Implementation of Crossrealm Referral Handling in the MIT
Kerberos Client

Jonathan Trostle, Irina Kosinovsky
Cisco Systems
170 W. Tasman Dr.
San Jose, CA 95134

Abstract

The Windows 2000 Kerberos implementation [1, 2]
uses a different approach to solve the Kerberos realm
resolution problem than has traditionally been used by
MIT Kerberos implementations. In this paper, we
present the details of the two approaches and com-
pare them. To facilitate more effective use of the Ker-
beros ticket cache, we propose a new format for referral
data that includes a list of alias names as part of the
returned referral information. We include the pseu-
docode for the algorithm that we have implemented in
the MIT Kerberos client that allows a MIT Kerberos
client to request and follow referrals from a Windows
2000 Kerberos KDC, thus removing the need for man-
agement and administration of DNS to realm mapping
files on Kerberos client hosts. We conclude with a
discussion of issues that are applicable to any mutual
authentication protocol.

1 Introduction

The Kerberos protocol [2, 4] allows security prin-
cipals (network entities such as users or servers) to be
separated into realms, allowing for separate admin-
istrative control. The protocol still allows authen-
tication between principals in different realms using
crossrealm authentication, in which case a user from
one realm can mutually authenticate with a service
in another realm. The MIT Kerberos implementation
of crossrealm authentication depends on clients being
configured with information about multiple realms.
The Windows 2000 Kerberos implementation intro-
duced a new mechanism for migrating this information
to the Key Distribution Centers (KDC’s), removing
the need to separately administer clients. This paper
presents the specification and design approach for the
integration of the Windows 2000 Kerberos crossrealm
referral algorithm into the MIT Kerberos client on the
Solaris operating system. We have successfully tested
our implementation against the Windows 2000 KDC
for crossrealm operations in a Windows 2000 domain

Michael M. Swift
University of Washington
Dept. of Computer Science and Eng.
Seattle, WA 98105

(realm) hierarchy.

Kerberos is an authentication and key distribu-
tion system based on the Needham-Schroeder proto-
col [5] and developed at MIT. In the protocol, a cen-
tral server, called the Key Distribution Center, stores
keys for users and servers. It uses a ticket mecha-
nism to let clients and servers mutually authenticate
each other. To enable scalability beyond a single set
of trusted administrators, Kerberos incorporates the
notion of realms, which are separate administrative
entities. Within each realm, a single administrator
has complete control over authentication and the set
of users and services which may authenticate. To al-
low realms to cooperate, they may establish a trust
relationship, in which the realms share a key. One
realm can then vouch for the authenticity of a user
to the KDC of another realm. Furthermore, realms
are named using the DNS naming convention [8], and
trust relationships can be transitive (the realms can
be arranged in a tree where each realm only shares a
key with both its parent and its children).

The standard approach for a user wishing to au-
thenticate to a service in another realm is to explicitly
request tickets for all the realms on the trust path be-
tween the user’s and the service’s realms. However,
this approach requires that the client have knowledge
of the trust relationships between realms. The im-
plementation of Kerberos in Windows 2000 modified
this procedure by letting the KDC return referrals for
other domains. In this technique, the user requests a
ticket to the service directly from its own KDC, which
may then return a referral to the next realm on the
trust path. In this way, clients do not need to be
aware of the trust relationships between realms. This
paper presents the design of this referral mechanism
as well as an implementation using MIT Kerberos on
the Solaris operating system.

We first describe the Kerberos protocol in section 2
and describe the traditional method of crossrealm au-

thentication. In section 3, we describe the mechanism
used in Windows 2000 through the use of a simple
example. Section 4 provides more detail on the pro-
tocol, including specifications for the messages used.
Section 5 provides a comparison of the two approaches
with respect to security, performance, and ease of ad-
ministration. Section 6 contains the high-level design
and pseudo-code for the protocol implementation. We
discuss naming issues relating to Kerberos and authen-
tication in section 7, and conclude in section 8.

