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Abstract

Address harvesting is the act of searching a compro-
mised host for the names and addresses of other targets to
attack, such as occurs when an email virus locates target
addresses from users’ address lists or mail archives. We
examine how host addresses harvested from Secure Shell
(SSH) clients’ known hosts files can aid those attack-
ing SSH servers. Each user’s known hosts file contains
the names of every host previously accessed by its owner.
Thus, when an attacker compromises a user’s password or
identity key, the known hosts file can be used to iden-
tify those hosts on a network that are most likely to accept
this compromised credential. Such attacks are not theoret-
ical – a single attacker who targeted host authentication
via SSH and employed known hosts address harvesting
was able to gain access to a multitude of academic, com-
mercial, and government systems. To show the value of
known hosts files to such attackers, we present results
of a study of known hosts files and other data collected
from 173 hosts distributed over 25 top level domains. We
also collected data on users’ credential management prac-
tices, and discovered that 61.7% of the identity keys we
encountered were stored unencrypted. To show how host
authentication attacks via SSH could evolve if automated,
we survey mechanisms used to attack and their suitability
for use in self-propagating code. Finally, we present coun-
termeasures devised to defend against address harvesting,
which have been adopted by the OpenSSH team and one of
the two main commercial SSH software vendors.

1 Introduction

The SSH protocol has done much to popularize the use
of cryptography for remote command execution, file trans-
fer, and other services. However, cryptographic channels
alone are not enough to ensure these services will only be
accessed by their intended users and for the purposes they
authorize.

In 2004, weaknesses in the host authentication prac-
tices employed by SSH were exploited by a single at-
tacker to compromise systems at a multitude of major uni-
versities, corporations, national laboratories, supercomput-
ing centers, and even military installations [8, 17, 33, 22],
with significant consequences. Operating system source
code used to control routers was stolen from Cisco Sys-
tems [13]. Other sites had to be taken offline for multi-
ple days [17, 8, 33]. Logs at one of the compromised sites
showed SSH connections to hosts in the known hosts file
being initiated immediately after that file was read by the at-
tacker [8].
Attackers are drawn to known hosts files, maintained

by the SSH client for each user, because it provides an abun-
dant harvest of names and addresses of new target hosts to
attack. Each file contains a list of every host previously
contacted via SSH by the user, for the purpose of mapping
these hosts to their public keys. Hosts are listed in the or-
der in which they were first contacted, such that the bottom
of the list contains the hosts at which the user’s access cre-
dentials are most likely to remain valid. Such reliable target
lists reduce both the time required to find vulnerable hosts
and the likelihood that attacks will raise alarms due to failed
TCP connection attempts or SSH authentication attempts.
To better understand the consequences of attacks that

harvest addresses from SSH, we have initiated the first
multi-institution study on SSH known hosts relation-
ships and key management, collecting data from 2,477 user
accounts on 173 hosts. We use the data from this study, pre-
sented in Section 2, to explain how these known hosts
files have enabled attackers to repeatedly compromise host
after host, and network after network. We show that a small
number of promiscuous users are responsible for the major-
ity of known hosts entries, and that there exists a set of
gateway hosts that contribute significantly to the vulnerabil-
ity of the network.
In Section 3 we discuss the countermeasures that can be

used to safeguard against address harvesting and the trade-
offs they require. In Section 4 we describe an additional
enhancement to OpenSSH that we implemented to make it
easier for users of gateway hosts to avoid risky practices that
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conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government.



host information
OS name and version
SSH client vendor and version
IP address*
Netmask

user identification
Username**
IP address* of host exporting user’s home dir

known hosts file for each user
IP address* of each destination host

authorized keys file for each user
Public identity keys**

identity key files for each user
Public identity keys**
Flag: set if matching private key is encrypted
SSH key version

Table 1. The contents of the report gener-
ated by collect-ssh.pl, organized by data
source

expose authentication credentials to abuse.
In anticipation of more sophisticated attacks, we exam-

ine mechanisms used to attack host authentication via SSH
for their applicability to self propagating malware in Sec-
tion 5. As we could find no past survey of mechanisms for
impersonating users to authenticate to hosts via SSH, we
provide such a survey in Appendix A.
Related work and related threats are discussed in Sec-

tion 6. We conclude in Section 7 and discuss industry adop-
tion of our proposed countermeasures in the epilog that fol-
lows.

2 Quantifying Harvestable Data

To better understand how attacks can spread via SSH,
we have undertaken a multi-institution effort to collect data
from users’ known hosts database entries and their over-
all SSH configuration. We made available a data collection
and reporting script, written in Perl, that could be run on
each host either by individual users to collect data from their
own account or by system administrators to collect data
from all user accounts. The data collection and reporting
script is publicly available at http://nms.csail.mit.
edu/projects/ssh/.

Hosts Hosts
TLD root all TLD root all
.edu 12 73 .net 8 22
.com 10 17 .org 2 7
.de 4 5 .it 2 4
.uk 3 3 .kr 1 3
.pl 2 3 .ca 0 3
.fi 2 3 .dk 1 2
.nl 2 2 .be 1 2
.pt 1 1 .cl 1 1
.ph 1 1 .biz 1 1
.nu 1 1 .cx 1 1
.au 1 1 .ee 1 1
.gov 0 1 .se 0 1
.sk 1 1

Table 2. Root submitting hosts and all sub-
mitting hosts grouped by top level domain
(excludes hosts with undefined PTR records)

2.1 Collection methodology

The categories of information examined by our data col-
lection and reporting script are summarized in Table 1.

