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Abstract

When dealing with malware infections, one of the first
tasks is to find the processes that were involved in the attack.
We introduce Malfor, a system that isolates those processes
automatically. In contrast to other methods that help ana-
lyze attacks, Malfor works by experiments: first, we record
the interaction of the system under attack; after the intru-
sion has been detected, we replay the recorded events in
slightly different configurations to see which processes were
relevant for the intrusion. This approach has three advan-
tages over deductive approaches: first, the processes that
are thus found have been experimentally shown to be rel-
evant for the attack; second, the amount of evidence that
must then be analyzed to find the attack vector is greatly
reduced; and third, Malfor itself cannot make wrong de-
ductions. In a first experiment, Malfor was able to extract
the three processes responsible for an attack from 32 candi-
dates in about six minutes.

1. Introduction

When analyzing an attack, one of the first tasks is find-
ing out which processes participated in the attack and how
they are related. If we don’t have statistical information that
can help us classify and isolate malicious traffic [24, 28],
this must happen before we can look for the input that
caused the intrusion, the attack or infection vector. For ex-
ample, when we analyze an infection with the Linux Slap-
per worm, we could arrive at this analysis [21]: “Attack-
ers having the IP address 10.120.130.140 sent a malformed
client key in an HTTPS request to our Web server. This
caused a buffer overrun in the Web server and invoked the
shell. The running shell then saved a uuencoded copy of the
worm’s source-code, decoded and compiled it, and ran the
generated executable under the name .bugtraq. Once run-
ning, the worm tried to contact other computers on the net-
work.” In this example, the relevant processes are the Web
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server, the shell, the cat, uudecode, and C compiler com-
mands, and finally the .bugtraq process. To find these pro-
cesses, we usually start from an observed failure of the se-
curity policy (such as an unknown process named .bugtraq)
and use log files or tools like The Coroner’s Toolkit [6, 7] to
reason backwards to its root cause (the malformed HTTPS
request).

However, dealing exclusively with evidence after the fact
severely limits even an expert’s chances of reconstructing
the event chain:

Completeness. The evidence might not be enough for the
event chain to be reliably established.

Minimality. The relevant evidence might be buried in a
host of other evidence and may thus be hard to see.

Correctness. Our reasoning (by human or machine) might
be faulty, leading to wrong conclusions.

To alleviate these problems, we are exploring a novel
approach with our system, called Malfor (short for MAL-
ware FORensics). In a typical scenario, Malfor would be
deployed on a honeypot, capturing all attackable processes.
When the honeypot is attacked, a host IDS signals a com-
promise and triggers Malfor’s replay component. Instead of
deducing after the fact what must have happened, we exper-
iment: in order to learn which processes are necessary for
the break-in to occur, we repeatedly replay slightly modi-
fied versions of the captured attack (Section 2) using a cap-
ture and replay infrastructure that enables not only verbatim
replay, but replay under altered circumstances (Section 3).
Malfor then finds the processes that were relevant for the at-
tack and notifies a system administrator, who can then com-
plete the analysis with a much smaller body of relevant ev-
idence. This works without knowing the attack vector be-
forehand. Malfor can also be deployed on production sys-
tems at the price of some performance overhead. We evalu-
ate the technique using an example and find that the extrac-
tion of three relevant processes from a total of 32 processes
took about six minutes (Section 4). We review related work



in Section 5, list some assumptions and limitations of Mal-
for in Section 6 and detail some of our future plans in Sec-
tion 7.

2. Finding relevant processes

How can we efficiently find those processes that are rele-
vant for a break-in, possibly among thousands? If we could
capture the interaction of the attacked system, we could
view a blow-by-blow account of it in slow motion and an-
alyze what must have happened. This is certainly useful in
order to study the attack, but is neither complete, minimal,
or correct, as was indicated above. If we want to find which
processes were actually relevant for an intrusion, we need
to be able to make experiments. For example, if we want
to check whether the inetd process was relevant for the at-
tack or not, we would like to replay the attack without the
inetd process. If the attack still succeeds, we have experi-
mental and incontrovertible evidence that inetd was indeed
not relevant. If the attack now fails, it must have been nec-
essary for the attack.

