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Web, HTML5, and Threats

•Web and HTML5
• The most popular distributed application platform

• Rich functionality introduced by HTML5

•Security and privacy threats
• Popularity attracts a lot of adversaries.

• Rich functionality opens security and privacy holes.

•Discovering unrevealed threats of the Web and 
HTML5 is important.
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HTML5 Application Cache (AppCache)

•Enabling technology to offline web applications
• Specify resources to be cached in a web browser

• Allow fast and offline access to the cached resources

•Potential threats of AppCache
• Arbitrary cross-origin resources are cacheable.

• Neither server- nor client-side control

• Error handing can breach user privacy.

• Recognize whether a user can cache specific resources
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Motivation and Goal

•Motivation
• In-depth security analysis of new web functionalities 

is necessary.

• Security analysis of AppCache is insufficient despite 
its wide deployment.

•Research goal
• Analyze and solve security problems of AppCache

• Discover security problems of AppCache

• Suggest an effective countermeasure against the 
security problems
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AppCache Declaration
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<html 
manifest=“example.appcache”>
…
</html>

CACHE MANIFEST

CACHE:
/logo.png
https://example.cdn.com/
external.jpg
NETWORK:
*
FALLBACK:
/ /offline.html

HTML document declaring AppCache

AppCache manifest



AppCache Procedure
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Visit a web page declaring AppCache

Fetch and decode the manifest

Re-fetch the manifest to check changes

Download the resources listed in the manifest

site1.com site2.comweb browser



When Does AppCache Fail?
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Visit a web page declaring AppCache

Fetch and decode the manifest

Re-fetch the manifest to check changes

Download the resources listed in the manifest

site1.com site2.com

invalid or erroneous manifest

Non-cacheable resources

Changed manifest

Any failure rolls back AppCache to maintain 

content consistency.

web browser



Non-cacheable URLs

• Invalid URL
• No content to be cached

•Dynamic URL
• Caching dynamic content is less meaningful.

• Cache-Control: no-store or no Content-Length

•URL with redirections
• Final URL can be dynamically changed.

• Violation of the same-origin policy is possible.

• Refer a cached resource with the URL specified in a 
manifest
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URL Status Identification

•Basics
• Specify a target URL in an AppCache manifest

• Check whether AppCache succeeds or fails

•Advantages
• Deterministic identification: Don’t measure timing

• Identification of URL redirections

• Scriptless attack
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Attack Procedure: Cacheable URL
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Visit a web page declaring AppCache

Fetch and decode the manifest

Re-fetch the manifest to check changes

Download the target resource

attack.com target.comweb browser

Record browser 

info.

Identify 

success

Succeed

Refresh

(optional)

Re-fetch the manifest to check changes

Page refreshing lets AppCache

check the manifest’s changes.



Attack Procedure: Non-cacheable URL
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Visit a web page declaring AppCache

Fetch and decode the manifest

Re-fetch the manifest to check changes

Download the target resource

Record browser 

info.

Identify 

failure

Fail

Refresh 

(optional)

Visit a web page declaring AppCache

…

A browser don’t re-fetch the manifest when 

the target URL is non-cacheable.

Page refreshing initiates an AppCache

procedure from the beginning.

attack.com target.comweb browser



Concurrent Attack
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Concurrently inspecting multiple target URLs with 
multiple iframe tags, web pages, & manifests

<html 
manifest=“manifest.php?
target=http://target1.com”>
</html>

<html>
<iframe 
src=“attack_each.php?
target=http://target1.com”
</iframe>
<iframe 
src=“attack_each.php?
target=http://target2.com”
</iframe>
…
</html>

CACHE MANIFEST
CACHE:
http://target1.com
NETWORK:
*

CACHE MANIFEST
CACHE:
http://target2.com
NETWORK:
*

<html 
manifest=“manifest.php?
target=http://target2.com”>
</html>

attach_all.php attach_each.php manifest.php

…

…



Application: Determining Login Status
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amazon.com/gp/yourstore/home → amazon.com/ap/signin?...

tumblr.com/dashboard → tumblr.com/login?redirect_to=/dashboard

youtube.com/feed/subscriptions → accounts.google.com/ServiceLogin?... 

URLs redirecting non-logged-in browsers to login pages

bitbucket.org/account/user/<user-id>

github.com/<user-id>/<repository-name>/settings

<blog-id>.wordpress.com/wp-admin

Private URLs returning errors to unauthorized browsers

Determine login status by inspecting URLs with 
conditional redirections or errors
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Problematic Countermeasures

•Ask user permission for AppCache
• Vulnerable to careless users

•Always/never check changes in manifests
• Vulnerable to page refreshing attacks

• Content inconsistency problem

•Eliminate web pages having conditional 
behaviors
• Detection and modification of all vulnerable web 

pages are challenging.
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Countermeasure: Cache-Origin

•Attach a Cache-Origin header when requesting 
resources during AppCache
• Contain the manifest’s origin

• Notify a web application of who initiate an AppCache
procedure

• Resemble the Origin header of CORS

•Abort suspicious AppCache procedures by 
returning no-store or error code
• Cache sensitive resources 

• Be initiated by doubtful servers
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Service Worker

•Provide scriptable caches as an alternative to 
AppCache
• Intercept and respond to network requests from 

certain web pages

•Have the same policy to handle URL 
redirections and errors with AppCache
• Also vulnerable to our attacks
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Conclusion

•We introduced a new web privacy attack using 
HTML5 AppCache.
• Identify the status of cross-origin resources

• Do not rely on client-side scripts

• Can attack major web browsers

•We suggested a Cache-Origin request-header 
field to mitigate our attacks.
• Minor variation of the Origin header

• Easy deployment
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