All IP addresses collected, marked with a star (*) in Ta-
ble 1, have been anonymized using the prefix preserving
permutation algorithm of Xu et al. [31]. The prefix preserv-
ing property of the permutation ensures that two addresses
within the same network before anonymization will fall into
the network after anonymization. The public keys and user-
names reported by our script, marked with two stars (**) in
Table 1, are replaced by their SHA1 [15] hashes.

When our data collection script runs on a submitting host
it queries the host’s IP address and includes the anonymized
address in its report. We call this the submitter-view IP ad-
dress. When we receive the submitted report over a TCP
connection, we collect the source IP address of the connec-
tion as our data collection server observed it and refer to
the anonymized form of this address the recipient-view IP
address. Submitter-view IP addresses allow us to differen-
tiate two hosts behind a network address translation (NAT)
box that may appear to our data collection server, which re-
ceives the submissions, to originate from the same address.
The recipient-view IP addresses are needed to differentiate
hosts behind two different NATs that may have the same
submitter-view IP address, but are actually on different net-
works.

http://nms.csail.mit.edu/projects/ssh/
http://nms.csail.mit.edu/projects/ssh/
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Figure 1. The distribution of bit-wise
network distances between each unique
known hosts source/destination address
pair, where the source is the host from which
the known hosts file containing the destina-
tion address was read.

2.2 Demographics

At the time of writing we have received data from 173
distinct hosts, which we refer to as submitting hosts. These
hosts contain 2,477 user accounts with known hosts
files, which in turn contain a total of 37,765 known hosts
entries to 12,035 unique destination addresses. Of those
2,477 users, 2,359 were submitted by the 63 root submit-
ting hosts, those submitting hosts on which the collection
script was run as root and on which data were submitted
from all users. For the remaining 110 submitting hosts, we
received a total of 118 individual user submissions with at
most two user submissions per host.
Our study drew its participants from various locations.

Table 2 shows the distribution of submitting hosts across 25
top level domains. We infer the top level domain of a sub-
mitting host using a reverse DNS lookup of the recipient-
view IP address before the address is anonymized.

2.3 The Reach of known hosts Entries

If an adversary gains access to one or more
known hosts files, where are the entries likely to
lead? To answer this question we measured the bit-wise
network distance between each source host and every
unique destination address in its known hosts files.1
The bit-wise network distance between two addresses a1

and a2 is the number of bits that follows their longest
common prefix. Figure 1 shows the cumulative fraction

1When the submitter-view of the source address differed from the
recipient-view (see definitions in Section 2.1), we measured the distance
from the source address that was closer to the destination address.
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Figure 2. The complementary cumulative dis-
tribution function of unique known hosts
destinations of each distance category per
user (a) and per root submitting host (b).

of all unique known hosts source/destination pairs
that fall within a given bit-wise network distance of each
other. To illustrate that known hosts destinations are
locally biased, we placed a reference line representing the
distribution of distances for address pairs chosen randomly
from the uniform distribution (half of destinations would
have a different high order bit and a distance of 32, one
quarter a distance of 31, and so on.)
We segregated known hosts destination addresses

into three categories based on the bit-wise network distance
from their source host. The roughly 60% of destinations
found to be within the same /16 (Class B) as their source
were categorized as close to that source. About 30% were
in a different /8 than their source and were categorized as
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Figure 3. This figure shows the smallest
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files (X axis) needed to identify a given
percentage of the unique destinations ob-
served in our study (Y axis).

 1

 10

 100

 1000

 10000

 1  10  100  1000

#
 o

f 
u
n
iq

u
e
 k

n
o
w

n
_
h
o
s
ts

 d
e
s
ti
n
a
ti
o
n
s

# of user accounts

Figure 4. The relationship between the
number of users with known hosts files
and the number of unique destinations
over the set of root submitting hosts.

distant. The roughly 10% that remained, which fell within
the same /8 as their source but not within the same /16, were
categorized as intermediate.
We then asked, how many known hosts destinations

of each category could an adversary expect to discover on a
host if he compromised one account or all of its accounts?
Figure 2(a) shows the distribution of unique des-

tination addresses of each distance category over the
known hosts files collected. Nearly half of all users’
known hosts files contained entries to one or more dis-
tant destinations (49%) and four or more close destinations
(47%). Over 10% of all users had more than ten distant
known hosts destinations and eighteen or more close
destinations.
We show in Figure 2(b) the distribution of unique

known hosts destinations over the set of root submit-
ting host. Unlike the distribution of unique destinations
per user, there are more unique distant destinations per root
submitting host than unique close destinations, as different
users on the same host tend to connect to the same nearby
hosts but different distant hosts. Half of all hosts contain
known hosts entries to fourteen or more distant destina-
tions, and more than one quarter contain entries to over forty
distant destinations.
Returning to our original question of where

known hosts entries lead, the data show that an
adversary can not only identify nearby hosts but also
those on distant networks. In fact, the known hosts
entries from the 173 submitting hosts collectively contain
destinations to 107 different /8 (class A) prefixes, or 67%
of all valid /8 networks.2

2The 160 valid class A networks are those that exclude two private /8

2.4 Evidence of Promiscuous Users and Gateway
Hosts

The median-based analysis above de-emphaized the
heavy-tail of the distribution that contains the ‘promis-
cuous’ users and hosts that contributed the most
known hosts entries. From Figure 3 we observe the
5% of users that were most promiscuous collectively had
known hosts entries to over 75% of the unique destina-
tion addresses collected in our study.

