

Inter-Flow Consistency: Novel SDN Update Abstraction for Supporting Inter-Flow Constraints

Weijie Liu* (wliu43@illinois.edu),

Rakesh B. Bobba[†], Sibin Mohan^{*}, Roy H. Campbell^{*}

- * University of Illinois at Urbana-Champaign
- [†] Oregon State University

Outline

SDN & Inter-flow Consistency

Our Approach

Experiments

Conclusion

Software Defined Networks (SDN)

- Decouple Control Plane and Data Plane
- Controller installs forwarding rules in switches

Software Defined Network

Update Forwarding Rules

Update Inconsistency

- Fail to update all the devices at the same time
- Packets processed by both old & new rules
- Problems:
 - loops, black hole, congestion ...

Update Inconsistency

- Fail to update all the devices at the same time
- Packets processed by both old & new rules
- Problems:
 - loops, black hole, congestion ...
- Existing Solutions*:
 - Per-packet Consistency: processed by either old or new
 - Per-flow Consistency: processed by either old or new

^{*} Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker. Abstractions for network update. ACM SIGCOMM 2012.

Inter-flow Constraints

- Enforcing constraints across different flows
 - for Security or Reliability
 - Ex 1. Power Grid: isolation of critical control flows from engineering flows
 - Ex 2. Network Operator: isolation between data flows of diff companies
 - Ex 3. Data Center: related data flows need to be updated at the same time

Question: Will these **constraints** be respected during SDN updates?

Example I

 Security Policy: f1 & f2 should NOT pass through the same link

Example I

What if f2 gets updated before f1?

(c) Transitional Configuration

Example II*

H1 & H2: first inspected, then talk with each

(a) Original Configuration

(b) Target Configuration

^{*}Soudeh Ghorbani and Brighten Godfrey. Towards correct network virtualization. HotSDN, 2014.

Example II*

What if f2 gets updated before f1?

(a) Original Configuration

f1 & f2 should be updated at the same time; not guaranteed by existing update mechanisms

Observation:

Inter-flow constraints may be violated during SDN updates.

Problem:

Can we **schedule** update operations to **guarantee inter-flow** constraints during updates?

Theoretical Abstraction

We propose: Interflow Consistency

Spatial Isolation:

Packets from different flows cannot pass through the same link or device

Version Isolation:

Packets from different related flows cannot be processed by two different versions of flow rules

Our Approach: 3 steps

Step III:
Output valid
update
order

Step II: **Revised**Dependency Graph for inter-flow consistency

Step I: Construct **Dependency Graph** to model updates

Step I: Construct Dependency Graph*

- Dependency Graph (DG)
 - 3 types of node:
 - Operation Node (add/delete/modify a rule)
 - Path Node (links passed by a flow)
 - Resource Node (link bandwidth)
 - Direction of edge between 2 nodes:
 - Resource Consumption
 - Operation Dependency

^{*}Xin Jin, et al. Dynamic scheduling of network updates. *SIGCOMM*, 2014.

Step I: Example I

(a) Original Configuration

(b) Target Configuration

We need 4 operations nodes:

ID	Entity	Update Operation
a	S_3	Add: forward f_1 to S_4
b	S_1	Modify: forward f_1 to S_3
С	S_1	Modify: forward f_2 to S_4
d	S_2	Delete rules of f_2

Also, 4 path nodes:

p1: f1's old path;

p2: f2's old path;

p3: f1's new path;

p4: f2's new path.

5 resource nodes for each link

Step I: construct DG

(a) Original Configuration

(b) Target Configuration

ID	Entity	Update Operation
a	S_3	Add: forward f_1 to S_4
b	S_1	Modify: forward f_1 to S_3
c	S_1	Modify: forward f_2 to S_4
d	S_2	Delete rules of f_2

Step II: Revised DG for inter-flow

e.g. Spatial Isolation: add Mutex Node

Step III: Output Operation Sequence


```
for each Operation Node, O:

if O has no operation ancestors & has
sufficient resources:

Schedule O;
Delete O;
end if
end for
until there is no O;
```


Finally, we can get: $a \rightarrow b \rightarrow c \rightarrow d$

Version Isolation

Packets from different related flows cannot be processed by two different versions of flow rules

(a) Original Configuration

(b) Target Configuration

(c) Transitional Configuration

Solution for Version Isolation

forward related packets to controller before updates

^{*}Rick McGeer. A safe, efficient update protocol for OpenFlow networks. *HotSDN*, 2012.

