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Software Defined Networks (SDN)

* Decouple Control Plane and Data Plane
* Controller installs forwarding rules in switches

_Controller

Software Defined Network




Update Forwarding Rules

Old Rules \—@ /

s - Old rule
Update I . NeWw rule

New Rules \=é‘9/ /




Update Inconsistency

* Fail to update all the devices at the same time
* Packets processed by both old & new rules

* Problems:
— loops, black hole, congestion ...
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Update Inconsistency

* Fail to update all the devices at the same time
* Packets processed by both old & new rules

* Problems:

— loops, black hole, congestion ...
Existing Solutions*:

— Per-packet Consistency: processed by either old or new
— Per-flow Consistency: processed by either old or new

* Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker. Abstractions
for network update. ACM SIGCOMM 2012. n



Inter-flow Constraints

* Enforcing constraints across different flows
— for Security or Reliability

— Ex 1. Power Grid: isolation of critical control flows
from engineering flows

— Ex 2. Network Operator: isolation between data flows
of diff companies

— Ex 3. Data Center: related data flows need to be
updated at the same time

Question: Will these constraints be respected
during SDN updates?




Example |

(a) Original Configuration (b) Target Configuration

e Security Policy: f1 & f2 should NOT pass through
the same link



Example |

 What if f2 gets updated before f1?

(a) Original Configuration (b) Target Configuration

(c) Transitional Configuration



Example II”

 H1 & H2: first inspected, then talk with each

handshake packets @ application packets @

Packet
Inspector

Packet
Inspector

f2

(a) Original Configuration (b) Target Configuration

*Soudeh Ghorbani and Brighten Godfrey. Towards correct network virtualization. HotSDN, 2014.



Example II”

 What if f2 gets updated before f1?

application packets @

Packet
Inspector

e,

f1 & f2 should be updated at the same time;

not guaranteed by existing update mechanisms
11



Observation:

Inter-flow constraints may be violated during SDN updates.

Problem:

Can we schedule update operations to guarantee inter-flow
constraints during updates?




Theoretical Abstraction

* We propose: Interflow Consistency

Spatial Isolation:

Packets from different flows cannot pass through
the same link or device

Version Isolation:

Packets from different related flows cannot be
processed by two different versions of flow rules




Our Approach: 3 steps

Step llI:
Output valid
update
order

Step Il: Revised
Dependency Graph for
inter-flow consistency

Step I: Construct Dependency Graph to
model updates




Step |: Construct Dependency Graph*

 Dependency Graph (DG)
— 3 types of node:
() Operation Node (add/delete/modify a rule)

Path Node (links passed by a flow)
/. Resource Node (link bandwidth)

— Direction of edge between 2 nodes:
* Resource Consumption
e Operation Dependency

*Xin Jin, et al. Dynamic scheduling of network updates. SIGCOMM, 2014.
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Step I: Example |

0 S1 We need 4 operations nodes:
ID | Entity Update Operation
@ i @ a Ss Add: forward f; to Sy
b S Modify: forward f; to S3
S4 C S Modify: forward fo to S4
d So Delete rules of [

Also, 4 path nodes:
@ @ p1: f1's old path;
, p2: f2’s old path;
Fd p3: f1's new path;
v p4: f2’s new path.

5 resource nodes for each link

(b) Target Configuration




St

& Step |: construct DG

84 $1S3: 10

(a) Original Configuration 5
f1 S$354: 10
3
@ @ 1 new pat
S

(b) Target Configuration

ID | Entity Update Operation 5

a Ss Add: forward f; to S, 5

b S, Modify: forward f, to S3 —» 5154: 5
c S, Modify: forward fo to S4 f1 old patr\

d So Delete rules of f5




Step II: Revised DG for inter-flow

* e.g. Spatial Isolation: add Mutex Nod
$153: 10 //ﬁggii:;;ﬁ$\

5
$354: 10
5
f1 new path
5
S . 5154:5
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Step IlI: Output Operation Sequence

do:
- for each Operation Node, O:

if O has no operation ancestors & has
. sufficient resources:

\a 5153: 10 | f2 new path
- SChEdUIe O,' [ 5 : T T §152:5
o fnewpath _ N7 s254:5 |
: De/ete O,. —5"{7 <@::\;> 5 1 5/
. - b 4,: — _/f2 old path
end if I l
- 5 fsisas | (4)
: endfor _f1old path d 4

until there is no O;

Finally, we can get: a>b—>c—>d




Version Isolation

Packets from different related flows cannot be
processed by two different versions of flow rules

application packets @

Packet
Inspector

Packet
Inspector

Packet
Inspector

(c) Transitional Configuration
(b) Target Configuration m



Solution for Version Isolation

forward related packets to controller before updates

jm packets to the controller %
Step 3: Send buffered pkts back

=

Algorithm in paper:
Step 2: Update forwarding rules implemented in DG

*Rick McGeer. A safe, efficient update protocol for OpenFlow networks. HotSDN, 2012.



Experiments

* A prototype system
— Spatial Isolation
— Version Isolation being implemented

* Experiment settings:
— Network Application: shortest-path routing
— Control Plane: Ryu

— Data Plane: Mininet, a 3-layer tree topology
— Hardware: Intel i5-2400 3.1 GHz CPU & 16 GB memory

S 22



Experimental Results
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Initial experiments show very good performance



Future Work

* Implementation of version isolation
— optimized algorithm
* Evaluation
— in real networks
— in a large-scale simulation
* Further discussion: inter-flow consistency

— relationship of two isolations
— drawbacks




Conclusion

* |Inter-flow consistency abstraction:
— Spatial Isolation
— Version Isolation

* An approach using dependency graph

* A prototype system

— a preliminary performance evaluation




Questions?

* feel free to contact: wliu43@illinois.edu

Thank you!

* Thanks to Prof. Carl Gunter for slide template!




Two Consistency Abstractions

* Per-packet Consistency:

— Each packet will be processed by the old
configuration or the new, but NOT the mixture of the
two.

* Per-flow Consistency:

— Each flow will be processed by the old configuration
or the new, but NOT the mixture of the two.




Spatial Isolation

e certain flows are not allowed to share a link or a
switch before, during and after an update for
security and/or reliability reasons.

e E.g. critical flows should be isolated from
engineering flows




Version Isolation

* packets from different related flows cannot be
processed by two different versions of flow rules
during its passage through the network.

* E.g. Aflow’s rules updated fromR,, to R,,;
another flow’s updated from R, to R;,; the
network can have R,,R;, or R,R;,, but not R,,R;,




Enforcing Spatial Isolation

 Randomly generate flows between 2 hosts in the
tree-like network (old & new)

e Brute Force Search:

— for any flow A and another flow B: if they are

spatially isolated both in old and new configuration,
but not during the transitions (i.e., A’s old path
overlaps with B’s new path) then assign a spatial
isolation constraint to A and B.




Controller-buffer Method for Version

Isolation4]

* Basic idea: use controller as a transitional point
(1) Forward packets to the controller
(2) Then update rules in switches

(3) Re-inject buffered packets from controller to data
plane




DG Solution for Version Isolation

* After constructing basic DG, add operations to
represent:

(1) forward certain flows to controller

(2) controller sends buffered flows back to
network

 Then perform the topological sorting of
operations




* After constructing basic ° . o o
DG, add operations: U%5 .
(2) (®)

o 2
5 5 5
L1:5 @ 5 A e L2:6
* We can get: & (0 ()

e>a>b>c>d>f>g gy/




Update Order Consideration

e S1:
— Floodgate node, change the path of flow

GK We should get this part ready

’\ before update the “floodgate”
th

new pa
S5 S6
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