Figure 4 shows the expected correlation between the
number of users with known hosts files per root sub-
mitting host and the number of known hosts entries per
root submitting host. In the upper right-hand corner there
are four hosts with more than 100 users and 1, 000 unique
known hosts destinations. We infer from the plethora
of users accounts that these hosts act as gateways – hosts
to which users connect via an incoming connection to the
SSH server and then initiate outgoing connections via the
SSH client. When users initiate outgoing connections via
the gateway host’s client, either the user’s credentials must
be sent to the client or a connection must be forwarded to the
user’s signing agent on the client. Should an adversary con-
trol a gateway host when a user initiates an outgoing con-
nection, the adversary will either be able to steal the user’s
credentials or request that agent to sign on his behalf.

networks and 94 unallocated /8 networks, as documented by the Internet
Assigned Numbers Authority [9, 10]
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Figure 5. Submitting hosts within one network that are reachable in 1 (a), 2 (b), and 3 (c) steps from
a source host by traversing known hosts edges.

2.5 The Impact of known hosts Harvesting on
Remote Exploit Attacks

How much more quickly can an attacker identify a new
target by using address harvesting than by using alternatives
such as scanning? The answer depends on whether the at-
tacker is looking for any host running an SSH server or only
those hosts that accept one of the credentials that he has ac-
quired. In this section, we focus on the former case, and
assume that an attacker can break into most SSH servers by
using a software or protocol exploit. We address the latter
case in the following section.
Figure 5 illustrates how, given a remote exploit in an

SSH server, an attacker starting from a single host could
use known hosts entries to rapidly walk through an in-
stitutional network from our study. Figure 5(a) shows the
origin host and the submitting hosts that are destinations of
its known hosts entries. The submitting hosts that are
destinations of these hosts are added in Figure 5(b). A third
step yields the collection of submitting hosts in Figure 5(c).
To simplify these graphs, the large set of destinations that
are not submitting hosts or not within the same network are
not shown.
To better quantify the rate of propagation, we computed,

for each of the 173 submitting hosts, the number of addi-
tional target hosts that are reachable in a given number of
steps. Figure 6 shows the median number of reachable hosts
at each step. Over a hundred nodes are reachable in the sec-
ond step and thousands in the third. The propagation then
diminishes as we reach the limits of the data collected in our
study.
To put address harvesting in context, we looked at the

alternative of scanning for SSH servers. We used data from
the 2001 study of Provos and Honeyman [18], who found
that /8 networks with the densest population of responding

SSH servers would respond to between 1% and just over
1.5% of scans. Within a densely populated academic net-
work, they found that more than 10% responded to SSH
scans. Randomly scanning the full IPv4 address space, they
found the success rate was closer to 0.05%.
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Figure 6. The median number of hosts that
can be reached from an origin host by travers-
ing all known hosts edges.

In summary, a valid known hosts entry can replace
10 to 2, 000 scans, depending on whether the attacker has
already identified a densely populated network or if he is
scanning randomly. Whereas known hosts entries can
be used to reach 2000 hosts in just three propagation cy-
cles, hundreds of thousands to millions of scans would be
required to reach this many hosts once nearby targets had
been exhausted. As even a 20% connection success rate is
low enough to indicate malicious behavior [19], forcing at-
tackers to scan can be an effective means of making attacks
detectable while simultaneously slowing them down.



2.6 The Effect of known hosts on Speed of Cre-
dential Management Attacks

Attackers have used password cracking attacks and pass-
words collected via trojaned SSH clients to attack SSH
servers without exploiting any flaws in the software itself.
They could also easily modify these tools to crack the pass
phrases of encrypted identity keys. For attacks that em-
ploy compromised credentials, the attacker must identify
specific SSH servers that accept these credentials. As
the attacker may discover and connect to SSH servers at
which the credentials he has appropriated are not accepted,
the connection success rate will be lower when measured as
a fraction connections that result in successfully authenti-
cated connections than those that simply complete the TCP
handshake. We thus recommend that systems built to detect
scans be instrumented to observe the result of the authenti-
cation process for SSH connections.
Finding distant hosts that accept a given set of creden-

tials requires vary large numbers of scans. Even if stolen
credentials are valid at 1000 distant accounts, an average of
over two million random scans would be required to find the
first viable target within the valid IPv4 space. Without a re-
motely exploitable vulnerability, attacking from network to
network requires an approach more effective than scanning.
An attacker will need additional information, whether it be
obtained by harvesting addresses or waiting for the user of
a compromised account to type in the next destination.
So long as known hosts files map users to the IP ad-

dresses of hosts that are likely to accept their credentials,
attackers need look no further when identifying new targets.