If we can capture and replay the processes in a system so
that we can control which processes will be executed and
which will not, we want to find a minimal process set that
is necessary for the intrusion. If there are n processes, this
would take on the order of 2™ replays in the worst case, so
we are willing to settle for a process subset that is small but
not necessarily minimal, if we can only compute it with less
replays.

This problem is solved by Delta Debugging, a technique
that originated in automated debugging and test support.
Delta debugging repeatedly runs various process subsets
and uses a test function that yields ¢ (successful termina-
tion, no break-in), X (the break-in occurred) or ? (some-
thing unexpected happened). These results drive a strategy
that finds a small subset of processes that make the break-in
happen, but where removing any single process from that
subset causes the break-in not to happen any more. It is
comprehensively described in the papers by Zeller [31] and
Zeller and Hildebrandt [32].

Delta debugging is like binary search: it halves the pro-
cess set and tries each half separately. However, complica-
tions arise because the relevant processes need not all be
in one half, which makes delta debugging somewhat more
complicated than straightforward binary search. In contrast
to other methods in the same general area such as slic-
ing [27], which use deduction, delta debugging uses exper-
iments to arrive at its conclusions: it actually tries various
subsets of processes and lets the outcome of the test func-
tion drive its strategy. It does not necessarily find the small-
est process subset that causes the failure, but in practice we
find that results from delta debugging are close to optimal.

In addition, delta debugging is not restricted to source code
analysis.

Delta debugging is a practical method. It has already
been used successfully to automatically find defects in pro-
grams as large as the GNU C Compiler [3]. Its worst case
running time is O(n?) if there are n processes and executing
a process takes unit time, but it usually finishes in O(log n)
time.

Let us apply delta debugging to an example network
server process to see how delta debugging can find the pro-
cesses involved in the intrusion. This network server, named
Spud ! reads and parses a HTTP-like command set from a
network socket. One of these commands will cause the file
/tmp/pwned to be created. In our evaluation, we use the ex-
istence of this file as a break-in indicator: as soon as this file
has been successfully created, we say that a break-in has
happened. Spud has the following structure which is typi-
cal of many network server programs (see also Figure 1):

1. it detaches itself from the controlling terminal, becom-
ing a session leader;

2. the session leader opens a socket and binds it to a well-
known port number;

3. it accepts a connection on that socket;
4. it forks a worker process; and

5. while the session leader continues listening, the worker
reads a request from the newly opened socket, per-
forms the requested action (possibly using subpro-
cesses that run other programs), and exits. >

In this example, the intrusion is caused by a single sys-
tem call, the one that creates the file /frmp/pwned. The set
of relevant processes then contains the process making that
system call, and its ancestors.

Assume that we have 32 processes: the command-line
program C, the session leader S and thirty workers W,
..., Wsp, where Wy executes the intrusion-causing sys-
tem call. Delta debugging will try different subsets of the
set of all processes {C, S, W1i,..., W30} and test whether
the intrusion still happens. In our example, the set of rele-
vant processes would be {C, .S, Waq }.

The actual sequence of process subsets tried by delta de-
bugging is shown in Table 1. The column marked “R” con-
tains the result of the test: X if the intrusion occurs, and v/
if it does not occur. The other columns contain a bullet if
the corresponding process is included in the test. For exam-
ple, in row 1, processes C', .S, and W5 through W, are in-
cluded, but W5 through W are not. Since Wy is the cul-
prit, and since it is not executed, the intrusion does not hap-
pen and the output is /.

1 After a character from Trainspotting [29].
2 Spud does not use any subprocesses.
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Figure 1. Typical process structure of a network server.

Lines 1-3 try to find a subset of the original processes
that produce X, first by splitting the original set in roughly
equal parts and then subdividing it further and trying com-
plements when that does not work. Line 14 contains the
minimal subset needed for the intrusion. Further subsets
need not be considered, because they have already been
tested (lines 9 and 13). Delta debugging finds the culprits
(processes C', S, and Wag) with only fourteen tries.

From this, we can see that in this example, Malfor’s re-
sult is complete, minimal and correct: the processes that
Malfor found, and only those, really were relevant for the
break-in.

We emphasize that Malfor’s result does not only con-
tain the root cause of the attack, but all intermediate attack-
relevant processes too. So if an attack involves a long chain
of events, Malfor will produce all the intermediate steps that
are needed to reproduce the attack.

