
Monirul Sharif1, Andrea Lanzi2,
Jonathon Giffin1, Wenke Lee1

1Georgia Institute of Technology
2Universit`a degli Studi di Milano

NDSS 2008

Impeding Malware Analysis Using Conditional Code Obfuscation 2NDSS 2008

IntroductionIntroduction

Malware

We need to understand malware…

Exploits

Propagation Control Capabilities

System-wide effects

Reverse engineering and Malware Analysis

Malware Malware Malware Malware Malware Malware

Hundreds of new malware samples appear almost everyday…

Automated analysis systems have become very important

We present a Simple, Automated and Transparent Obfuscation
against state-of-the-art malware analyzers

Malware Malware Malware Malware Malware Malware

Obfuscations that are easily applicable on existing code can be a threat

SpywareWorms TrojansBots

Rootkits Keyloggers Viruses

Impeding Malware Analysis Using Conditional Code Obfuscation 3NDSS 2008

Malware Analysis and ObfuscationsMalware Analysis and Obfuscations

Defense Offense

Polymorphism, metamorphism,
packing, opaque predicates,

anti-disassembly
Static Analysis based approaches

Dynamic malware analysis

Dynamic multipath exploration
(Moser et al. 2007)

(Logic bombs, time bombs,
anti-debugging, anti-emulation, etc.)

Trigger-based behavior

Bitscope (Brumley et al. 2007)
EXE (Cadar et al. 2006)

Forced execution (Wilhelm et al. 2007)

?
Conditional Code Obfuscation

response

response

Impeding Malware Analysis Using Conditional Code Obfuscation 4NDSS 2008

Rest of the TalkRest of the Talk

o Conditional Code Obfuscation
o Principles
o Static analysis based automation
o Automatic applicability on existing malware without modification

o Implications
o Implications on Existing Analyzers
o Measuring Obfuscation Strength

o Prototype Implementation and Evaluation
o Evaluation on malware

o Weaknesses and Defense
o How analysis can be improved to defender

Impeding Malware Analysis Using Conditional Code Obfuscation 5NDSS 2008

Principles of Our AttackPrinciples of Our Attack

Malware Binary

ConditionCondition

Trigger-based
behavior

Inputs

Unknown
?

Input Oblivious
Analyzer

Any static and
dynamic analysis

approach

Impeding Malware Analysis Using Conditional Code Obfuscation 6NDSS 2008

Principles of Our AttackPrinciples of Our Attack

Unknown
Inputs

cmd = get_command(sock);
if (strcmp(cmd, “logkeys”)==0))
{

LogKeys()
}

cmd = get_command(sock);
if (Hash(cmd)== H))
{

LogKeys()
}

Malware Binary

ConditionCondition

Trigger-based
behavior

ConditionCondition

Impeding Malware Analysis Using Conditional Code Obfuscation 7NDSS 2008

Principles of Our AttackPrinciples of Our Attack

Unknown
Inputs

cmd = get_command(sock);
if (strcmp(cmd, “logkeys”)==0))
{

LogKeys()
}

cmd = get_command(sock);
if (strcmp(cmd, “logkeys”)==0))
{

decrypt(encr_LogKeys, K);
encr_LogKeys()

}

encr_LogKeys(){
}

Malware Binary

ConditionCondition

Trigger-based
behavior
Trigger-based
behavior (K)

The key is
inside the
program

Impeding Malware Analysis Using Conditional Code Obfuscation 8NDSS 2008

Principles of Our AttackPrinciples of Our Attack

Unknown
Inputs

cmd = get_command(sock);
if (strcmp(cmd, “logkeys”)==0))
{

LogKeys()
}

cmd = get_command(sock);
if (Hash(cmd)== H))
{

decrypt(encr_LogKeys, cmd);
encr_LogKeys()