2.7 Evidence of Poor Credential Management

In addition to collecting known hosts data, our collec-
tion script checked to see if identity key files were present
and whether users had encrypted them with pass phrases.
Of 447 identity key files collected, 276 (61.7%) were un-
encrypted and open to abuse by anyone with access to read
them. Of the 12,035 unique known hosts destination ad-
dresses discovered in our survey, 4,314 (or 36% of the to-
tal) originated from user accounts in which an unencrypted
identity key was present.

3 Countering Address Harvesting Attacks

Host names and addresses may be stored in a program’s
configuration before execution, in its state during or be-
tween executions (known hosts), and in logs for ac-
counting or forensic purposes.3 Each type of file has dif-
ferent restrictions regarding which parties need to be able

3Addresses entered as command line parameters may also be stored in
shell history files. The security community has known about the dangers

SSH User/Admin
Reads Writes Reads Writes

known hosts X X X X
config files X X X
log files X X

Table 3. Of the files read or written by SSH
that contain host names/addresses of other
hosts, only known hosts must be readable
and writable by both SSH and its users.

to read or write to it, as illustrated in Table 3, and so dif-
ferent countermeasures (or variants on countermeasures) to
address harvesting may apply to each. The most challeng-
ing file to manage is known hosts, as it must be read and
modified both by SSH and by those that use and administer
it. We will take advantage of the fact that the common case
is for the file to be read and appended to by the SSH client,
and that users only need to access the file manually when
locating or removing an entry.

3.1 Protecting known hosts

To understand how SSH implementations could hide ad-
dresses in known hosts databases, it is instructive to look
at how password databases evolved to defend against sim-
ilar threats. Early multi-user computers stored passwords
in plaintext files and, like known hosts files, relied upon
the file system to prevent their misuse by keeping them se-
cret. In 1974, Evans, Kantrowitz and Weiss [5] proposed
that passwords be hashed with a one-way function before
being stored in the password file.4 Their key observation
was that the host did not need to store the passwords them-
selves, but only enough information to later verify that a
password provided to the host was the same one the user
had previously provided. The same holds true for any sen-
sitive datum, such as a host name or address, that must be
tested for equality against a value provided in the future.
We present three similar approaches, summarized in

Table 4, that also use one-way collision-resistant hash
functions to obscure the names and addresses of hosts
in known hosts files. Each solution is more harvest-
resistant than the last, but each comes with an additional
usability cost.

of history files for some time. Fortunately, these files are unlike those
discussed in this section in that they are not needed by the program, not
needed for security purposes, and trivial to cleanse.

4For details on the adoption of this approach, see the early work of
Robert Morris and Ken Thompson [14] or more recently Garfinkel et
al. [7].



Contents of known hosts entry Harvest resistance Additional usability cost
(0) name, ip addr, key None None

(1)
(s1, h(s1 ◦ name)),
(s2, h(s2 ◦ ip addr)),
key

Resists plaintext
harvesting

New commands required to find/delete
entries

(2)
(s1, h(s1 ◦ name)),
(s2, h(s2 ◦ name, ip addr)),
key

Resists offline dictionary
attacks on IPv4 address
sace

User can’t locate known hosts
entries using only their IP address

(3)
(s1, h(s1 ◦ name ◦ key)),
(s2, h(s2 ◦ name ◦ ip addr ◦ key)),
date and time entry added

Resists offline dictionary
attacks on the IPv4
address space and on
host names

User can’t distinguish new key sent by
host in known hosts from key sent
by unknown host. Adds need for key
revocation lists.

Table 4. A summary of possible organizations for SSH known hosts entries, where h is a one-
way collision-resistant hash function and salts s1 and s2 are randomly generated for each entry.
Each approach is incrementally more resistant to harvesting than the one above it, but incurs an
incremental cost in usability.

Approach (1) – Simple name/address hashing

The simplest approach to prevent harvesting of plaintext
host names and addresses is to hash their values as one
would hash a password in the password file. Randomly
generated salts, s1 and s2, are used to ensure that the
work required to stage a dictionary attack against one en-
try cannot be re-used on other entries. The contents of the
known hosts file for this simple hashing strategy is sum-
marized in row (1) of Table 4.
We first implemented this approach into OpenSSH 3.9

using SHA1 [15] as our hash function h and base64 encod-
ings of random 64 bit numbers as salts. In response to ear-
lier drafts of this paper, the OpenSSH development team
coded their own implementation of this approach, which
first appeared in OpenSSH 4.0.
When the SSH client is called upon to initiate a new

connection, it checks the destination host name and ad-
dress against the known hosts database entry by entry.
A special string (‘<’ in our implementation and ‘|1|’ in the
OpenSSH 4.0 implementation) indicates that the host name
or address has been replaced with a hashed token. In this
case, the destination host name or address is hashed us-
ing the salt extracted from the token, base64 encoded, and
then compared to the hash encoded in the token. Matching
encodings imply with high probability that the addresses
match. To maintain backwards compatibility with earlier
SSH implementations, a plaintext comparison between ad-
dresses takes place when the address in a known hosts
entry is not hashed.
Since entries in the known hosts database are cre-

ated and verified automatically by the SSH client, its be-
havior will remain unchanged from the user’s perspec-
tive. We implemented two new commands for manip-

ulating the known hosts file should the user need to
do so. remove-knownhost deletes a host entry from
known hosts by name and ssh-showkey returns the
key of a host specified by name or address. In the OpenSSH
4.0 implementation, these commands are integrated as op-
tions in ssh-keygen.
To speed the transition to hashed host addresses we pro-

vide a program, ssh-hostname-encoder, that hashes
all of the addresses in an existing known hosts file. In
OpenSSH 4.0, this functionality is accessible via a com-
mand option in ssh-keygen. We have also provided
a Perl script, convert known hosts.pl, that can be
run to convert all known hosts files on a given filesys-
tem into hashed host address format. As no such script
was provided by the OpenSSH 4.0 team for their imple-
mentation, we have provided one at our project website
(http://nms.csail.mit.edu/projects/ssh).