2 The Kerberos Protocol

The Kerberos [2, 4] protocol was developed at MIT
to provide authentication in a distributed network of
clients and services. The protocol is based on the
Needham and Schroeder protocol [5], in that clients
contact a central server to request tickets to services.
A ticket is a data structure identifying the client and
encrypted with the secret key of the server. The server
trusts that only it and the KDC know this secret key,
so it trusts that the KDC created the ticket. Clients
obtain ticket through two protocols: the authentica-
tion service (AS) protocol, in which case the reply
from the KDC is encrypted with the secret key of the
user, and the ticket granting service (TGS) protocol,
in which case the reply from the KDC is encrypted
with a session key known to the client and KDC.

Kerberos [2, 4] principals are organized into realms.
A Kerberos realm is an administrative unit; typically,
common security policies such as a password policy
would be enforced on a per realm basis. A Kerberos
KDC stores the secret keys for all secret key Kerberos
principals in its realm so that it can issue tickets to
client principals in its realm. Realms can be linked by
either secret key trust relationships or public key trust
relationships [7]. In Kerberos version 4 [6] (and earlier
versions of the Windows operating system that use the
NTLM security protocol), realms can only have direct
trust relationships, in that users from one realm can
only authenticate to realms that share a key with their
realm. Kerberos V5 improves the scalability of this
approach by allowing transitive trust that results from
a tree trust structure with possible additional shortcut
trust relationships. Figure 1 shows a Kerberos V5
trust graph.

There are two issues that arrive when crossrealm
authentication is used: determining the realm of the
server, and determining the trust path to reach that
realm. The first problem is to determine, given the
name of a service, what realm it belongs to. This
problem is compounded if the server may have many
names, such as in the case of a multi-homed computer
with multiple DNS names. In this case, the name

may have to be canonicalized, or mapped to a single
name. This process may need to take place before the
determination of its realm can be made, and can be
performed either at the client or the KDC. In other
words, when a client desires to use Kerberos authen-
tication when communicating with another Kerberos
principal, it must determine the realm for that prin-
cipal before sending a TGS_REQ message to a Ker-
beros KDC. The reason is that the server’s realm is
a required field in the request body of the TGS_REQ
message:

KDC-REQ-BODY ::= SEQUENCE {
kdc-options[0] KDCOptions,
realm[2] Realm,
sname [3] PrincipalName
OPTIONAL,
from[4] KerberosTime
OPTIONAL,
ti11[5] KerberosTime
OPTIONAL,
rtime[6] KerberosTime
OPTIONAL,
noncel[7] INTEGER,
etype[8] SEQUENCE OF
INTEGER,
addresses[9] HostAddresses
OPTIONAL,
enc-authorization-data[10] EncryptedData
OPTIONAL,
additional-tickets[11] SEQUENCE OF
Ticket
OPTIONAL

}

The second problem, of how to determine the
path that authentication should take through the
set of realms, can also be determined at the client
or at the KDC. In the first case, the client would
need to know the structure of the domain hier-
archy, which could be determined from the lex-
ical structure of the realm names. For exam-
ple, to traverse from the realm EXAMPLE.COM to
DEV.PRODUCTS.EXAMPLE.COM, the client could
assume that PRODUCTS.EXAMPLE.COM is the
intermediate realm. This process is complicated,
though, by the presence of short-cut trust relation-
ships, such as when realms that aren’t adjacent in the
naming tree directly trust each other. In this example,
the EXAMPLE.COM realm may have a direct trust
relationship to DEV.PRODUCTS.EXAMPLE.COM.
In this case, for clients to determine the authentica-
tion path, they would need to know about all short-cut

COERCD
ICD, @

CPROD

Figure 1: Sample Kerberos Crossrealm Trust Graph: A Line Between Two Vertices of the Graph Indicates a
Shared Secret Key Trust Relationship Between the Corresponding Realms

trust relationships. If the KDC is responsible for de-
termining the path, then only the KDC’s need to be
aware of these trusts.

The MIT implementation of Kerberos depends on
the client to perform all three functions: name canon-
icalization, realm determination, and trust path de-
termination. When the MIT Kerberos client creates a
TGS request message to send to the KDC (in order to
obtain a service ticket) it determines the realm of the
server principal by looking in a configuration file. If
an organization’s realm structure changes, the config-
uration file on all MIT Kerberos clients must be man-
ually updated. Therefore, the current MIT Kerberos
client is not scaleable in an environment with multiple
realms where the realm hierarchy is dynamic.

