Inter-Flow Consistency: Novel
SDN Update Abstraction for

Supporting Inter-Flow
Constraints

Weijie Liu* (wliu43@illinois.edu),
Rakesh B. Bobba®, Sibin Mohan*, Roy H. Campbell*

*University of lllinois at Urbana-Champaign
" Oregon State University

Outline

 SDN & Inter-flow Consistency

* Our Approach

* Experiments

e Conclusion

Software Defined Networks (SDN)

* Decouple Control Plane and Data Plane
* Controller installs forwarding rules in switches

_Controller

Software Defined Network

Update Forwarding Rules

Old Rules \—@ /

s - Old rule
Update I . NeWw rule

New Rules \=é‘9/ /

Update Inconsistency

* Fail to update all the devices at the same time
* Packets processed by both old & new rules

* Problems:
— loops, black hole, congestion ...

ﬁ%

=

Update Inconsistency

* Fail to update all the devices at the same time
* Packets processed by both old & new rules

* Problems:

— loops, black hole, congestion ...
Existing Solutions*:

— Per-packet Consistency: processed by either old or new
— Per-flow Consistency: processed by either old or new

* Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker. Abstractions
for network update. ACM SIGCOMM 2012. n

Inter-flow Constraints

* Enforcing constraints across different flows
— for Security or Reliability

— Ex 1. Power Grid: isolation of critical control flows
from engineering flows

— Ex 2. Network Operator: isolation between data flows
of diff companies

— Ex 3. Data Center: related data flows need to be
updated at the same time

Question: Will these constraints be respected
during SDN updates?

Example |

(a) Original Configuration (b) Target Configuration

e Security Policy: f1 & f2 should NOT pass through
the same link

Example |

 What if f2 gets updated before f1?

(a) Original Configuration (b) Target Configuration

(c) Transitional Configuration

Example II”

 H1 & H2: first inspected, then talk with each

handshake packets @ application packets @

Packet
Inspector

Packet
Inspector

f2

(a) Original Configuration (b) Target Configuration

*Soudeh Ghorbani and Brighten Godfrey. Towards correct network virtualization. HotSDN, 2014.

Example II”

 What if f2 gets updated before f1?

application packets @

Packet
Inspector

e,

f1 & f2 should be updated at the same time;

not guaranteed by existing update mechanisms
11

Observation:

Inter-flow constraints may be violated during SDN updates.

Problem:

Can we schedule update operations to guarantee inter-flow
constraints during updates?

Theoretical Abstraction

* We propose: Interflow Consistency

Spatial Isolation:

Packets from different flows cannot pass through
the same link or device

Version Isolation:

Packets from different related flows cannot be
processed by two different versions of flow rules

Our Approach: 3 steps

Step llI:
Output valid
update
order

Step Il: Revised
Dependency Graph for
inter-flow consistency

Step I: Construct Dependency Graph to
model updates

Step |: Construct Dependency Graph*

 Dependency Graph (DG)
— 3 types of node:
() Operation Node (add/delete/modify a rule)

Path Node (links passed by a flow)
/. Resource Node (link bandwidth)

— Direction of edge between 2 nodes:
* Resource Consumption
e Operation Dependency

*Xin Jin, et al. Dynamic scheduling of network updates. SIGCOMM, 2014.

I

1867

Step I: Example |

0 S1 We need 4 operations nodes:
ID | Entity Update Operation
@ i @ a Ss Add: forward f; to Sy
b S Modify: forward f; to S3
S4 C S Modify: forward fo to S4
d So Delete rules of [

Also, 4 path nodes:
@ @ p1: f1's old path;
, p2: f2’s old path;
Fd p3: f1's new path;
v p4: f2’s new path.

5 resource nodes for each link

(b) Target Configuration

St

& Step |: construct DG

84 $1S3: 10

(a) Original Configuration 5
f1 S$354: 10
3
@ @ 1 new pat
S

(b) Target Configuration

ID | Entity Update Operation 5

a Ss Add: forward f; to S, 5

b S, Modify: forward f, to S3 —» 5154: 5
c S, Modify: forward fo to S4 f1 old patr\

d So Delete rules of f5

Step II: Revised DG for inter-flow

* e.g. Spatial Isolation: add Mutex Nod
$153: 10 //ﬁggii:;;ﬁ$\

5
$354: 10
5
f1 new path
5
S . 5154:5

I

Step IlI: Output Operation Sequence

do:
- for each Operation Node, O:

if O has no operation ancestors & has
. sufficient resources:

\a 5153: 10 | f2 new path
- SChEdUIe O,' [5 : T T §152:5
o fnewpath _ N7 s254:5 |
: De/ete O,. —5"{7 <@::\;> 5 1 5/
. - b 4,: — _/f2 old path
end if I l
- 5 fsisas | (4)
: endfor _f1old path d 4

until there is no O;

Finally, we can get: a>b—>c—>d

Version Isolation

Packets from different related flows cannot be
processed by two different versions of flow rules

application packets @

Packet
Inspector

Packet
Inspector

Packet
Inspector

(c) Transitional Configuration
(b) Target Configuration m

Solution for Version Isolation

forward related packets to controller before updates

jm packets to the controller %
Step 3: Send buffered pkts back

=

Algorithm in paper:
Step 2: Update forwarding rules implemented in DG

*Rick McGeer. A safe, efficient update protocol for OpenFlow networks. HotSDN, 2012.