Approach (2) – Resisting IPv4 dictionary attacks

As with password files, the above hashing approach is po-
tentially vulnerable to an offline dictionary attack. On IPv4
networks, the attacker can expect to identify an IP address
with a worst-case average of 231 SHA1 calculations. While
this might be time consuming enough to slow spread and
raise alarms, an attacker can decrease the expected work by
starting with addresses near that of the compromised host
(recall Figure 1). All of the nodes on the victim host’s class
C can be identified by performing less than 256 SHA1 cal-
culations per known hosts entry.
The possibility of dictionary attacks leads us to suggest

that SSH client implementations may not want to store IP
addresses at all. It should only be necessary to associate

http://nms.csail.mit.edu/projects/ssh


the key with the address used by the user on the command
line, which is most often the domain name. If hashed IP
addresses must be stored, than we propose that it should be
salted both with a random salt and with the host name, as
illustrated by the known hosts format in row (2) of Ta-
ble 4. This will significantly increase the computation cost
to attack networks where reverse DNS lookups and zone
walking are disabled, and increase the likelihood of detec-
tion where reverse DNS lookups are enabled but monitored.

Approach (3) – Resisting all offline dictionary attacks

Host names are also subject to dictionary attack, espe-
cially if common names such as “gateway”, “mail”, and
“database” are used or if DNS servers are configured to al-
low subdomain enumeration (“zone walking”). A design
approach to eliminate offline dictionary attacks requires
more fundamental changes to the way that SSH clients con-
firm that the host being contacted is indeed one that was
last contacted at the same address. We propose that rather
than storing entries that consist of hashed names mapped
to the host’s key, the SSH client should instead concatenate
the host key onto the value to be hashed for the name and
address entries as illustrated in row (3) of Table 4.
When a host is contacted in the future, its key will be re-

trieved before the known hosts file is searched and so it
is still possible to check whether the key is associated with
any known host name/address pairs. Obtaining the keys re-
quires that the attacker stage an online dictionary attack,
contacting hosts that it may not be able to authenticate to
and increasing the likelihood of detection.
The additional benefit incurs a significantly higher us-

ability cost than the previous approaches. First, both the
host name and the key are required in order to identify or
remove an entry from the known hosts database. If a
key was lost and needed to be revoked, a revocation list
would need to be employed to revoke all keys assigned to
that host before the date on which the key was replaced.
What’s more, users would not be able to differentiate be-
tween the response received when they first contacted a host
and the response received when a host’s key changed. For-
tunately, the correct security behavior in both cases should
be the same – the user should check the hash of the server’s
key against a hash obtained through a secure alternate chan-
nel.

3.2 Protecting configuration files

Host address hashing can also be used to protect ad-
dresses in user-configured files such as the trusted host file
(.shosts) and the user’s main configuration file, so long
as the host name need not be read until the host to be con-
tacted has been identified. However, using incomprehensi-
ble tokens in place of plaintext addresses in these files may

raise concerns for any sophisticated user or system admin-
istrator who may want to audit these files to ensure they do
not place trust in the wrong remote hosts.

Fortunately, there is more flexibility in designing so-
lutions to this problem than that of the known hosts
database, as configuration files are not written by SSH.
Thus, solutions do not need to support mechanisms through
which the SSH client or server can change the file.

To ensure that configuration files could be audited, a de-
terministic public key encryption function could be used in-
stead of a hash function in order to obfuscate host names.
An auditor with the private key would be able to reverse the
function to verify its contents.

3.3 Protecting log files

The log files generated by the SSH server not only con-
tain the names of other hosts running the SSH protocol
suite, but also the names of users’ with accounts on those
hosts. While this information is dangerous in the hands
of an attacker, it is essential to those tasked with detect-
ing and tracking intrusions. Fortunately, in exploring the
solution space to this problem we can take advantage of the
fact that logs need not be written by users or administrators
and, more importantly, that they need not be processed by
anyone other than the system’s administrators.

We can prevent log entries from being harvested if we
can encrypt these entries to ensure that, once written, the
data can not be read by the recording host. Only an auditor
with a secret key should be able to translate the log back to
its original plaintext form. A naı̈ve algorithm to accomplish
this would encode each entry in the log using a public key
cryptosystem. Less computationally intensive approaches
to securing audit logs have been introduced by Yee and Bel-
lare [32], Schneier and Kelsey [20], and Waters et al. [28].

