
Identifying Cross-origin Resource 
Status Using Application Cache

2015 Network and Distributed System Security Symposium

Sangho Lee, Hyungsub Kim, and Jong Kim

POSTECH, Korea

February 9, 2015



Web, HTML5, and Threats

•Web and HTML5
• The most popular distributed application platform

• Rich functionality introduced by HTML5

•Security and privacy threats
• Popularity attracts a lot of adversaries.

• Rich functionality opens security and privacy holes.

•Discovering unrevealed threats of the Web and 
HTML5 is important.

NDSS 2015 2



HTML5 Application Cache (AppCache)

•Enabling technology to offline web applications
• Specify resources to be cached in a web browser

• Allow fast and offline access to the cached resources

•Potential threats of AppCache
• Arbitrary cross-origin resources are cacheable.

• Neither server- nor client-side control

• Error handing can breach user privacy.

• Recognize whether a user can cache specific resources

NDSS 2015 3



Motivation and Goal

•Motivation
• In-depth security analysis of new web functionalities 

is necessary.

• Security analysis of AppCache is insufficient despite 
its wide deployment.

•Research goal
• Analyze and solve security problems of AppCache

• Discover security problems of AppCache

• Suggest an effective countermeasure against the 
security problems

NDSS 2015 4



Contents

• Introduction

•AppCache Details
• Declaration

• Procedure and Failure

• Non-cacheable URLs

•URL Status Identification Attack

•Discussion

•Conclusion

NDSS 2015 5



AppCache Declaration

NDSS 2015 6

<html 
manifest=“example.appcache”>
…
</html>

CACHE MANIFEST

CACHE:
/logo.png
https://example.cdn.com/
external.jpg
NETWORK:
*
FALLBACK:
/ /offline.html

HTML document declaring AppCache

AppCache manifest



AppCache Procedure

NDSS 2015 7

Visit a web page declaring AppCache

Fetch and decode the manifest

Re-fetch the manifest to check changes

Download the resources listed in the manifest

site1.com site2.comweb browser



When Does AppCache Fail?

NDSS 2015 8

Visit a web page declaring AppCache

Fetch and decode the manifest

Re-fetch the manifest to check changes

Download the resources listed in the manifest

site1.com site2.com

invalid or erroneous manifest

Non-cacheable resources

Changed manifest

Any failure rolls back AppCache to maintain 

content consistency.

web browser



Non-cacheable URLs

• Invalid URL
• No content to be cached

•Dynamic URL
• Caching dynamic content is less meaningful.

• Cache-Control: no-store or no Content-Length

•URL with redirections
• Final URL can be dynamically changed.

• Violation of the same-origin policy is possible.

• Refer a cached resource with the URL specified in a 
manifest

NDSS 2015 9



Contents

• Introduction

•AppCache Details

•URL Status Identification
• Basics and Advantages

• Attack Procedure

• Concurrent Attack

• Application: Determining Login Status

•Discussion

•Conclusion

NDSS 2015 10



URL Status Identification

•Basics
• Specify a target URL in an AppCache manifest

• Check whether AppCache succeeds or fails

•Advantages
• Deterministic identification: Don’t measure timing

• Identification of URL redirections

• Scriptless attack

NDSS 2015 11



Attack Procedure: Cacheable URL

NDSS 2015 12

Visit a web page declaring AppCache

Fetch and decode the manifest

Re-fetch the manifest to check changes

Download the target resource

attack.com target.comweb browser

Record browser 

info.

Identify 

success

Succeed

Refresh

(optional)

Re-fetch the manifest to check changes

Page refreshing lets AppCache

check the manifest’s changes.



Attack Procedure: Non-cacheable URL

NDSS 2015 13

Visit a web page declaring AppCache

Fetch and decode the manifest

Re-fetch the manifest to check changes

Download the target resource

Record browser 

info.

Identify 

failure

Fail

Refresh 

(optional)

Visit a web page declaring AppCache

…

A browser don’t re-fetch the manifest when 

the target URL is non-cacheable.

Page refreshing initiates an AppCache

procedure from the beginning.

attack.com target.comweb browser



Concurrent Attack

NDSS 2015 14

Concurrently inspecting multiple target URLs with 
multiple iframe tags, web pages, & manifests

<html 
manifest=“manifest.php?
target=http://target1.com”>
</html>

<html>
<iframe 
src=“attack_each.php?
target=http://target1.com”
</iframe>
<iframe 
src=“attack_each.php?
target=http://target2.com”
</iframe>
…
</html>

CACHE MANIFEST
CACHE:
http://target1.com
NETWORK:
*

CACHE MANIFEST
CACHE:
http://target2.com
NETWORK:
*

<html 
manifest=“manifest.php?
target=http://target2.com”>
</html>

attach_all.php attach_each.php manifest.php

…

…



Application: Determining Login Status

NDSS 2015 15

amazon.com/gp/yourstore/home → amazon.com/ap/signin?...

tumblr.com/dashboard → tumblr.com/login?redirect_to=/dashboard

youtube.com/feed/subscriptions → accounts.google.com/ServiceLogin?... 

URLs redirecting non-logged-in browsers to login pages

bitbucket.org/account/user/<user-id>

github.com/<user-id>/<repository-name>/settings

<blog-id>.wordpress.com/wp-admin

Private URLs returning errors to unauthorized browsers

Determine login status by inspecting URLs with 
conditional redirections or errors



Contents

• Introduction

•AppCache Details

•URL Status Identification Attack

•Discussion
• Problematic Countermeasures

• Countermeasure: Cache-Origin

• Service Worker

•Conclusion

NDSS 2015 16



Problematic Countermeasures

•Ask user permission for AppCache
• Vulnerable to careless users

•Always/never check changes in manifests
• Vulnerable to page refreshing attacks

• Content inconsistency problem

•Eliminate web pages having conditional 
behaviors
• Detection and modification of all vulnerable web 

pages are challenging.

NDSS 2015 17



Countermeasure: Cache-Origin

•Attach a Cache-Origin header when requesting 
resources during AppCache
• Contain the manifest’s origin

• Notify a web application of who initiate an AppCache
procedure

• Resemble the Origin header of CORS

•Abort suspicious AppCache procedures by 
returning no-store or error code
• Cache sensitive resources 

• Be initiated by doubtful servers

NDSS 2015 18



Service Worker

•Provide scriptable caches as an alternative to 
AppCache
• Intercept and respond to network requests from 

certain web pages

•Have the same policy to handle URL 
redirections and errors with AppCache
• Also vulnerable to our attacks

NDSS 2015 19



Conclusion

•We introduced a new web privacy attack using 
HTML5 AppCache.
• Identify the status of cross-origin resources

• Do not rely on client-side scripts

• Can attack major web browsers

•We suggested a Cache-Origin request-header 
field to mitigate our attacks.
• Minor variation of the Origin header

• Easy deployment

NDSS 2015 20