One concern is that a process could not exhibit its orig-
inal behavior during replay because it took a different con-
trol path. For example, what if a process launches an at-
tack only upon the existence of certain files, or a success-
ful challenge-response authentication with a remote server?
In these cases, the process must have made system calls that
caused these actions to be performed. Malfor then captures
these system calls and replays them. For example, if a pro-
cess creates a random challenge as part of the challenge-
response protocol, it will have to issue system calls to do
so (for example, in order to read /dev/random). When we

replay the process, we also replay these system calls, so
we will have recreated the state of the process as it was
when it made the original challenge-response authentica-
tion and the computed challenge will be the same in both
cases. In the case of files on the local file system, Mal-
for actually executes the system calls; in the case of a re-
mote challenge-response authentication, it replays a previ-
ously recorded conversation.

3. Capture and replay

In this section, we give some technical details on our cap-
ture and replay infrastructure. In particular, we will focus on
how we can alter captured events on replay and how we can
test specific process subsets.

3.1. Overview

Security incidents happen because intruders send mali-
cious inputs (attack vectors) to processes, which then is-
sue system calls that cause some security policy to be vi-
olated [22]. For example, if we assume that there are no
covert channels and that confidential data was disclosed,
some process must have issued a write() system call that
wrote this data to its forbidden destination. These malicious
inputs are delivered to the processes also by system calls.
Therefore, if we want to use delta debugging to find out
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Table 1. Process subsets actually tried by delta debugging Spud with Malfor.

how a policy violation happened, we must be able to cap-
ture and replay the system calls that those processes make.

In order to capture and replay system calls, Malfor uses
a subsystem that sits between a process under observation
and the operating system (see Figure 2). When capturing,
all interesting system calls are intercepted by that subsys-
tem and captured in a database (steps 1, 2, 2a, 3, and 4a).
When replaying, the requested system call is matched in the
database, modified, and returned; the original system call is
never executed (steps 1, 2, 3, and 4b).3

Since a process has no reliable method of finding out
whether a system call actually executed or whether it was
replayed from a database except by making a system call,
we play with the process’s notion of the outside world. This
part of Malfor is therefore named Solipsy*. Since captur-
ing takes place on a real system, and since system calls are
faithfully replayed, an attacking program cannot easily find
out whether it is being fed replayed information or results
from actual system calls.

Our implementation of Solipsy runs on Linux. In order
to speed up replay, we use User Mode Linux (UML) [4]
with copy-on-write (COW) disk images. We initially cre-
ate two disk images, one for capture and one for replay.
One contains the capture daemon and the other the replay
daemon, but both are otherwise identical. To start replay-
ing, we boot UML from the replay disk image. During op-
eration, the COW file contains only those blocks that have
changed with respect to the original disk image, so in or-
der to reset the replay system to its initial state, we can sim-
ply delete the COW file and reboot UML.

3 Some system calls are problematic or impossible to replay, among
them fork() or execve() (these change the control flow in a way that
is difficult if not impossible to replay without actually creating a new
process or executing a new program, respectively); brk() (on success,
memory must actually be allocated); and mmap(), shmat() and related
ones (they allow a process to do I/0 without extra system calls). All
these system calls are not replayed, but actually executed.

4 From solipsism, the idea that the outside world comes to us only
through our senses and is therefore not necessarily real.

3.2. Matching system calls

When we want to replay a system call, we have to find
its matching counterpart in the database. If replay were per-
fect, then everything during replay would be the same as it
was during capture: system call parameters, file descriptor
numbers, and process IDs would all be unchanged. In prac-
tice, this is not the case. For example, process IDs during
capture will generally differ from those during replay be-
cause of un-replayed processes, and file descriptor numbers
will differ because some file operations are replayed from
the database (bypassing the operating system) and some are
executed (going through it). These parameters are mapped
between the user-mode process, the operating system, and
the replay daemon.

Some system call parameters may be judged irrelevant
for matching because they can change from run to run with-
out affecting the mapping of captured to replayed calls. An
example is the exact value of a buffer address in a read()
system call. While irrelevant parameters are ignored, all
others are used as a key into the database.

When a system call is thus matched and retrieved, it is
marked as “spent” and cannot be replayed again. This is
needed to distinguish between otherwise identical system
calls: a process can call read() repeatedly with the exact
same parameters. In this case, we take the earliest unspent
match.