A simplified algorithm that meets our requirements can
be constructed using a public key pair. When the SSH server
begins executing, it creates a random session key k0 for use
with a faster symmetric cryptosystem. It then encrypts this
k0 with the public key and writes it to the log. Each log
entry then begins with its sequence number, i, followed by
the entry contents encrypted with symmetric key ki, where
ki = h(ki−1). Once the logging function has encoded the
entry, it immediately calculates ki+1 and discards ki from
memory. To read a previous entry would require one to de-
rive ki from ki+1, which in turn would require breaking the
one-way hash function.



4 Encouraging Safer Use of Gateway Hosts

In Section 2.4 we saw evidence of the existence of large
gateway hosts, ideal targets for credential theft attacks such
as password cracking (see Section A.2) and for harvesting
addresses of hosts that may accept stolen credentials.
While hindering attempts to harvest addresses can help

to thwart the spread of attacks through gateway hosts, it
is better to avoid running SSH clients on these hosts alto-
gether. An ideal SSH gateway is one on which the SSH
server, but not the SSH client, is installed, and through
which users can forward TCP connections but execute no
other operations. To make it easier to use such gateways,
we have implemented a new SSH client command option,
-H, which indicates the start of a new connection within a
chain of cascading connections.

ssh -H gateway -H server
In the above example, the client establishes one con-

nection to gateway and then establishes a secure channel
from the client to server through gateway. The syntax
supports the cascading of connections through any number
of gateway hosts, all with encrypted connections back to the
user’s immediate client. Options specified before the first
-H are applied to all hosts in the chain, whereas options
specified between a -H and a host name are applied only to
the connection to that host. The implementation uses UNIX
domain sockets for communication in order to avoid open-
ing TCP/IP ports accessible to other users.
Existing methods do exist for chaining through local

hosts and are documented in the text SSH, the Secure Shell:
The Definitive Guide [1], but each has serious drawbacks
that have kept them from being widely used. One such ap-
proach uses local TCP/IP port forwarding to establish the
connection from the client to the server through the gate-
way. One of the disadvantages of this approach is that
other users on the client host could connect to the port to
bypass the gateway as TCP/IP cannot distinguish between
these users. Another disadvantage is that the method re-
quired proper use of the HostKeyAlias configuration
option so that the connection forwarded through the local
port isn’t treated as a connection to localhost in the
known hosts database. Finally, the user must use two
different shells on the client host to initiate clients and their
connections to the gateway and server.
SSH connections could be forwarded through gateway

hosts by setting up a proxy in the user’s SSH configuration
file, but proxy entries must be created for each gateway. The
presence of gateway proxy commands in the user’s configu-
ration would also become an attractive target for harvesting
and cannot be trivially obfuscated using the techniques pre-
sented in this paper. Proxy forwarding also presents prob-
lems if the gateway uses any form of interactive authenti-
cation, such as the use of passwords. Given the complex-

ity and limitations of the available options, it’s little wonder
that most users have taken the route that’s simplest for them:
issuing a command to the SSH client on the gateway host if
one is available.

5 Anticipating Future Attacks that Target
Host Authentication via SSH

The widespread SSH attacks of 2004 are believed to be
the work of a single individual [8, 13] and were not fully
automated. Once he had obtained a user account on a host,
the attacker would attempt to gain root access or find other
ways to compromise other accounts on the host, such as by
exploiting a vulnerability in NFS [22]. A self-propagating
worm armed with a common vulnerability for escalating
user privileges to root privileges (or at least gaining access
to password/key files) could use the same set of imperson-
ation attacks. Such a fully automated attack would not be
limited by the time available to the attacker and could cause
significantly more damage. Many of the components for
such a worm, such as trojan SSH client code, password
cracking algorithms, and tools to perform online dictionary
over SSH, are readily available. A list of the potential mech-
anisms of attack are summarized in Table 5, and surveyed
in detail in Appendix A.
To spread quickly, an SSH worm would need to infect

as many new hosts as possible immediately after each host
is compromised. Upon compromising a gateway host, a
worm could impersonate that host’s users by taking over
outgoing SSH client sessions (row I1 in Table 5) or by
using forwarded agents to authenticate on its behalf (T2)
and then adding keys to the remote authorized keys
file (I2). Upon compromising a host of any type, a worm
could immediately search for unencrypted identity keys in
the file system (T1) and extract identity keys from running
agents (C2). Obtaining root access to the compromised
hosts would enable these attacks to be carried out using
data from all of the host’s users, and would then enable
the worm to begin an offline dictionary attack to obtain any
password and key credentials that it does not already have.
The known hosts file enables the worm to immediately
identify hosts on distant networks that may accept stolen
credentials.
A worm can also steal credentials by interacting with

users, recording passwords as users login to SSH servers
it has compromised (C1) and observing passwords sent to
SSH clients and agents that it has compromised (C5). By
starting this process immediately, the worm may be able to
steal credentials from administrators should they detect the
worm and login in an attempt to remove it.



rootnotrequired

non-interactive

stealthyAttack Event triggering attack opportunity

T1 Extract unencrypted identity key stored on host
trusted by credential holder User’s account or host compromised * X X

T2 Forwarded agent used to authenticate attacker Compromise of account or host already
running forwarded agents * X X

C1 Password stolen by compromised SSH server New password-authenticated session to
compromised server X X

C2 Identity key extracted from SSH agent pro-
cesses

Compromise of host running agent pro-
cesses * X X

C3 Online dictionary attack on password file Authentication initiated with correct
username/password guess X X

C4 Offline dictionary attack on passwords and
identity keys

Password hash computation completed
with correct password guess X X

C5 Password or key entered into previously com-
promised SSH client or agent

SSH client/agent executed on compro-
mised host X X

I1/2 Session/Credential insertion attack User’s account or host compromised * X X

Table 5. Attacks on SSH and the properties that make them amenable for use in a worm. An X
indicates either that an attack can be run from a user account (root not required), need not wait for
interactive user events in order to spread (non-interactive) or would not require excessive network
traffic (labeled stealthy). A star (*) indicates that the attack can run without root privileges, but only
against accounts available to the compromised user.