Experiments

A prototype system

- Spatial Isolation
- Version Isolation being implemented

Experiment settings:

- Network Application: shortest-path routing
- Control Plane: Ryu
- Data Plane: Mininet, a 3-layer tree topology
- Hardware: Intel i5-2400 3.1 GHz CPU & 16 GB memory

Experimental Results

(a) Number of Isolation Constraints & Update Operations on different Host Numbers

(b) Algorithm Running Time on different Host Numbers

Initial experiments show very good performance

Future Work

- Implementation of version isolation
 - optimized algorithm
- Evaluation
 - in real networks
 - in a large-scale simulation
- Further discussion: inter-flow consistency
 - relationship of two isolations
 - drawbacks

Conclusion

- Inter-flow consistency abstraction:
 - Spatial Isolation
 - Version Isolation

An approach using dependency graph

- A prototype system
 - a preliminary performance evaluation

Questions?

feel free to contact: wliu43@illinois.edu

Thank you!

Thanks to Prof. Carl Gunter for slide template!

Two Consistency Abstractions

- Per-packet Consistency:
 - Each packet will be processed by the old configuration or the new, but NOT the mixture of the two.

pkt

- Per-flow Consistency:
 - Each flow will be processed by the old configuration or the new, but NOT the mixture of the two.

Spatial Isolation

 certain flows are not allowed to share a link or a switch before, during and after an update for security and/or reliability reasons.

 E.g. critical flows should be isolated from engineering flows

Version Isolation

 packets from different related flows cannot be processed by two different versions of flow rules during its passage through the network.

• E.g. A flow's rules updated from R_{A1} to R_{A2} ; another flow's updated from R_{B1} to R_{B2} ; the network can have $R_{A1}R_{B1}$ or $R_{A2}R_{B2}$, but not $R_{A1}R_{B2}$ or $R_{A2}R_{B1}$

Enforcing Spatial Isolation

 Randomly generate flows between 2 hosts in the tree-like network (old & new)

- Brute Force Search:
 - for any flow A and another flow B: if they are spatially isolated both in old and new configuration, but not during the transitions (i.e., A's old path overlaps with B's new path) then assign a spatial isolation constraint to A and B.

Controller-buffer Method for Version Isolation^[4]

- Basic idea: use controller as a transitional point
 - (1) Forward packets to the controller
 - (2) Then update rules in switches
 - (3) Re-inject buffered packets from controller to data plane

For N flows of Version Isolation, we can first forward N-1 flow to controller, then update rules. After all updates completed, controller sends buffered packets back to network

DG Solution for Version Isolation

- After constructing basic DG, add operations to represent:
 - (1) forward certain flows to controller
 - (2) controller sends buffered flows back to network

Then perform the topological sorting of operations

DG Solution for Version Isolation

After constructing basic
 DG, add operations:

e: forward packets to controller;

f: delete rules of "e";

g: controller send packets back to network.

We can get:

 $e \rightarrow a \rightarrow b \rightarrow c \rightarrow d \rightarrow f \rightarrow g$

Update Order Consideration

• S1:

- Floodgate node, change the path of flow

Selected References

- [1] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker. Abstractions for network update. In *Proceedings of the ACM SIGCOMM 2012 conference on Applications, technologies, architectures, and protocols for computer communication*, pages 323–334. ACM, 2012.
- [2] Soudeh Ghorbani and Brighten Godfrey. Towards correct network virtualization. In *Proceedings of the second ACM SIGCOMM workshop on Hot topics in software defined networking*. ACM, 2014.
- [3] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Jennifer Rexford, and Roger Wattenhofer. Dynamic scheduling of network updates. In *Proceedings of the 2014 ACM conference on SIGCOMM*, pages 539–550. ACM, 2014.
- [4] Rick McGeer. A safe, efficient update protocol for OpenFlow networks. In *Proceedings of HotSDN*, 2012.