duplicates and injects (speeding it up), a segment6 with se-
quence number i+ n (segment n+ 1 in the TCP window),
which is the first segment to the right of the anti-replay win-
dow, such that it arrives before the first segment i in the
window. Thus upon receipt of the segment, IPsec imple-
mentation at the receiving gatewayGW1 advances the anti-
replay window with segment i + n being the right edge of
the window, and passes this segment to the receiver. When
TCP at the client receives segment with sequence number
i+n it generates a duplicate ACK with sequence number i,
i.e., sequence number of the expected segment, indicating
a gap in sequence numbers of the received segments. The
rest k segments arrive intact, and are passed to the client.
When the original segment with sequence number k + 1
arrives, IPsec detects a replay and discards it. For each sub-
sequently received segment, with sequence numbers in the
range between i + 1 and i + n − 1, the TCP at the client

5This is a reasonable assumption. In particular, provided no network
congestion, TCP window is limited only by threshold, which is typically
set to 65KB, according to RFC 2988 [34].

6In this attack we assumed for simplicity that the attacker speeds-up a
single segment, since this (simpler) case is bad enough to motivate correct
window size. If attacker speeds up l segments, then the ‘recovery’ is much
slower, since each of the l segments will have to be retransmitted, and thus
recovery will require additional l transmission rounds.

generates a duplicate ACK, indicating that it is missing a
segment with sequence number i. A total of k duplicate
ACKs are returned to the sender. Packet loss is taken as
an indication of congestion and that the TCP window has
grown larger than the network can handle, hence TCP at
the sender takes corrective steps by decreasing its sending
rate, i.e., decreases the number of segments in a window.
Denote by t0 the time at which the sender receives three du-
plicate ACKs. According to the specification in RFC 2581
[3], upon receipt of 3 duplicate ACKs, fast retransmit algo-
rithm at the sender retransmits lost segment, i.e., segment
with sequence number i; sender halves the congestion win-
dow adding three duplicate ACKs, yielding congestion win-
dow of size: cwnd(t0) = cwnd(t−0)

2 + 3. Then the sender
enters a fast-recovery phase until a non-duplicate ACK ar-
rives. At this stage the congestion window does not allow
transmission of new segments into the network, since the
number of pending segments is larger than the congestion
window size, i.e., cwnd(t−0) + 1 > cwnd(t−0)

2 + 3. For each
subsequent duplicate ACK the sender increments the con-
gestion window by 1 MSS. The addition of duplicate ACKs
to the congestion window artificially inflates the window by
the number of segments that have left the network and ar-
rived at the receiver. After receipt of cwnd(t

−
0)

2 +1 duplicate
ACKs (since t0) the sender can resume transmission of new
segments; and 1

2cwnd(t
−
0) − 2 remaining duplicate ACKs

will arrive. For each duplicate ACK the sender transmits a
new segment into the network. In this transmission round a
total of 1

2cwnd(t
−
0) segments will be sent.

At time t0 + RTT the sender should receive an ACK
for the retransmitted segment. Once the sender receives
an ACK for new data7 congestion window is deflated, i.e.,
set to cwnd(t−0)

2 , and the sender enters congestion avoidance
(CA) phase, during which the congestion window is incre-
mented linearly, i.e., roughly by one segment in every RTT.

4.2. Packet Reordering Attack: Analysis

The throughput of the connection is kept low, since the
adversary can resume the attack (if the attack frequency
parameter allows it) every time the congestion window is
larger than the anti-replay window. The ratio between TCP
window cwnd and IPsec anti-replay window W before the

7We stress, that for a larger ratio of TCP congestion window and IPsec
anti-replay window, a more devastating attack is possible. More specifi-
cally, the attacker will again speed-up the retransmitted segment i, which
will again be discarded, and thus the sender will continue receiving dupli-
cate ACKs till it encounters a timeout event. After a timeout the sender
again retransmits the ‘lost segment i’ and enters a slow start. However,
then it receives duplicate ACKs for ith segment from previous transmis-
sion round, and enters congestion avoidance. If the cwnd vs. W (IPsec
anti-replay) is sufficiently large, and enough duplicate ACKs return, the
connection will eventually be reset.

first attack epoch, as well as the frequency at which the at-
tacks can be launched, dictates the performance degradation
inflicted by the attack, and the impact can range between
degradation of service and complete denial of service. If
TCP congestion window is larger than IPSec anti-replay by
1 segment, then attack achieves a result similar to reduction
of quality (RoQ) attacks, in [18, 19]. In this case, it will
take k+3

2 RTTs to restore the congestion window from k−1
2

back to its original value, before the first attack, i.e., k + 1,
since in every RTT the congestion window grows by one
segment. But attacker cannot keep the congestion window
at steady state (like in Section 3.2), since next attack can
be launched when TCP window grows larger than IPsec
anti-replay window. Congestion window growth between
each attack epoch (which is launched when TCP window is
larger than IPsec window is presented in Figure 9.