3.3. Signals

Signals are events that are asynchronously delivered to
a process. In other words, a signal is delivered to a process
without the process having to ask for it. This is in contrast to
system calls, where processes must explicitly request their
services. When a signal arrives, process execution is sus-
pended and a special routine in the process, called a sig-
nal handler, is executed. Signals may occur at any time dur-
ing process execution, even while executing a signal han-
dler. Typical examples are SIGSEGV, which occurs when
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Figure 2. Architecture of Solipsy. Parts of Solipsy are shown darker.

a process references memory that it cannot access, such as
a null pointer; SIGCHLD, which occurs when a child pro-
cess dies; SIGALRM, which occurs when a timer expires;
or SIGINT, which occurs when a user interrupts a process
from the keyboard.

For externally-generated signals such as SIGINT, it is
certainly possible to capture and to replay them at the ex-
act time they occurred during capturing [5]. However, our
method works by altering the process’s control flow in or-
der to find out which circumstances are relevant. Therefore,
replay with Malfor is not verbatim, and it becomes impos-
sible to say when or if a signal should be delivered. For this
reason, Solipsy currently does not capture or replay signals.

Fortunately, many important signals will be delivered
correctly, even if they are not captured or replayed. For ex-
ample, SIGSEGYV, SIGCHLD and SIGALRM will be deliv-
ered at the correct time anyway, because they have their ori-
gin directly in a process’s former actions: accessing invalid
memory, creating a child process which then exited, or in-
stalling a timer, respectively.

3.4. Changing a process’s execution path

Malfor works by testing various subsets of processes to
see if the intrusion happens when only these processes are
present. However, Malfor cannot prevent a process from
calling fork(), so if we want to test a process subset that
does not contain a process P, but P’s parent forks, we let

it fork, but as soon as P makes a system call, we make the
process exit instead of replaying the call.

To support this behavior, the replay daemon registers
event handlers and will forward system calls to these han-
dlers which then decide what to do with the system call and
with the calling process:

e the system call can be matched in the database (the de-
fault action);

e the system call can be executed by the operating sys-
tem (the default action if the call cannot be found in
the database);

e the process can be made to exit instead of executing
the system call;

o if the system call is fork(), the newly created child pro-
cess can be made to exit at the next call; or

e the result of the system call can be computed on the
fly.

This framework is more general than is strictly needed to
control process creation, but it allows us to extend Malfor
to find not only the relevant processes, but also the relevant
inputs to those processes (see Section 7 on further work).

4. Initial experience

If Malfor is to be a practical system, it needs to be ac-
curate, fast and easily deployed. Malfor’s accuracy is cur-



What Total | Median 1 o
UML + Replay | 364s 26s | 26.0s | 3.7s
Replay only 1745 13s | 12.4s5 | 3.3s

Table 2. Performance when analyzing the
sample attack on Spud (14 tests). All times
are in seconds. The column labeled ;. holds
the mean and the column labeled o holds the
standard deviation.

rently being evaluated. All we can say at this point is that it
has so far found the relevant processes in all our tests. The
next two sections contain a preliminary performance eval-
uation, which has results only for capturing and for delta
debugging the example from the previous section. We can
show only a few results here; we are currently working on
a more complete set of statistics. The last section looks at
Malfor’s deployability.

For these experiments, the (un-tuned) MySQL database,
UML with Solipsy and the outside “attacker” were all on the
same host, a 3 GHz Pentium 4 PC running Linux 2.4, both
as the host kernel and the UML kernel. All kernels were oth-
erwise unoccupied.

4.1. Performance of delta debugging

When we actually analyzed the example attack from Sec-
tion 2 with Malfor, we got the results summarized in Ta-
ble 2. We can see that the time spent replaying the processes
is on average only about half of the UML running time. In
other words, about half the time is spent booting and shut-
ting down Linux kernels. Linux startup time is hard to speed
up; in our case, we have already disabled all unneeded ser-
vices. Shutting down a UML, however, takes about ten to
eleven seconds in our setup, so if we just killed the UML
instead of shutting it down cleanly, we would save between
14 -10s = 140s and 14 - 11 s = 154 s of run time. If we
did that, the proportion of replay time to total running time
would rise to about 75 percent and the total running time it-
self would decrease by about 40 percent, to about 217 s.