2.1 Name Terminology

Here we briefly review some terminology on names
given a hypothetical host that is running a Ker-
beros service. The host has a canonical (FQDN)
DNS name: host.example.org. The host may also
have an alias DNS name: service.example.org. In
this case, the host is running a Kerberized service
with the service identifier ”service”. Thus the canon-
ical Kerberos principal name for the service is ser-
vice/host.example.org. The alias Kerberos principal
name is service/service.example.org.

3 Two Approaches to the Kerberos
Server Principal Name Realm Res-
olution Problem

The Windows 2000 implementation of Kerberos at-
tempts to address this scalability problem by central-

izing realm information at the KDC. In this case, all
three operations (name canonicalization, realm deter-
mination, and trust path determination) are all per-
formed at the KDC rather than the client. This pro-
tocol change eliminates the scalability issues present
in the MIT Kerberos implementation. The crossrealm
referral feature also reduces ongoing support costs, be-
cause it reduces the dependence on a direct mapping
from DNS domains to Kerberos realms. The proto-
col extension works by allowing a client to request a
ticket to any service, in any realm, from its KDC. If
the service is not in the same realm as the client, then
the KDC will return a referral, which consists of a
ticket to the next realm on the trust path and a data
field containing the name of the realm containing the
service. The client may then, at the next realm, ask
for a ticket to the destination realm. In this case, the
KDC will again return a ticket to the next realm on
the trust path, but omits the destination realm infor-
mation. The client repeats this process until it reaches
the destination realm, where it may request a ticket
to the service again.

In order to better understand the standard MIT
client as well as the crossrealm referral feature, we
present an example.

Figure 2 shows the case with three realms:
LOC.EXAMPLE.COM, REM.EXAMPLE.COM, and
EXAMPLE.COM:

Here realm LOC.EXAMPLE.COM has a bidi-
rectional trust relationship with EXAMPLE.COM,
and REM.EXAMPLE.COM has a bidirectional
trust relationship with EXAMPLE.COM. Suppose

LOC.EXAMPLE.COM

REM.EXAMPLE.COM

Figure 2: Simple Kerberos Realm Trust Tree

bob@QLOC.EXAMPLE.COM desires to contact the
server srv.r.example.com. In the MIT client case, it
looks in the client configuration file. Typically, there
would be an entry for r.example.com:

r.example.com REM.EXAMPLE.COM

The r.example.com entry indicates that the DNS
domain r.example.com maps to the Kerberos realm
REM.EXAMPLE.COM. Thus, srv.r.example.com is a
Kerberos princi-
pal in the realm REM.EXAMPLE.COM. The client
will obtain crossrealm tickets for EXAMPLE.COM,
and REM.EXAMPLE.COM, by using its knowledge
of the realm trust tree. It will then obtain a service
ticket for the server srv.r.example.com (see Figure 3).

The new crossrealm extension operates as fol-
lows: bob@QLOC.EXAMPLE.COM desires to con-
tact the server srv.r.example.com. Bob’s Kerberos
client will send a TGS request message to the
KDC in LOC.EXAMPLE.COM. The request will
have the name canonicalize bit set in the KDC op-
tions field. Upon seeing the bit, the KDC will at-
tempt to determine the realm for the server name
(srv.r.example.com) in the request.

This information could be obtained from a direc-
tory lookup, or a MIT-style configuration file. If suc-
cessful, the TGS reply will contain a padata field
with the realm of the service. In addition, the re-
ply contains a crossrealm ticket targetted at the next
hop (EXAMPLE.COM domain in this case). Bob’s
client simply sends the next TGS request to EXAM-
PLE.COM and requests a crossrealm ticket for the

referral realm. Ultimately, Bob’s client obtains this
ticket (from REM.EXAMPLE.COM in the next TGS
reply in this case). Bob’s client then requests and ob-
tains a service ticket for srv.r.foo.com.