Alternately, if cwnd ≥ 2 ∗ W + 4 attacker can dis-
rupt the connection by causing the retransmission timeout
(RTO) to expire, thus performance degradation induced by
the attack is similar in its result to the low rate attacks pre-
sented in [29]. In order to cause connection to timeout, at-
tacker will ‘speed-up’ (reorder) segment which will result
IPsec anti-replay window to move forward a window num-
ber of segments, thus discarding segment(s) to the left of
the window. When sender re-transmits this segment in next
transmission round, attacker reorders segments again, such
that the retransmitted segment is again discarded. At this
time the sender is in fast recovery, and will only change
state when it receives an ACK for a re-transmitted segment.
However the sender keeps receiving duplicate ACKs, there-
fore connection will eventually timeout, and move to slow
start phase, and retransmit the segment again. But in re-
sponse it will receive all the duplicate ACKs that were pre-
viously transmitted by receiver. If the IPsec and TCP win-
dows ratio is sufficiently large, attacker can cause timeout
again, which will reset connection. The minimal cwnd and
W ratio which would result in timeout of the retransmitted
(due to receipt of three duplicate ACKs) segment i, should
be computed as follows: let cwnd be the amount of trans-
mitted segments in the window prior to first attack epoch.
Denote by P the number of segments in transit (for which
the sender has not yet received acknowledgments), and de-
note by W the anti-replay window size. In order for the
attack to result in a timeout the following inequality has to
hold:

⌊
cwnd

2

⌋
+(cwnd−1)−P > W . Since the number of

pending segments P is equal to the number of transmitted
segments, i.e., P = cwnd, holds:

⌊
cwnd

2

⌋
− 1 > W .

4.3. Adjusting IPsec Anti-Replay Window

In order to prevent denial/degradation of service (DoS)
attacks we presented, a larger anti-replay window should be
used, and the question is how much larger. The largest pos-

i

ACK: i+1

i

in+1
segments
sent

i

i

. . .

ACK: i

n-1
ACKs
return for
each
segment

i+k-1ACK: i

i+k-n

. . .

i+k-n i+k-n

i

i

. . .

ACK: i

TCP window
cwnd(t0

—)=k+1

i+k

ACK: i+k

n-1
ACKs
return for
each
segment

fast recovery:
for each dup ACK
cwnd(t0

—)++
After cwnd(t0

—)/2
dup ACKs start
sending new
segments

i+k

i+k-1ACK: i

Segment (i+k) is
duplicate, and
thus discarded

3 dup ACKs;
1. fast
retransmit (i+1)

t0

t0+RTT

i+k-n

i+k

. . .
. . .

. . .
i+k-n

i+k

GW2Server ClientGW1Attacker

Segment (i+k) advances
the anti-replay window,
segments to the left of
the anti-replay window

are discarded

i+k-n3 dup ACKs:
fast retransmit i

TCP window
cwnd(t0

—)=k+1

Figure 8: Packets’ reordering attack (Section 4.1) on TCP exploiting an insufficient size of IPsec anti-replay window (single attack epoch).
In this attack we assume first attack epoch is launched when congestion window is of size W + 1 (where W is IPsec anti-replay window).

cwnd

time
t0 t0+RTT t0+2RTT t0+3RTT

... t1=t0+T

cwnd SSmin=
cwnd SSmax

2

cwnd SSmax

cwnd SSmin2

cwnSSmax=cwnd SSmin
T
RTT

−1

cwnd SSmax=
2T
RTT

−2

cwnd SSavg=
3T
2RTT

−3
2

Figure 9: TCP congestion window cwnd analysis, when connec-
tion is under packets’ reordering attack, as in Figure 8, and TCP
congestion window is by one segment larger than IPsec anti-replay
window.

sible IPsec anti-replay window is one that can contain all the
packets within a specific SA, i.e., window containing 232

packets. Such anti-replay window of maximal size prevents
the attacks presented in Section 4.1, which were made pos-
sible due to insufficient anti-replay window size. Namely,
even severe (whether malicious or benign) reordering will
not result in dropped packets when anti-replay window size
is increased to maximal size. However, a naive implementa-
tion of anti-replay window containing 232 packets requires
232 bits (an average of 536 Mega-Bytes) is inefficient and is
rendered impractical due to high memory cost and mainte-
nance.

We differentiate between the size of the data structure N
required to store and maintain an anti-replay window of size
W , i.e., number of packets that anti-replay window of size
N can reflect (or represent).

There are works that attempt to achieve a more efficient
anti-replay window implementation requiring less storage
size, e.g., [24, 43, 17]. However, there are no works that
analyse anti-replay window sizeW in an adversarial setting,
where attacker can maliciously adjust its strategy. More
specifically, there are two issues that should be addressed
w.r.t. anti-replay mechanism: the number of packets that
anti-replay window should reflect, in order to prevent pack-
ets’ loss due to reordering, and the data structure to store
and manage this information efficiently. In this work we
focus on window size (and not the size of its representa-
tion), and compute an upper bound on the number of pack-
ets W that the anti-replay window should reflect, based on
the rates of the given network, in order to avoid discarding
segments by IPsec implementation (when small anti-replay
window is used) due to reordering, based on the rates of the
given network.