}

encr_LogKeys(){
}

Malware Binary

ConditionConditionConditionCondition

Trigger-based
behavior
Trigger-based
behavior

The key is no
longer inside

the code

Impeding Malware Analysis Using Conditional Code Obfuscation 9NDSS 2008

o Hash function Properties:
o Pre-image resistance – Protects against reversing

Hard to find c given Hc

o Second pre-image resistance - Program correctness
Hard to find another c’ where Hash(c’) = Hc

o Candidate Conditions - Conditions with equality
o The usual ‘==‘ operator
o String equality checks – strcmp, memcmp, strncmp etc.
o Conditions with ‘>’, ‘<‘, ‘!=‘ will not work

o Conditional Code
o Any code that executes only when condition is satisfied

General Obfuscation MechanismGeneral Obfuscation Mechanism

Original Code Obfuscated Code

if (X == c) {

}

B

if (Hash(X) == Hc) {
Decr(BE , X)

}

BE

Encr(B, c)

Hash(c)

Impeding Malware Analysis Using Conditional Code Obfuscation 10NDSS 2008

Automation Using Static AnalysisAutomation Using Static Analysis

o Identify Candidate Conditions
o Identify functions and create CFG for each function
o Find blocks containing candidate conditions

o Conditional code Identification
o Intra-procedural - Basic blocks control dependent on condition

with true outcome
o Inter-procedural - Set of all functions only reachable from

selected basic blocks

o Exclude functions reachable from default path
o Conservative conditional code selection for function pointers

Impeding Malware Analysis Using Conditional Code Obfuscation 11NDSS 2008

Automation Using Static AnalysisAutomation Using Static Analysis

•

Two keys are used in two paths. Duplicate code
•

If one path is not candidate condition, no use in
concealing the trigger code

B

P Q

if if

KP KQ

BP

P Q

KP KQ

BQ

Encr(B, KP) Encr(B, KQ)

Handling Common Conditional Code

Impeding Malware Analysis Using Conditional Code Obfuscation 12NDSS 2008

Automation Using Static AnalysisAutomation Using Static Analysis

if (X==a && Y==b) {
Attack()

}

if (X==a) {
if (Y==b) {

Attack()
}

}

if (X==a || Y==b) {
Attack()

}

if (X==a)
Attack()

}
else if (Y==b) {
Attack()

}

Logical “and”

Logical “or”

Handling Complex Conditions

Impeding Malware Analysis Using Conditional Code Obfuscation 13NDSS 2008

Automation Using Static AnalysisAutomation Using Static Analysis

switch (cmd) {

case 0:
attack1();
break;

case 1:
recon();

case 2:
attack2();

}

if (cmd==0)
attack1();

if (cmd==1) {
recon();
attack2();

}

if (cmd==2)
attack2();

Switch Case

Handling Complex Conditions

Impeding Malware Analysis Using Conditional Code Obfuscation 14NDSS 2008

Consequences to Existing AnalyzersConsequences to Existing Analyzers

•

Multi-Path Exploration (Moser et al., Bitscope)
o Constraints are built for each path
o Hash functions are non-linear, so cannot find solution

•

Input Discovery (EXE)
o Solves constraints to get inputs – symbolic execution
o Same problem, cannot find derive input

Condition

Trigger-based
behavior

B

Hash(X)==HC

Impeding Malware Analysis Using Conditional Code Obfuscation 15NDSS 2008

Consequences to Existing AnalyzersConsequences to Existing Analyzers

•

Forced Execution
o Without solving constraints, forces execution
o Without key, program crashes

•

Static Analysis
o Same as packed code, static analysis on trigger code is not

possible

Condition

Trigger-based
behavior

B

Hash(X)==HC

Impeding Malware Analysis Using Conditional Code Obfuscation 16NDSS 2008

Attacks on the ObfuscationAttacks on the Obfuscation

o Attacks on Hash(X)=Hc
o Find possible X for satisfying the above

o Input domain
o Domain(X) – set of all possible values X may take
o With time t for every hash computation,

total time = Domain(X)t

o For an integer I, Domain(I) = 232

o Brute Force attacks

o Dictionary Attacks

Impeding Malware Analysis Using Conditional Code Obfuscation 17NDSS 2008

Prototype ImplementationPrototype Implementation

•

Overview
o Implemented for Linux
o Takes malware C source code and outputs obfuscated ELF binaries

•

Analysis Level – both source code and binary levels required
o Source and IR level – type information is essential
o Binary level – decrypted code must be executable

LLVM
Compiler

Framework

.c
DynInst

Binary
Analysis/

Instrumentation

.o .o

Malware
Source (c/c++)

Final obfuscated
ELF Binary

(x86)

ELF Binary
(x86) Encrypt marked

Blocks with keys
remove keys

Find candidate conditions
conditional code and keys.