6 Related Threats & Related Work

The Morris worm of 1988 harvested target addresses
from files such as .rhosts and .forward, and used
offline dictionary attacks to crack passwords [23]. Be-
cause the Morris worm predated the advent of SSH,
known hosts files were not available for harvest.
Trojaned SSH clients that collect passwords have also

become widespread, and a number of these have been lifted
from compromised hosts [4]. Such a tool was used by the
perpetrator of the major SSH attacks of 2004, who compro-
mised hosts in the U.S. military, NASA, supercomputing
centers including those supporting the TeraGrid, and a slew
of universities [8, 17, 33, 22]. However, to date there has
been no evidence of a true SSH worm which could spread
without the need for user interaction.
Worms targeting protocols other than SSH, such as Lov-

gate [27], Deloader [25, 6], and Gaobot [26] already use on-
line dictionary attacks to bypass host authentication without
user interaction. While such brute force attacks are among
the least effective, they are frequently found in the wild be-
cause they are among the easiest to write. The tools required
to carry out online dictionary attacks against SSH have been
automated and made publicly available [21]. Evidence of
their use appears in our logs, anecdotal reports of other net-
work researchers, and publicly available reports from the
SANS Internet Storm Center [3].

7 Conclusion

We showed in our study that known hosts files pro-
vide ample remote targets, with a median of fourteen ad-
dresses to distant networks identified per host. Each distant
known hosts entry an attacker discovers saves hundreds
to thousands of scans to find a distant SSH server to at-
tack, and many more scans if the attacker seeks a server
that will accept a specific user’s credentials. We also iden-
tified important outliers in the data, such as gateway hosts
that contain hundreds of known hosts files with entries
to thousands of unique destinations. The distribution of
unique destinations per user is heavy-tailed, as just 5% of
users’ known hosts files collected contained 75% of the
unique destination hosts discovered in our study.

In anticipation of future attacks, we explored how the
mechanisms of attack used in the past and their suitability
for use in self-propagating malware that could result in sig-
nificantly greater damage than prior attacks.

In response to last year’s attacks and in anticipation of
future attacks, we presented a series approaches for hiding
known hosts destination addresses. These approaches
include countermeasures not only against plaintext address
harvesting, but also those that protect against dictionary at-
tacks on local IP addresses and host names. In the epilog,
we discuss the adoption of these countermeasures.



Epilog

This paper was first conceived in early 2004 and drafts
have been in private circulation since June of that year. Only
late in the year did we first learn of the major attacks against
SSH that were underway.

On February 15, 2005 an updated draft was submitted to
officials at F-Secure, SSH Communications Security Corp.,
and the OpenSSH development team.

OpenSSH responded by creating their own implemen-
tation of host address hashing as part of OpenSSH 4.0 on
March 9, 2005. Unfortunately, this implementation does
not come with a script with which a system administrator
can update all of known hosts files on a system. We have
provided such a script and instructions for turning hashing
on at http://nms.csail.mit.edu/projects/ssh/.

WRQ, which took over the F-Secure SSH product line
in October of 2004 and re-branded the product under the
“reflection” name, has also since committed to provide an
option to store host names in a hashed format [29].

Petri Sakkinen of SSH Communications Security Corp.
wrote in an email [16] on May 17, 2005 that “SSH will
consider adding key hashing support in future versions of
SSH Tectia, if our enterprise customers want to deploy that
approach.” The company also posted a statement to its web
site [24].
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A Host Authentication Attacks via SSH

The mechanisms described below exploit access to one
or more compromised accounts on one host in order to im-
personate those users who also have accounts on other hosts
in order to gain access to those other hosts.

A.1 Exploiting misplaced trust

SSH servers and user accounts are often configured to
trust other hosts to act on their behalf, to authenticate users,
or to safely store user credentials. All of these practices are
potential targets of attack.
T1 — Exploitation of trust in other hosts to authenti-

cate user or secure store credentials
If an attack comes from a compromised host that is listed
in the shosts.equiv or hosts.equiv file in the tar-
get server’s /etc directory, or the .shosts or .rhosts
file of the targeted user, the attacker will be permitted to
connect to a target user’s account without presenting user
credentials.
Even if no hosts are explicitly trusted to authenti-

cate on behalf of the target host, such trust is often im-
plicit. Many users place their public identity keys in their
authorized keys files on SSH servers and leave their
secret identity key unencrypted on hosts they use as SSH
clients, trusting that these accounts will not be compro-
mised. If one such client account or host is compromised,
then the attacker can read the unencrypted identity key and
use it to authenticate to the target host.
T2 — Abuse of forwarded authentication agent

Authentication agents are programs employed by users to
authenticate on their behalf. They free users from the need
to retype the pass phrases that protect their identity-key cre-
dentials each time that they authenticate.
A user can configure his agent to authenticate on his be-

half when accessing services from an application run on a
remote host. However, most SSH agents do not verify that
the actions a remote host performs are the actions the user
intended to authorize. Thus, when the user believes he is au-
thorizing a CVS transaction he may instead be authorizing
an SSH connection to a host targeted by the attacker.5

A.2 Credential theft

An attacker who can obtain a user’s credentials can im-
personate that user on any host that accepts these creden-
tials. An attacker may choose from any of a number of ap-
proaches to steal credentials.