In summary, the major difference between the two
approaches is that standard Kerberos obtains the
realm information from a configuration file and the
Windows 2000 approach obtains it from the KDC. The
Windows 2000 Kerberos client has less intelligence and
simply follows the referrals from the Kerberos KDC,
whereas the MIT client knows which realm is the next
hop in the realm trust graph. A benefit that the cross-
realm referral feature provides is reduced product sup-
port costs. Since the configuration is created auto-
matically during the creation of the Kerberos realm
hierarchy, there is a reduced opportunity for adminis-
trator error.

4 Referral Protocol Specification

This section presents a detailed specification of the
crossrealm referral protocol used in Windows 2000.
The details are derived from [1] and are extensions to
the core Kerberos protocol, which is described in RFC
1510 [2]. The changes fall into three categories: exten-
sions of flag fields, extensions to the KDC reply mes-
sage, and new data types to hold referral information.
The extensions to the flag field are being incorporated
into RFC1510bis [3].

The Windows 2000 referral protocol requires an ad-
dition to the set of options the KDC recognizes, which
are defined by the KDCOptions type. The new flag,
name-canonicalize, is used by a client to request that
the KDC attempt to look the service name up in other
realms in addition to the KDC’s own realm. This flag

EXAMPLE.COM
KDC

LOC.EXAMPLE.COM
KDC
2
REM.EXAMPLE.COM
KDC
3
bob@L OC.FOO.COM
client
4 SRV.R.EXAMPLE.COM

application server

1. TGS exchange with local KDC

2. TGS exchange with EXAMPLE.COM KDC

3. TGS exchange with REM.EXAMPLE.COM KDC
4. AP exchange with SRV.R.EXAMPLE.COM server

Figure 3: Obtaining a Crossrealm Service Ticket

is sent in the kdc-options field of the TGS request
message:

KDCOptions ::=
reserved(0),
forwardable(1),
forwarded(2),
proxiable(3),
proxy (4),
allow-postdate(5),
postdated(6),
name-canonicalize(15),
renewable-ok(27),
enc-tkt-in-skey(28),
renew (30),
validate(31)

}

BIT STRING {

If the client sets the name-canonicalize bit, the
KDC will attempt to first lookup the server principal
name in its own realm database. If the lookup is suc-
cessful, the KDC will issue a service ticket using the
same steps as in the case where the name-canonicalize
bit is not set. If the lookup is not successful, the server
principal name may belong to a different realm. The
KDC will attempt to determine the correct realm (the
KDC may look in a configuration file, or use a direc-
tory lookup, or use some other method). If the KDC
determines the realm, then the realm name will be re-
turned in the encrypted-pa-data field that is the last
field in the encrypted part of the TGS reply message:

EncKDCRepPart ::= SEQUENCE {
key[0] EncryptionKey,
last-req[1] LastReq,
nonce[2] INTEGER,
key-expiration[3] KerberosTime
OPTIONAL,
flags([4] TicketFlags,
authtime[5] KerberosTime,
starttime[6] KerberosTime
OPTIONAL,
endtime[7] KerberosTime,
renew-till[8] KerberosTime
OPTIONAL,
srealm[9] Realm,
sname [10] PrincipalName,
caddr[11] HostAddresses
OPTIONAL,

encrypted-pa-data[12] SEQUENCE OF
PA-DATA OPTIONAL

The data itself is an ASN.1 encoded structure con-
taining the server’s realm, and optionally, the canoni-
cal server principal name. The preauthentication data
type is KRB5-PADATA-SERVER-REFERRAL-INFO
(20) from [1].

KERB-PA-SERV-REFERRAL ::= SEQUENCE {
referred-server-realm[0] Realm,
referred-server-name[1] PrincipalName,

OPTIONAL

The client can use the referred-server-name field to
see if it already has a ticket targetted at the server
in its ticket cache. If so, it will not have to follow a
sequence of crossrealm referrals from the KDC.

If the name-canonicalize bit in the TGS request is
not set, then the KDC will only look up the name
as a principal name in the request realm. Otherwise,
the KDC must also check to see if the supplied service
name is an alias for the canonical service name. The
server principal name in both the ticket and the KDC
reply must be the canonical server principal name in-
stead of one of the aliases. This approach frees the
application server from needing to know about aliases
or from having to translate them into canonical names
as is done in MIT Kerberos.