Claim 4 Let R be transmission rate and LMIN be min-
imal packet size. Let delayMIN be the minimal de-
lay and let delayMAX be the maximal delay. Attacker
can set delays to all packets to any value in the interval
[delayMIN , delayMAX] as long as legitimate packets ar-
rive in FIFO (first in first out). Then IPsec anti-replay will
not discard reordered legitimate packets (due to packets’

reordering attack) that are not duplicates of a previously
received packets, if IPsec anti-replay window size W is:

W ≥ R× (delayMAX − delayMIN)
LMIN

Proof Assume attacker’s delay delayMIN is 0, then anti-
replay window is W ≥ R×delayMAX

LMIN
, i.e., at least the size

of maximal number of packets in transit. In this case even
maximal reordering of packets, i.e., last packet arriving
before first in a window of transmitted packets, will not
result in discarded packets by IPsec, since anti-replay is at
least the size of packets in transit. Alternately, if attacker’s
delay delayMIN > 0, then anti-replay window can be less
than maximal number of packets in transit, since attacker’s
packets are also experiencing delay, and as a result it will
be limited in its ability to reorder packets. Thus the upper
bound on IPsec anti-replay window size is a function of
maximal packets in transit and delay of the attacker. �

Since attacker’s delay is typically not known, in order
to compute upper bound on anti-replay window size, we
assume worst case, i.e., attacker with zero delay. Note that
this is a rather conservative computation, since typically,
the attacker’s speed will also be a function of the delay.
Therefore, IPsec’s anti-replay window W should be at least
the size of the maximal number of packets in transit at any
given time, to prevent the attacker from discarding out of
order packets, by advancing IPsec anti-replay window.

For network with propagation delay delayMAX of one
second, transmission rate R of 10 Mega-Bytes per second,
and maximal packet sizeL = 1000 Byte, the maximal num-
ber of packets in transit is 10, 000.

Existing works [43, 17, 24], investigate constructions of
optimal anti-replay mechanism, to reduce the resources re-
quired to maintain anti-replay window. A naive implemen-
tation would be to setN = W , i.e., the representation of the
data structure of anti-replay window is the same as the num-
ber of packets that the window represents. While this lower
bound on anti-replay window will prevent (both benign and
malicious) reordering which advance the anti-replay win-
dow and result in discarded segments, it can be too large
and inefficient for practical purposes, i.e., maintaining such
a large window can be a challenge, w.r.t. processing require-
ments and storage resources (especially if a distinct SA pair
is established per each TCP flow). Thus the goal is to main-
tain a window of size N < W where W is the number
of packets in the anti-replay window. Typically, anti-replay
window is a sparse vector with occasional out of order pack-
ets, and allocating large buffers may be alleviated with a
more efficient data structure. Naive solutions that attempt
to save resources by decreasing window size are suscepti-
ble to attacks, and may result in more damage than when
implementing IPsec with no anti-replay mechanism.

4.4. Single vs. Multiple Flow Security Association

The IPsec standard [27] specifies establishing a unidi-
rectional security association (SA) between the communi-
cating parties, but it does not specify whether to establish a
single SA in each direction or if to establish a distinct SA
for each traffic flow. A single SA for all flows is more ef-
ficient since the gateway is required to keep less state. In
addition, single SA prevents distinguishing between differ-
ent communication flows. On the other hand it increases
the risk for a chosen plaintext attack (CPA) [5], since the at-
tacker can ‘use’ other flows to attack a target flow (thus for
cryptographic purposes it is recommended to use a distinct
SA per each flow). Furthermore, when a single SA is used
for all flows our attack on small anti-replay window is more
devastating, and the attack can be launched more frequently.
An SA per each flow allows distinguishing between differ-
ent flows, albeit when one flow is attacked, others are not
effected. On the flip side, a distinct SA for each connection
imposes a significant overhead, and requires larger mem-
ory resources. However, even when a single SA pair per
connection is established reduction of performance attack is
still possible, albeit not as effective as compared to a single
SA pair. If a single security association (SA) pair is estab-
lished for all communication, then the attacker can mount
the attack more frequently.

5. IPsec with Large Anti-Replay Window

If IPsec anti-replay window is not properly adjusted, i.e.,
too small, reordering of packets (e.g., by malicious attacker)
can degrade performance of TCP connections. However, as
we show in this section, even sufficiently large IPsec anti-
replay window, i.e., computed in Claim 4, does not prevent
throughput degradation attacks. In this section we assume
that there are available resources to maintain an anti-replay
window of the required size to prevent attacks that advance
the anti-replay window resulting in packets’ loss. We con-
sider a (ρ, 3)-limited stealth attacker, following the model
in Figure 3, where attacker reorders segments, i.e., injects
duplicate packets and speeds them up, e.g., via a faster
route than the one available to the legitimate parties. This
is a slightly stronger attacker than the one assumed in Sec-
tions 3.1 and 4.1. We show that the throughput degrada-
tion is identical to the one in Section 3, which shows that
IPsec anti-replay mechanism does not prevent degradation-
of-service attacks, even when the anti-replay mechanism is
of sufficient size.