Perform transformation.

Simplified architectural view of the automated obfuscation system

Impeding Malware Analysis Using Conditional Code Obfuscation 18NDSS 2008

Analysis and Transformation PhaseAnalysis and Transformation Phase

•

Candidate Code Replacement
o Enc(X)/Dec(X) Encryption/Decryption – AES with 256 bit keys
o Hash function – Hash(X) - SHA-256
o Different hash functions based on data type of X

•

Decryption Keys and Markers

o Key generation – Key(X) = Hash(X|N), N is Nonce

Impeding Malware Analysis Using Conditional Code Obfuscation 19NDSS 2008

Encryption PhaseEncryption Phase

•

DynInst based binary transformation tool
o Finds Decipher(), and End_marker() and key (Kc)
o Encrypts binary code with key
o Removes marker and key from code

Impeding Malware Analysis Using Conditional Code Obfuscation 20NDSS 2008

Experimental ResultsExperimental Results

•

Evaluated by Obfuscating Malware Programs
o Selected representative malware source programs for

Linux with trigger based behavior

•

Evaluation Method
o Manually identified malicious triggers in malware
o Applied obfuscation, counted how many were

completely obfuscated by the automated system
o Considered three levels of obfuscation strength –

Strong – strings
Medium – integers
Weak – booleans and return codes

Impeding Malware Analysis Using Conditional Code Obfuscation 21NDSS 2008

Experimental ResultsExperimental Results

Impeding Malware Analysis Using Conditional Code Obfuscation 22NDSS 2008

Analysis of the Technique Analysis of the Technique
(Strengths and Weaknesses)(Strengths and Weaknesses)

•

Knowledgable attacker can modify program to improve
obfuscation effectiveness
•

Increase candidate conditions - replace <, >, !=
operators with ‘==‘

•

Increase conditional code – incorporate triggers that
encapsulate more execution behavior

•

Increase input domains - Use variables with larger
domains (e.g. strings) or use larger integers

•

Weaknesses
•

Input domain may be very small in some cases

•

Upside on Malware detection – but polymorphic
layers can be added

Impeding Malware Analysis Using Conditional Code Obfuscation 23NDSS 2008

Defense ApproachesDefense Approaches

o Incorporating cracking engine
o Equipped with decryptors where various keys are

tried out repeatedly
o Input domain knowledge (for dictionary attacks)

o Determine type information – reduce domain
space

o Syscall return codes

o Input-aware analysis
o Gather I/O traces along with malware binaries

Impeding Malware Analysis Using Conditional Code Obfuscation 24NDSS 2008

ConclusionConclusion

o We presented an obfuscation technique that can be
widely applicable on existing malware

o The obfuscation conceals trigger based behavior from
existing and future analyzers

o We have shown its effectiveness on malware using our
implemented automated prototype

o We presented its weaknesses and possible ways
analyzers can be improved to defeat it

Impeding Malware Analysis Using Conditional Code Obfuscation 25NDSS 2008

Thank youThank you

Questions?

msharif@cc.gatech.edu

Impeding Malware Analysis Using Conditional Code Obfuscation 26NDSS 2008

Experimental ResultsExperimental Results

	Slide Number 1
	Introduction
	Malware Analysis and Obfuscations
	Rest of the Talk
	Principles of Our Attack
	Principles of Our Attack
	Principles of Our Attack
	Principles of Our Attack
	General Obfuscation Mechanism
	Automation Using Static Analysis
	Automation Using Static Analysis
	Automation Using Static Analysis
	Automation Using Static Analysis
	Consequences to Existing Analyzers
	Consequences to Existing Analyzers
	Attacks on the Obfuscation
	Prototype Implementation
	Analysis and Transformation Phase
	Encryption Phase
	Experimental Results
	Experimental Results
	Analysis of the Technique �(Strengths and Weaknesses)
	Defense Approaches
	Conclusion
	Thank you
	Experimental Results