The client, by setting the name-canonicalize bit, in-
dicates its willingness to receive a ticket for a principal
other than the one in its TGS request message. For
example, it may receive a crossrealm ticket granting
ticket (TGT) to the next hop realm on the realm trust
path towards the destination realm that contains the
server principal name in the client’s original request.
This behaviour requires a change to the MIT Ker-
beros client, which normally rejects a TGS reply with
a ticket targetted at a principal that was not the orig-
inal principal in its TGS request.

The Windows 2000 KDC performs additional steps
when aliases are used to ensure interoperability be-
tween MIT Kerberos and Windows 2000, which in-
troduced new naming formats. In particular, a client
may request a ticket to an alias for a service without
setting the name-canonicalize bit. In this situation
the KDC reply uses the alias rather than the canon-
ical name in order to let MIT clients, which expect
the reply to include the same name as the request, to
function properly. The ticket, however, includes the
canonical name for the service. A request with the
name-canonicalize bit set, though, always returns the
canonical server name.

This referral protocol allows a client to perform
crossrealm authentication without knowing anything

other than the name of the realm that it belongs to.
In addition, the protocol allows a host with multiple
names to let services use all those names, rather than
relying on either separate accounts for each hostname
or a separate name canonicalization step at the client.

5 Comparison of the Two Approaches

We compare the MIT Kerberos crossrealm ap-
proach with the Windows 2000 crossrealm referral ap-
proach in the areas of security, ease of administration,
and performance.

5.1 Security

The protocol change has two impacts on security:
first, the client code is simpler, and therefore eas-
ier to verify. Second, the client does not need to
trust DNS to perform reverse lookups to canonical-
ize names, which removes the need to trust the ser-
vice. Our implementation of the crossrealm referral
algorithm in the MIT client resulted in 150 fewer lines
of code after removing the MIT Kerberos client cross-
realm algorithm. The resulting client is simpler and
it would therefore be easier to analyze the security of
the new client. (Conversely, a KDC that implements
the referral crossrealm algorithm is likely to have ad-
ditional lines of code versus a KDC that implements
the MIT Kerberos crossrealm algorithm).

Since the Windows 2000 KDC is doing the name
canonicalization instead of the client, DNS reverse
lookups are no longer necessary on the client. Thus the
client does not have to trust the DNS and the network
that DNS queries and responses travel over in order
to be assured of mutual authentication. The Windows
2000 Kerberos approach to name canonicalization has
a security advantage over the MIT Kerberos approach.
The MIT Kerberos approach could be secured using
DNSSEC [9], but DNSSEC is unlikely to be widely
deployed in the near future.

5.2 Ease of Administration

The Windows 2000 crossrealm referral algorithm
requires no configuration data on the client except
the client workstation’s realm name. Therefore, up-
dates to the realm hierarchy require no updates to
client configurations. Although an automatic update
mechanism could be implemented on a per platform
basis, such a mechanism does not exist for many plat-
forms currently. This mechanism would also decrease
performance by significantly adding to network traf-
fic. The Windows 2000 crossrealm algorithm has a
major advantage in the case where the realm hierar-
chy is not static. In order for name canonicalization
to work properly, the KDC database principal entries
must contain the additional principal alias names.

5.3 Performance

The MIT Kerberos crossrealm algorithm has an ad-
vantage with respect to performance since it more fully
utilizes the Kerberos ticket cache.

The MIT Kerberos client more effectively utilizes
the ticket cache since the MIT Kerberos client canon-
icalizes the name so there is only one name to look for
in the ticket cache when searching for cached service
tickets. There are two situations where these requests
are not needed for MIT Kerberos clients. First, when
the client has an existing ticket to the service using a
different alias, it need not contact the KDC to learn
that both aliases refer to the same principal. (But it
would need to contact the DNS to canonicalize the
alias into the canonical name that is in the cached
ticket, and if DNSSEC is being used, then some of
the performance difference is negated). However, this
makes it difficult for the aliases to later be separated
and assigned individual accounts, such as when a sin-
gle process hosts multiple services and those services
are then split into separate processes. The Windows
2000 implementation of Kerberos also suffers because
it only caches a single alias for a service, so that if
multiple aliases are regularly used then the cache will
suffer from conflict misses, as each time a different
alias is used the old ticket will be evicted.