5.1. Packets’ Reordering Attack: Stealth DoS on
Channel with Large Anti-Replay Window

Consider scenario in Figure 1, in which client behind
gateway GW1 requests to download a file from server be-
hind gateway GW2, and assume IPsec implementation is
using sufficiently large anti-replay window. We present a
detailed attack on this connection in Figure 10. Server trans-
mits a window of k + 1 segments to the client, and assume
k ≥ 3. Attacker speeds up three segments8 with higher se-
quence numbers, i.e., (i+k−2), (i+k−1), (i+k). These
segments arrive before ith segment to the gateway. IPsec
authenticates the segments, and verifies that they are not a
replay of previously sent segments and passes them to the
client. When client receives these out of order segments,
it detects a gap in sequence numbers of received packets,
i.e., the sequence number is higher than the one expected.
As a result, client generates a duplicate acknowledgment
for next segment it expects to receive, i.e., segment with
sequence number i. Once the sender receives three dupli-
cate ACKs for the same segment, it retransmits the ‘lost’
segment, halves the congestion window, and enters fast re-
covery (step (2.d) if TCP is in CA or step (1.e) if TCP is in
slow start, see Figure 5). Upon arrival of an ACK acknowl-
edging new data, i.e., ACK for segment (i + 1), (step (3.c)
in Figure 5) congestion window is deflated, i.e., set to half
of its value before the receipt of three duplicate ACKs, and
the server enters congestion avoidance phase, i.e., increases
the congestion window by roughly 1 segment in every RTT
(step (2.a) in Figure 5). Note: no packets are discarded by
IPsec implementation, since the anti-replay window is as-
sumed to be sufficiently large.

5.2. Packets’ Reordering Attack: Analysis

In Claim 5 we show that an upper bound on congestion
window at steady state when under attack is cwndATKAVG ≤

6
ρ·RTT (resulting in average congestion window size at
steady state of 3T

RTT). We then derive, in Claim 6, the long-
term throughput of the connection when under packet re-
ordering attack: 6

ρ·RTT 2 (we ignore the part of the connec-
tion when the window keeps decreasing since it is negligi-
ble w.r.t. the overall connection throughput). Note that this
throughput is much lower than the average throughput of
TCP connection that is not under attack, i.e., throughput is
the average TCP congestion window (which can be up to

8Similarly to attack in Section 3, optimal amplification impact is
achieved when attacker speeds up exactly three segments. If less than
three packets arrive out of order, the sender will not reduce the conges-
tion window but instead will wait for a timeout. However, since the seg-
ments transmitted by the sender eventually arrive, and ACKs for them are
returned, no timeout will occur. Note that some TCP implementations may
expect for more than three duplicate ACKs before reducing transmission
rate; adopting the attack to these cases is trivial.

65KB divided by the round trip time (RTT)). Let T be the
attack epoch frequency, and T = 3

ρ , then for T = RTT
(T defined in Section 2.2), the resulting average congestion
window is 3 MSS.

Claim 5 Steady state congestion window cwndATKMAX of the
TCP sender when under packet reordering attack, with net-
work and communication model as in Section 2.3, and at-
tacker model in Section 2.2, Figure 3, is cwndATKMAX ≤

3
2RTT + 2

Proof Assume that at time t0 the sender is in slow start or
in congestion avoidance state (in Figure 5) and it receives
three duplicate ACKs. Let t−0 be the time right before ar-
rival of three duplicate ACKs, and t+0 be the time right
after the arrival of three duplicate ACKs, and denote by
cwnd(t−0) the congestion window size at time t−0 (this is
also the number of ACKs that will arrive following time
t−0). For each duplicate ACK the dupACKcnt variable is
incremented, and once dupACKcnt = 3, the TCP at the
sender transitions to fast recovery (steps (1.e) or (2.d) in
Figure 5): sets the ssthresh to 1

2cwnd(t
−
0), and sets the

congestion window to cwnd(t+0) = ssthresh + 3, fast re-
transmits the ‘missing segment’, and switches to fast recov-
ery. When an ACK (for new data) at time t0,1 arrives (phase
(3.c) in Figure 5), the sender sets the congestion window
to cwnd((t0,1)+) = ssthresh, sets dupACKcnt = 0,
and transforms to congestion avoidance. The number of
pending (transmitted but not yet ACKed) segments at time
(t0,1)+ is: cwnd(t−0) + 1, which is greater than the con-
gestion window size: 1

2cwnd(t
−
0), therefore, according to

Figure 5, the sender cannot transmit new segments into the
network (the sender can transmit segments when the amount
of transmitted but yet to be ACKed (a.k.a. pending) seg-
ments is less than the size of the congestion window). Be-
low is an expression to calculate the number k of ACKs
required for the sender to resume transmission of new data
segments: 1