Experiments

* A prototype system
— Spatial Isolation
— Version Isolation being implemented

* Experiment settings:
— Network Application: shortest-path routing
— Control Plane: Ryu

— Data Plane: Mininet, a 3-layer tree topology
— Hardware: Intel i5-2400 3.1 GHz CPU & 16 GB memory

S 22

Experimental Results

Elgolati?.anL\Jlmbir | | | | | | | 70 —A—‘Total Tim‘e
peration Number 60t —¥— Time of Generating Graph
—e— Time of Scheduling

70 11400 o 50
§60, —1200§ ’g407
Z s0- 11000 5 o
-%;;)407 1800 § E 307
@ O

30+ -600 20|

20 -1400

10- ﬁ ﬂ 1200 107

% 100 150 200 |_2|50 N 300 350 400 450 500 550 0" 10 260 360 460 560
ost Numer Host Numer
(@) Number of Isolation Constraints & Update (b) Algorithm Running Time
Operations on different Host Numbers on different Host Numbers

Initial experiments show very good performance

Future Work

* Implementation of version isolation
— optimized algorithm
* Evaluation
— in real networks
— in a large-scale simulation
* Further discussion: inter-flow consistency

— relationship of two isolations
— drawbacks

Conclusion

* |Inter-flow consistency abstraction:
— Spatial Isolation
— Version Isolation

* An approach using dependency graph

* A prototype system

— a preliminary performance evaluation

Questions?

* feel free to contact: wliu43@illinois.edu

Thank you!

* Thanks to Prof. Carl Gunter for slide template!

Two Consistency Abstractions

* Per-packet Consistency:

— Each packet will be processed by the old
configuration or the new, but NOT the mixture of the
two.

* Per-flow Consistency:

— Each flow will be processed by the old configuration
or the new, but NOT the mixture of the two.

Spatial Isolation

e certain flows are not allowed to share a link or a
switch before, during and after an update for
security and/or reliability reasons.

e E.g. critical flows should be isolated from
engineering flows

Version Isolation

* packets from different related flows cannot be
processed by two different versions of flow rules
during its passage through the network.

* E.g. Aflow’s rules updated fromR,, to R,,;
another flow’s updated from R, to R;,; the
network can have R,,R;, or R,R;,, but not R,,R;,

Enforcing Spatial Isolation

 Randomly generate flows between 2 hosts in the
tree-like network (old & new)

e Brute Force Search:

— for any flow A and another flow B: if they are

spatially isolated both in old and new configuration,
but not during the transitions (i.e., A’s old path
overlaps with B’s new path) then assign a spatial
isolation constraint to A and B.

Controller-buffer Method for Version

Isolation4]

* Basic idea: use controller as a transitional point
(1) Forward packets to the controller
(2) Then update rules in switches

(3) Re-inject buffered packets from controller to data
plane

DG Solution for Version Isolation

* After constructing basic DG, add operations to
represent:

(1) forward certain flows to controller

(2) controller sends buffered flows back to
network

 Then perform the topological sorting of
operations

* After constructing basic ° . o o
DG, add operations: U%5 .
(2) (®)

o 2
5 5 5
L1:5 @ 5 A e L2:6
* We can get: & (0 ()

e>a>b>c>d>f>g gy/

Update Order Consideration

e S1:
— Floodgate node, change the path of flow

GK We should get this part ready

’\ before update the “floodgate”
th

new pa
S5 S6

Selected References

* [1] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker.
Abstractions for network update. In Proceedings of the ACM SIGCOMM 2012
conference on Applications, technologies, architectures, and protocols for computer
communication, pages 323—334. ACM, 2012.

* [2] Soudeh Ghorbani and Brighten Godfrey. Towards correct network virtualization. In
Proceedings of the second ACM SIGCOMM workshop on Hot topics in software defined
networking. ACM, 2014.

* [3] Xin Jin, Honggiang Harry Liu, Rohan Gandhi, Srikanth Kandula, Ratul Mahajan, Ming
Zhang, Jennifer Rexford, and Roger Wattenhofer. Dynamic scheduling of network
updates. In Proceedings of the 2014 ACM conference on SIGCOMM, pages 539-550.
ACM, 2014.

* [4] Rick McGeer. A safe, efficient update protocol for OpenFlow networks. In
Proceedings of HotSDN, 2012.