We propose that referral data be returned in the
following ticket extension:

TE-REFERRAL-DATA ::= SEQUENCE {
ReferralRealm Realm,
ReferralNames SEQUENCE OF

PrincipalNames
OPTIONAL

The sequence of principal names can include the
aliases which allows the ticket cache to be more effec-
tively utilized when referrals are being used.

The second inefficiency of the referral protocol oc-
curs when the client already has a ticket to the realm
of a service. The MIT Kerberos client does not need
to contact a KDC to learn which realm that is (but
it does need to contact the DNS). Similarly, if a MIT
client has tickets cached for a portion of the trusted
realm path, it can use those tickets rather than asking
the KDC to provide a referral. The Windows 2000
protocol allows the client to bypass the trust path if
it already has a ticket to the realm of the service, but
this is only significant if the path is long. This per-
formance difference is most noticeable when a client is
looking up many different services in the same realm,
and that realm is directly trusted by the client’s realm.

6 Client Referral
Pseudocode Algorithm
We give the high level algorithm that we have im-
plemented and successfully tested in the MIT Ker-
beros 1.1 client. The general algorithm is to ini-
tially request a ticket to the service in the client’s own
realm. If a service ticket is not returned, then loop and
request tickets to krbtgt/referral realm where refer-
ral_realm is the returned referral realm. When a ticket
to krbtgt/referral realm is obtained, then request a
ticket to the service from a referral realm KDC. This
algorithm works since referral realm is the destination
realm, so each intermediate KDC can avoid the over-
head of translating the name again.

Handling

start TGS_REQR creation;
orig_sname = req.sname;

set name canon bit;

send TGS_REQ;

receive and decode TGS_REP;

grab referral_realm, if present;
next_must_be_serv_tkt = FALSE;
DONE = FALSE;

while (!DONE) {
if ((received message is a TGS_REP) &&
(reply.sname is not of the form
krbtgt/realm for some realm)) {
we have service ticket;
DONE = TRUE;
}
else if (reply.sname == ’krbtgt/realm’) {
if (next_must_be_serv_tkt == TRUE)
go to error;
target_realm = realm;
if (target_realm == referral_realm) {
next_must_be_serv_tkt = TRUE;
create and send new TGS_REQ to
target_realm without bit 15 using the
ticket we just got back from the KDC
using the original service name in the
request.sname;
receive and decode TGS_REP message and
update reply.sname;
}
else {
create and send new TGS_REQ to
target_realm without bit 15 using the
ticket we just got back from the KDC
using the name ’krbtgt/referral_realm’
in the request.sname field of the
TGS_REQ;
receive and decode TGS_REP message and

update reply.sname;
}
}
else if (received msg type == KRB_ERROR)
go to krb-error;
else
go to error;

} // end while loop

The preceding pseudocode has the following issue
with reuse of tickets in the ticket cache. If a client ap-
plication obtains a service ticket, the server principal
name in the ticket will be the canonical name for the
principal. If the client application is using an alias to
identify the server principal, the client Kerberos code
will not see that the desired service ticket is already in
the ticket cache when it goes to re-establish a new con-
text with the application server. The client Kerberos
code then obtains a new service ticket even though
it could use the existing service ticket in the ticket
cache. For example, suppose the client is using the
alias ldap/ldap.example.org while the canonical name
for the server is ldap/foo.example.org.

To improve ticket cache utilization, our Kerberos
client makes an initial TGS request to the local realm
without the name-canonicalize bit set. If the server
principal not found error is returned by the KDC,
the client submits a new request with the name-
canonicalize bit set. Thus a client that obtains a ser-
vice ticket with an alias name will be able to reuse
that ticket from the ticket cache with the same alias
name; the cost of this approach is one extra exchange
with the KDC when initially obtaining a service ticket
for services that are located outside the local realm.