2cwnd(t
−
0) + k = cwnd(t−0) + 1 =⇒ k =

1
2cwnd(t

−
0) + 1. Namely, the sender can resume transmis-

sion after receipt of 1
2cwnd(t

−
0)+1 ACKs, i.e., ACKs arriv-

ing at: t0,1, ..., t0,k, for k = 1
2cwnd(t

−
0)+1. The number of

remaining ACKs to arrive is 1
2cwnd(t

−
0)−5, i.e., ACKs that

will arrive at time: t0,k+1, ..., t0,2k−1. Since in congestion
avoidance the congestion window grows linearly, roughly
byMSSMSS

cwnd for each ACK (according to step (2.a) in Fig-
ure 5), the amount of segments that the sender will transmit
in [t+0 , (t0 + RTT)−] (and the congestion window size at
time (t0 +RTT)−) is given by:

cwnd((t0 +RTT)−) <
cwnd(t−0)

2
+
cwnd(t−0)− 4

1
2cwnd(t

−
0)

=

=
1
2
cwnd(t−0) + 2− 8

cwnd(t−0)

Since 8
cwnd(t−0)

> 0 the number of transmitted segments in

interval [t+0 , (t0 +RTT)−] is at most 1
2cwnd(t

−
0) + 2; and

cwnd((t0 + RTT)−) < 1
2cwnd(t

−
0) + 2. At time t0 +

RTT an ACK for the segment (retransmitted at time t+0)
should arrive (since we assume no loss and constant delays),
followed by at most 1

2cwnd(t
−
0) + 2 ACKs in response to

earlier transmitted segments, i.e., the segments transmitted
in interval [t0,k+1, (t0 +RTT)−]. The congestion window
size by the end of transmission round (t0 + RTT) (at time
(t0 + 2RTT)−), is

cwnd((t0 + 2RTT)−) < cwnd((t0 +RTT)−) +

+
(cwnd(t−0)

2

cwnd(t−0)
2

)
=
cwnd(t−0)

2
+ 3

Namely, congestion window, cwnd, increases by at most
one MSS in each transmission round (RTT). By next at-
tack epoch, at time t1, the congestion window cwnd(t−1)
will have grown by at most T

RTT , and holds cwnd(t−1) <
1
2cwnd(t

−
0)+ T

RTT +1. More generally, by ith attack epoch
the congestion window cwnd(t−i) will be:

cwnd(t−i) <
cwnd(t−i−1)

2
+

T

RTT
+ 1 =

=
cwnd(t−0)

2i+1
+

i∑
j=0

(T

(j + 1)RTT
+

1
2j
)

=

= 2
(T

RTT
+ 1
)

+

+
1

2i+1

(
cwnd(t−0)− 2(

T

RTT
+ 1)

)
The whole expression approximates 2T

RTT , thus the bound
on congestion window size at time t−i is cwnd(t−i) ≤ 2T

RTT .
For T = 3/ρ, cwnd(t−i) ≤ 6

ρ·RTT . In addition, since for
every ti holds: cwinMAX

ATK ≤ cwnd(ti), the bound on the
steady state congestion window size when under attack is
cwinMAX

ATK ≤ 6
ρ·RTT . �

Claim 6 The throughput of steady state congestion window
is at most 6

ρ·RTT 2 .

Proof To compute throughput we take the average steady
state window size derived in Claim 5, and divide it by the
RTT:

2
(

T
RTT + 1

)
+ 1

2i+1

(
cwnd(t−0)− 2(T

RTT + 1)
)

RTT
≤

≤ 6
ρ ·RTT 2

�

5.3. Protecting TCP from Stealth DoS Attacks

Packets reordering (whether by malicious attacker or due
to benign network conditions) has a negative effect on TCP
throughput. Upon receipt of three duplicate ACKs TCP
sender will trigger fast retransmit and will resend a ‘be-
lieved to be lost’ segment, resulting in wasted bandwidth,
and reduction of sending rate at the sender. Two indepen-
dent directions can be pursued in order to address the re-
ordering and specifically the attack in Section 5.1. One di-
rection is to adjust TCP to diverse network conditions, i.e.,
to immune TCP to packet reordering. A wide range of TCP
modifications has been proposed to improve robustness to
reordering, e.g., [8, 31, 41, 42, 10, 6, 40, 11, 9]; see a sur-
vey in [30] and an analysis in [8]. The main idea of all
those solutions is to detect and ignore false duplicate ACKs.
Sender halves the congestion window upon duplicate ACK,
but then restores it back when receiver signals receipt of
‘supposedly lost’ segment, thus resulting in an insignificant
slowdown. Yet none of the proposed solutions is widely
adopted, mainly since changing TCP requires a change in
every end host, and may take considerable time to adopt.

Algorithm 1: Implementation of the fix to TCP in the send-
ing gateway GW2. Gateway will inspect incoming ACK seg-
ments and will delay response to congestion, i.e., duplicate
ACKs. If new ACK is received all duplicate ACKs are dis-
carded, otherwise, when typical delay is reached all ACK seg-
ments are forwarded to sending host behind the gateway.