5The agent in Michael Kaminsky’s remote shell client, REX [11, 12],
provides a partial solution to this problem by verifying that the service
being authorized (but not the command or parameters passed to the service)
is indeed the one that the user intended.

C1 — Password theft by compromised SSH server
When authenticating via passwords, the SSH client will
send the user’s password credentials to the server over an
encrypted channel. When the user’s password arrives, it is
then decrypted into plaintext before it is checked against the
password file. If the server belongs to, or has been compro-
mised by the attacker, then the attacker can modify the SSH
server to collect these passwords. The attacker can then pro-
ceed to gain access to other hosts on which this password is
used for authentication.
This attack can be thwarted if the client is configured to

authenticate via a challenge-response protocol, such as SSH
identity-key authentication or the Secure Remote Password
(SRP) extension [30].
C2 — Extraction of keys from authentication agents

To free users from the need to retype the pass phrases
that protect their identity key credentials, an authentication
agent must keep these credentials in its memory.
Once an account is compromised, an attacker can search

the process table for active authentication agent processes.
While the SSH agent takes care to instruct operating sys-
tems not to allow its memory to be dumped, an attacker
with sufficient privileges will be able to inspect its memory
space in order to locate identity key credentials.
C3 — Online dictionary attacks

An online dictionary attack is staged by repeatedly attempt-
ing to authenticate to a remote host using common pass-
words. Intrusion detection systems can be trained to detect
these attacks and terminate communications with attacking
hosts. However, if an attacking host is permitted to continue
these attacks and chooses a large set of targets, it will even-
tually find servers that allow continued connection attempts
and employ common passwords.
C4 — Offline dictionary attacks

After obtaining the password file on a compromised host, an
attacker can test candidate passwords against the password
file or try to decrypt identity key files in user home direc-
tories. While it is likely that an attacker who could access
the password file could compromise this account without
the password, chances are that the user employs this pass-
word to authenticate to other hosts as well. Such offline
dictionary attacks also differ from their online counterparts
in that the attacker need not run the authentication protocol.
This is advantageous because executing a network protocol
increases the risk that alarms will be activated and intro-
duces a network delay for each password tested. Once a
user’s credentials have been compromised, the attacker can
use them to gain access to other hosts on which they are
accepted.6

6A 1995 study by Bishop and Klein [2] showed that 40% of passwords
were crackable. More recent reliable statistics on the percent of crackable
passwords are harder to find. Suffice it to say that while user awareness
of weak passwords may have improved since then, the sophistication of



C5 — Eavesdropping by client software or host
A patient attacker who has compromised a user’s account
can modify or observe the SSH client and agent to collect
passwords and identity key pass phrases as the user types
them. The host address, username, and password triplets
discovered can either be stored or sent directly to the at-
tacker.
Many users find it convenient or necessary to open SSH

clients on hosts to which they are already connected via
SSH. We use the term gateway hosts to describe those hosts
to which a user connects via SSH from a client and from
which the user then initiates a new SSH connection to an-
other host running the SSH server. It is often necessary to
use gateway hosts when firewalls prevent direct access from
the user’s immediate client to his or her desired destination
host. SSH may also be employed to protect file transfers,
CVS commands, or other services required by software that
is run at a gateway host. Attackers can strike users on these
gateway hosts even if an SSH server is not run on the user’s
immediate client.

A.3 Insertion attacks

An attacker may be able to insert his own commands into
a user session or insert his own credentials in place of a le-
gitimate user’s credentials. The first attack described below,
in which the attacker impersonates the user for part of the
SSH session, can be used to perform the latter attack, which
allows the attacker to impersonate the user in future ses-
sions.
I1 — Session capture and command insertion

While proper use of identity keys, authentication agents,
and agent forwarding can protect against credential theft at
gateway hosts, these practices cannot protect the user if the
host he runs the SSH client on is compromised. All commu-
nications are decrypted and then re-encrypted at the client,
and software at this host can insert, modify, or delete infor-
mation at will.
I2 — Credential insertion or replacement

An attacker can insert an identity key into the user’s
authorized keys file. The SSH server depends on this
file to determine which keys the user has authorized to serve
as his credentials. If the compromised user’s home directory
is located on a shared file system, the attacker then uses the
inserted identity keys to authenticate as that user to other
hosts that mount the user’s shared home directory.
If the attacker can write to the system password file,

he can replace any or all user passwords with those of his
choosing.

cracking algorithms has also improved and the speed of computers used to
crack passwords has followed the expontential growth of Moore’s law.