A more optimal solution is to always set the name-
canonicalize bit on the initial TGS request and add the
alias name into the ticket cache data that is associated
with the obtained service ticket. Subsequent matches
when searching the ticket cache are made against the
full set of names that are associated with the service
ticket. This approach is used in Windows 2000. A
more general discussion of this problem is in section 5.

7 Naming Issues

Here we discuss naming issues that are applicable
beyond the Kerberos authentication system. Short
names are the names users sometimes input to iden-
tify servers. For example, ”telnet foo” could be short
for "telnet foo.example.org”. The client is then left
with two options: send the short name to the KDC,
or perform a limited amount of name canonicaliza-
tion locally. The MIT Kerberos approach to name-

canonicalization solves the problem of obtaining the
long name by using DNS reverse lookups. Unfortu-
nately, this approach depends on the security of DNS.
The Windows 2000 client does not canonicalize names
at all, so the short name is sent to the KDC. (In the
Windows 2000 case, this design decision was driven
by the desire for backwards compatibility with Net-
bios which has a flat namespace of hostnames, thus
increasing the chances that short names are unique.)
The problem with not canonicalizing a short name is
that it may end up being sent in a crossrealm referral
request to a KDC in another realm. This may result in
interoperability problems with existing KDC’s; in ad-
dition, short names do not have enough information to
allow remote realms to properly determine the appro-
priate realm to forward the request to. If DNS is used
to obtain a long name for A RR lookup purposes, then
it makes sense for a client to resolve the short name
into a long name using its DNS resolver. This resolu-
tion is at most vulnerable to denial of service attacks
if the short name is unique among the domains in the
DNS completion search list on the client host. This
approach makes sense when an authentication mecha-
nism that uses X.509 certificates [10] is used, since the
certificates can contain multiple names in the altSub-
jectName field, but the certificates will not contain
short names.

In short, we argue that the optimal approach is in
between the MIT Kerberos client and the Windows
2000 client (but closer to the Windows 2000 client)
where the client does canonicalize short names into
long names, but all other name canonicalization is left
to the KDC. This canonicalization of short names ap-
plies to any authentication protocol that takes input
names from users.

We make some brief remarks on name canonical-
ization of short names. Some resolvers may not re-
turn the name on the DNS completion search list that
corresponds to the returned A RR. The following al-
gorithm can be used to overcome this obstacle: the
client should take each name on the DNS search list
and append it to the input name and terminate it with
a ”.”. This name should then be inputted into the re-
solver lookup call. When the function call returns an
IP address, the client has obtained the corresponding
long name.

8 Conclusions

We have presented the Windows 2000 crossrealm
referral mechanism and compared it to the MIT Ker-
beros crossrealm approach. Overall, when both the
name canonicalization and referral resolution prob-
lems are considered, the Windows 2000 approach has

significant advantages with respect to both security
and ease of administration. The MIT Kerberos client’s
better ticket cache utilization when alias names are
used, combined with its knowledge of the realm hier-
archy can be used to reduce the number of exchanges
with the KDC in some cases. The performance advan-
tage can be offset to some extent by having the KDC
return a list of alias principal names in the referral
data, as described in section 5.

Further work should build upon the Windows 2000
approach to improve its use of the ticket cache, pos-
sibly using additional returned names as described
above. An alternative approach is to move Kerberos
client configuration data into the DNS (as in [11]) and
use DNSSEC [9]. In this approach, clients obtain the
realm for a server principal name from a DNS TEXT
resource record. This alternative approach solves the
management problem, but the main issue is depen-
dence on DNSSEC [9] which is unlikely to be widely
deployed in the near future. It does not appear that
the alternative approach has any performance or se-
curity advantages over the recommended approach.

Additionally, we have presented the specification
and design for integration of the crossrealm referral
algorithm into the MIT Kerberos client.

9 Acknowledgements

Thanks to John Brezak for information on the Win-
dows 2000 referral implementation. There was also a
discussion of these topics on the IETF CAT Working
Group mailing list; we wish to thank Paul Leach and
other participants for their contributions.

References

[1] M. Swift, ”Generating KDC Referrals to Lo-
cate Kerberos Realms”, Internet draft (work in
progress), draft-swift-win2k-krb-referrals-00.txt,
October 1999.