Incoming Segment ack from Internet
if ack.SN == SN then

//it’s a duplicate ACK
if dupACKctr == 0 then

delay ← set delay();
timer ← set timer(delay);
dupACKctr ← 1;

if dupACKctr < 2 then
forward(ack);

dupACKctr + +;
if ack.SN > SN then

SN ← ack.SN ;
if dupACKctr > 0 then

dupACKctr ← 0;
stop timer();

if timer == timeout then
for i = dupACKctr to 2 do

forward(ack);
end
dupACKctr ← 0;
stop timer();

end

(k-9)/2 segments

i+k+1

. . .

Server ClientAttacker GW1GW2

i
i+1
i+2

i

i+2
i+1

i+k-2

. . .

i+k-1i+k

Ack: i

Ack: i
Ack: i

Ack: i+2

Ack: i+k+1

i

3 dup ACKs
at time t0

i+k+2

i+k+2

i+k+1i+(k-1)/2

TCP
window
cwin

i+1i+2

i+k-2i+k-1

i+k
(k-4) segments i

1. Fast retransmit segment i
2. cwnd(t0

+)=cwnd(t0
-)/2

3. enter fast recovery

i

i+k-1
i+k-2

i+k-2

i+k

i+k-1i+k

i+k-3

Ack: i+1

i+(k-1)/2-1

i+(3k-1)/2-1

IPsec window is
advanced for each
segment,
with i+k being the
right edge

Receiver identifies a
gap and sends
duplicate ACK for i
(next expected
segment)

Three segments up
to segment (i+k)
are duplicate and
discarded

Pending=cwnd

t0,0

t0,K

t0,2K-1

Figure 10: Throughput degradation attack on communication over TCP with infinitely large IPsec anti-replay window, i.e., packets are not
discarded by IPsec implementation at the receiving gateway. Attacker reorders segments, thus generating a gap in sequence numbers at the
receiver, which responds with duplicate ACKs. Upon receipt of three duplicate ACKs, the sender reduces its sending rate. Specifically, TCP
at the sender transmits a window of k + 1 segments, and the attacker speeds up last three segments, i.e., segments with sequence numbers
i + k− 2, i + k− 1, i + k, such that they arrive before 1st segment in the window, i.e., segment with sequence number i. These segments
are passed by the gateway to the client (since they are authentic and not a replay), and trigger three duplicate ACKs for ith segment at the
receiver. Upon receipt of three duplicate ACKs the sender retransmits the missing segment i, and reduces its transmission rate. At time t0
the sender receives three duplicate ACKs (this initiates first attack epoch); also note that cwnd = pending. The sender fast retransmits
lost segment, and reduces its transmission rate. The sender cannot resume transmission of further segments since the number of pending
segments is larger than the congestion window size. After receipt of sufficient number of ACKs the sender can resume transmission of new
segments.

We focus on a solution that requires a modification to IPsec
gateways. Solution in firewalls does not require changing
each host separately, but only to apply the modification to
the firewall, and as a result to protect subnet of hosts. Many
private networks connected to the Internet are protected by
firewalls. Firewall protection is based on the idea that all
packets destined to hosts behind a firewall have to be exam-
ined by the firewall. The drawback of this approach is the
additional processing delay on every packet, and having the
firewall maintain state. On the other hand, many firewalls
examine TCP connections for security reasons, e.g., solu-
tion to SYN attack, thus firewalls keep state. Therefore, we
believe that our addition is minimal. Our solution is applied
to the sending IPsec gateway (and no change to receiving
gateway GW1) and is comprised of two phases: first detec-
tion, then prevention of an attack. Note that our suggestion
can also be applied to TCP in every host, yet we leave it as

a further research.
The main idea of our proposition is to delay response

to congestion, i.e., duplicate ACK, in the sending gateway
(w.l.o.g. GW2 in Figure 1) and not deliver to the send-
ing host behind GW2 until maximal delay is reached. The
sending gateway GW2 will measure delay of outgoing seg-
ments9 between itself and the receiving gateway GW1 (for
every VPN), and will use these measurements to estimate
typical delay for outgoing packets. In addition, gateway
GW2 will store time, and sequence number of outgoing
segments. These can be maintained in an array, and upon
arrival of an ACK, the corresponding sample is released. If
a duplicate ACK for some segment, e.g., segment with se-
quence number i, arrives, gateway GW2 will approximate

9The gateway will estimate a typical delay between itself and the re-
ceiving gateway, similarly to existing approaches that estimate TCP time-
out.

the sending time, based on the stored samples, of segment
i. More specifically, the gateway will locate in the array the
interval of the sending time of missing segment (for which a
duplicate ACK was received); and (based on the delay mea-
surements it recorded) will delay the duplicate ACK (and
all subsequent duplicate ACKs for that segment) till typi-
cal (plus possibly some safety margin) delay is reached. If
ACK with higher sequence number arrives before maximal
delay, all duplicate ACKs are discarded, and the new ACK
is forwarded to the sending host. However if no new ACK
arrives, once maximal delay is reached, all duplicate ACKs
are released and forwarded to the sending host (see pseudo-
code in Algorithm 1).

Note that storing and maintaining duplicate ACKs may
impose an overhead on the gateway, therefore we propose
the following implementation: sending gateway GW2 will
store the sequence number SN of the most recently re-
ceived ACK, and will maintain duplicate ACKs counter
dupACKctr. For each subsequent duplicate ACK for the
same SN , the counter will be incremented. This addition
requires the gateway only to store the sequence number
(32 bits) of last correctly received packet, and counter with
number of duplicate ACKs for last correctly received seg-
ment. We defer detailed analysis of the fix to full version of
the paper.

6. Further Research Directions

Below we present several future research directions:

• An important further research is defining secure chan-
nel protocol with performance guarantees, that would
ensure security and efficiency to traffic above it, or to
prove that no such channel exists.

• It is interesting to consider a weaker attacker with-
out speed-up advantage, i.e., attacker may be using
the same channel as the legitimate parties, or another
with the same delay, and to perform analysis of per-
formance degradation (and probabilities given distri-
bution on traffic).

• Further work is required to analyse our suggested fix to
TCP in IPsec gateway as a solution to benign (as well
as malicious) packet reordering on Internet. In partic-
ular, to perform simulations, and experiments showing
the impact on efficiency when under attack, as well as
under bening network reordering.

References

[1] I. Aad, J. Hubaux, and E. Knightly. Denial of service re-
silience in ad hoc networks. In Proceedings of the 10th an-
nual international conference on Mobile computing and net-
working, pages 202–215. ACM New York, NY, USA, 2004.

[2] M. Allman, V. Paxson, and W. Stevens. TCP Congestion
Control. RFC 2581 (Proposed Standard), Apr. 1999. Up-
dated by RFC 3390.

[3] M. Allman, V. Paxson, and W. Stevens. TCP Congestion
Control, RFC 2581. Internet request for comments, 1999.

[4] J. Bellardo and S. Savage. Measuring packet reordering.
In Proceedings of the 2nd ACM SIGCOMM Workshop on
Internet measurment, pages 97–105. ACM New York, NY,
USA, 2002.

[5] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Re-
lations among notions of security for public-key encryption
schemes. Lecture notes in computer science, pages 26–45,
1998.

[6] S. Bhandarkar and A. Reddy. TCP-DCR: Making TCP ro-
bust to non-congestion events. Lecture Notes in Computer
Science, pages 712–724, 2004.

[7] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss. RFC2475: An Architecture for Differentiated
Services. RFC Editor United States, 1998.

[8] E. Blanton and M. Allman. On making TCP more robust to
packet reordering. ACM SIGCOMM Computer Communi-
cation Review, 32(1):20–30, 2002.

[9] E. Blanton and M. Allman. Using TCP Duplicate Selective
Acknowledgement (DSACKs) and Stream Control Trans-
mission Protocol (SCTP) Duplicate Transmission Sequence
Numbers (TSNs) to Detect Spurious Retransmissions. RFC
3708 (Experimental), Feb. 2004.

[10] S. Bohacek, J. Hespanha, J. Lee, C. Lim, and K. Obraczka.
TCP-PR: TCP for persistent packet reordering. In Dis-
tributed Computing Systems, 2003. Proceedings. 23rd Inter-
national Conference on, pages 222–231, 2003.

[11] S. Bohacek, J. Hespanha, J. Lee, C. Lim, and K. Obraczka.
A New TCP for Persistent Packet Reordering. IEEE/ACM
TRANSACTIONS ON NETWORKING, 14(2):369, 2006.

[12] R. Canetti and H. Krawczyk. Universally Composable No-
tions of Key Exchange and Secure Channels. In Proceedings
of the International Conference on the Theory and Applica-
tions of Cryptographic Techniques: Advances in Cryptol-
ogy, pages 337–351. Springer-Verlag London, UK, 2002.

[13] R. Chang. Defending against flooding-based distributed
denial-of-service attacks: A tutorial. IEEE Communications
Magazine, 40(10):42–51, 2002.

[14] T. Dierks and E. Rescorla. The Transport Layer Security
(TLS) Protocol Version 1.2. RFC 5246 (Proposed Standard),
Aug. 2008.

[15] G. Dommety. Key and Sequence Number Extensions to
GRE. RFC 2890 (Proposed Standard), Sept. 2000.

[16] Y. Gilad and A. Herzberg. Lightweight opportunistic tun-
neling (lot). In ESORICS, pages 104–119, 2009.

[17] M. Gouda, C. Huang, and E. Li. Anti-replay window proto-
cols for secure IP. In Computer Communications and Net-
works, 2000. Proceedings. Ninth International Conference
on, pages 310–315, 2000.

[18] M. Guirguis, A. Bestavros, and I. Matta. Exploiting the tran-
sients of adaptation for RoQ attacks on Internet resources.
In Network Protocols, 2004. ICNP 2004. Proceedings of
the 12th IEEE International Conference on, pages 184–195,
2004.