[2] J. Kohl, C. Neuman, ”"The Kerberos Network Au-
thentication Service (V5),” RFC 1510, September
1993.

[3] C. Neuman, J. Kohl, T. Ts’o, "The Kerberos
Network Authentication Service (V5),” Internet
draft (work in progress), draft-ietf-cat-kerberos-
revisions-06.txt, July 2000.

[4] B. C. Neuman, T. T’so, “An Authentication Ser-
vice For Computer Networks,” IEEE Communica-
tions Magazine, Vol. 32(9), pp. 33-38, September
1994.

[5] R. M. Needham, and M. D. Schroeder, ”Using
Encryption for Authentication in Large Networks

of Computers,” Communications of the ACM.
21(12):993-999, December 1978.

[6] J. G. Steiner, B. C. Neuman, J. I. Schiller, “Ker-
beros: An Authentication Service for Open Net-
work Systems,” pp. 191-202 in USENIX Confer-
ence Proceedings, Dallas, Texas (February 1988).

[7] M. Hur, B. Tung, T. Ryutov, C. Neuman, G.
Tsudik, A. Medvinsky, B. Sommerfeld, ”Pub-
lic Key Cryptography for Crossrealm Authen-
tication in Kerberos,” Internet draft (work in
progress), draft-ietf-cat-kerberos-pk-cross-06.txt,
October 1999.

[8] P. Mockapetris, "Domain Names - Concepts and
Facilities,” RFC 1034, November 1987.

[9] D. Eastlake, ”Domain Name System Security Ex-
tensions,” RFC 2535, March 1999.

[10] R. Housley, W. Ford, W. Polk, D. Solo, ”Internet
X.509 Public Key Infrastructure Certificate and
CRL Profile,” RFC 2459, January 1999.

[11] K. Hornstein, J. Altman, ”Distributing Kerberos
KDC and Realm Information with DNS,”
Internet draft (work in progress), draft-ietf-cat-
krb-dns-locate-02.txt, March, 2000.

A Data Structures and Code Modules
for Referral Handling in the MIT
Kerberos Code Base

A new data type is introduced for the service refer-
ral data returned by the KDC:

typedef struct _krb5_serv_referral {
krb5_magic magic;
krb5_principal referred_server_name;
/* includes realm */
} krbb5_serv_referral;

A new flag is defined to be set when obtaining re-
ferral data:

#define KDC_OPT_NAME_CANONICALIZE 0x00010000

A new return code for krb5_get_cred_via_tkt_ext()
is introduced, to indicate that the referral data along
with crossrealm TGT are returned:

#define KRB5_GOT_REFERRAL_TGT 1

A new type of pre-authentication data is introduced
to denote that PADATA contains a service referral:

#define KRB5_PADATA_SERVER_REFERRAL_INFO 20

A new member is added to the
krb5_enc kdc_rep_part data structure to denote the
PADATA containing the service referral, which is be-
ing sent back by the KDC at the end of the encrypted
part of KDC reply:

krb5_pa_data FAR * FAR *padata;
// preauthentication referral data from KDC

A.1 System Flow

In the MIT kerberos client, the func-
tion krb5_get_cred_from kdc() is used to get a ticket
from the KDC. When the client needs to obtain a ser-
vice ticket, the function krb5_get_cred_from kdc() is
first called in attempt the get the service ticket from
the default realm. This is the original Kerberos func-
tion for obtaining the service, except it will not ” walk”
the realm tree and try to obtain TGT’s from different
realms because the configuration file doesn’t specify
any additional realms.

If the service is not on the default realm,
krb5_get_cred_from kdc() will fail. In this case the ex-
tended version, krb5_get_cred_from_kdc_ext() is called
to obtain a service ticket by setting the name-
canonicalize bit and following crossrealm referrals as
described in the preceding section.

In the crossrealm case, the ticket cache is checked
to see if a crossrealm ticket targetted at the referral
realm is in the cache. If so, this ticket is used in a
TGS request to the realm of the destination service
in order to obtain a service ticket. DNS lookups to
obtain DNS SRV resource records for KDC’s are used
to find the address of a KDC for a specific realm. All
the intermediate TGT’s are cached.