[19] M. Guirguis, A. Bestavros, I. Matta, and Y. Zhang. Re-
duction of quality (RoQ) attacks on Internet end-systems.
In Proceedings IEEE INFOCOM 2005. 24th Annual Joint
Conference of the IEEE Computer and Communications So-
cieties, volume 2, 2005.

[20] G. Hellstrom. RTP Payload for Text Conversation. RFC
2793 (Proposed Standard), May 2000. Obsoleted by RFC
4103.

[21] A. Herzberg and I. Yoffe. The layered games framework
for specifications and analysis of security protocols. Inter-
national Journal of Applied Cryptography, 1(2):144–159,
2008.

[22] K. Hickman and T. Elgamal. The SSL protocol. Netscape
Communications Corp, 1995.

[23] K. Houle, G. Weaver, N. Long, and R. Thomas. Trends
in denial of service attack technology. CERT Coordination
Center, 2001.

[24] C. Huang and M. Gouda. An anti-replay window protocol
with controlled shift. In Proceedings of the 10th IEEE In-
ternational Conference on Computer Communications and
Networks, 2001.

[25] C. Kaufman, R. Perlman, and B. Sommerfeld. DoS protec-
tion for UDP-based protocols. In Proceedings of the 10th
ACM conference on Computer and communications secu-
rity, page 7. ACM, 2003.

[26] S. Kent and R. Atkinson. Security Architecture for the In-
ternet Protocol. RFC 2401 (Proposed Standard), Nov. 1998.
Obsoleted by RFC 4301, updated by RFC 3168.

[27] S. Kent and K. Seo. Security Architecture for the Internet
Protocol. RFC 4301 (Proposed Standard), Dec. 2005.

[28] J. Kurose, K. Ross, and K. Ross. Computer networking: a
top-down approach featuring the Internet. Addison-Wesley
Reading, MA, 2003.

[29] A. Kuzmanovic and E. Knightly. Low-rate TCP-targeted
denial of service attacks: the shrew vs. the mice and ele-
phants. In Proceedings of the 2003 conference on Appli-
cations, technologies, architectures, and protocols for com-
puter communications, pages 75–86. ACM New York, NY,
USA, 2003.

[30] K. Leung, V. Li, and D. Yang. An overview of packet re-
ordering in transmission control protocol (TCP): problems,
solutions, and challenges. IEEE Transactions on Parallel
and Distributed Systems, 18(4):522–535, 2007.

[31] R. Ludwig and R. Katz. The Eifel algorithm: making TCP
robust against spurious retransmissions. ACM SIGCOMM
Computer Communication Review, 30(1):30–36, 2000.

[32] X. Luo and R. Chang. On a new class of pulsing denial-
of-service attacks and the defense. In Proceedings of the
ISOC Symposium on Network and Distributed Systems Se-
curity (SNDSS), pages 61–79, 2005.

[33] M. Maxim and D. Pollino. Wireless security. McGraw-Hill
Osborne Media, 2002.

[34] V. Paxson and M. Allman. RFC2988: Computing TCP’s
Retransmission Timer. RFC Editor United States, 2000.

[35] J. Postel. Transmission Control Protocol. RFC 793 (Stan-
dard), Sept. 1981. Updated by RFCs 1122, 3168.

[36] K. Ramakrishnan, S. Floyd, and D. Black. The addition of
explicit congestion notification (ECN) to IP, 2001.

[37] C. Schuba, I. Krsul, M. Kuhn, E. Spafford, A. Sundaram,
and D. Zamboni. Analysis of a Denial of Service Attack on
TCP. In 1997 IEEE Symposium on Security and Privacy,
1997. Proceedings., pages 208–223, 1997.

[38] W. Stevens. TCP/IP illustrated (vol. 1): the protocols.
Addison-Wesley Longman Publishing Co., Inc. Boston,
MA, USA, 1993.

[39] P. Syverson. A taxonomy of replay attacks [cryptographic
protocols]. In Computer Security Foundations Workshop
VII, 1994. CSFW 7. Proceedings, pages 187–191, 1994.

[40] F. Wang and Y. Zhang. Improving TCP performance over
mobile ad-hoc networks with out-of-order detection and re-
sponse. In Proceedings of the 3rd ACM international sym-
posium on Mobile ad hoc networking & computing, pages
217–225. ACM New York, NY, USA, 2002.

[41] M. Zhang, B. Karp, S. Floyd, and L. Peterson. Improving
TCP’s Performance under Reordering with DSACK. Inter-
national Computer Science Institute, Berkeley, Tech. Rep.
TR-02-006, 2002.

[42] M. Zhang, B. Karp, S. Floyd, and L. Peterson. RR-TCP:
A reordering-robust tcp with dsack. In 11th IEEE Inter-
national Conference on Network Protocols, 2003. Proceed-
ings, pages 95–106, 2003.

[43] F. Zhao and S. Wu. Analysis and improvement on IPSec
anti-replay window protocol. In Computer Communications
and Networks, 2003. ICCCN 2003. Proceedings. The 12th
International Conference on, pages 553–558, 2003.