4.2. Performance of capturing

In order to measure the performance of capturing, we ran
Spud in successively more complete Solipsy environments,
as explained below. In each environment, we called Spud
257 times in rapid succession. One of these times, the ser-
vice was made to exhibit its vulnerability. Overall, we there-
fore have one command-line process, one session leader,
one intrusion-causing interaction and 256 harmless interac-
tions. Table 3 has our results.

OH OH
Environment Time | Ded. | UML
Dedicated machine 21.5s | 0%
UML w/o Solipsy 22.4s | 4% 0%
UML w/Solipsy, disabled | 24.0s | 12% ™%
UML w/full Solipsy 24.3s | 13% 8%

Table 3. Performance of Spud in various envi-
ronments. The column labeled “OH Ded.” has
the overhead of running Spud in the given
environment relative to running it on a dedi-
cated machine; the column labeled “OH UML”
has the same overhead relative to running
Spud on a UML without Solipsy.

On a dedicated system that did not run inside UML or
use Solipsy (that is, Spud performed only steps 1 and 2a
in Figure 2), this took 21.5s. On an UML system that did
not have Solipsy (steps 1 and 2a are performed, but the net-
work I/O has to cross a machine boundary), it took 22.4 s.
Once Solipsy was loaded and enabled, but the service not
traced (steps 1, 2, and 2a), execution time rose to 24.0s.
When the vulnerable service was also traced and the results
put in a database (steps 1, 2, 2a, 3, and 4a), execution time
was 24.3 5.

While these preliminary results cannot be definitive, we
feel that the system calls captured in this experiment (see
Table 4) are typical of larger systems and that therefore the
numbers obtained in this experiment are representative. If
that is indeed the case, the overhead of capturing would
be about 8% when compared to an un-traced process run-
ning inside UML (the “Overhead UML” column Table 3),
or about 13% when compared to a dedicated machine with-
out either UML or Solipsy (the “Overhead Dedicated” col-
umn).

On the one hand, both results are excellent. They also
compare well with those by Dunlap and others [5]. On the
other hand, it seems as if these numbers are so good only
because the program takes so long, even on a dedicated ma-
chine (the first row in Table 3). Its performance is about six
requests per second, which seems rather slow. It remains to
be seen whether the performance figures are indeed repre-
sentative of larger network services, such as Apache.

4.3. Deployability

All of Malfor’s components are easily installed: Solipsy
is a loadable kernel module, the capture and replay dae-
mons are ordinary processes, the delta debugger is also an
ordinary process that can additionally reside on a remote
machine, and the database is an ordinary MySQL database



accept  access  bind brk close
connect execve exit fentl64  fork
fstatb4  listen  llseek mmap  munmap

open read setsockopt socket  stat64

unlink wait4d write

Table 4. List of captured system calls in
the experiment. Solipsy captures many more
system calls than given in this table; they just
weren’t used by Spud.

without any tuning. Neither the kernel image nor the cap-
tured processes need to be changed. The latter is particu-
larly important if we want to analyze processes whose pro-
grams we cannot debug. We therefore believe that Malfor is
easily deployed.

5. Related work

There are a number of tools that enable deterministic re-
play debugging. One of the first proposals for a determinis-
tic replay debugging system was Flight Data Recorder [30].
Flight Data Recorder is geared at replaying an entire mul-
tiprocessor system faithfully. It works by checkpointing the
system and recording race-relevant information that would
be needed to allow faithful replay from the last checkpoint.
To record this information, it needs some extra hardware.
Flight Data Recorder itself does not replay; this is left to
other programs like InstantReplay [13].

Flashback [26] was motivated by the need for a rollback
facility to allow debugging large and very long-running pro-
grams that might display a bug only after days of execution,
or only in specific circumstances. It works by providing fa-
cilities for checkpointing and deterministic replay. Check-
pointing is done by using shadow processes: a copy of the
currently running process is created at some specific time
using fork(), and suspended immediately. This shadow pro-
cess is then reanimated when the execution is rolled back
to the creation point. Replay is done by hijacking the sys-
tem call handler, substituting one’s own, and capturing sys-
tem calls and their side effects. Solipsy uses essentially the
same technique. Signals are also handled as in Solipsy, that
is, they are ignored.

Another system for deterministic replay debugging is
BugNet [16]. BugNet’s goal is to record enough informa-
tion to replay the instructions immediately preceding a pro-
gram crash. BugNet aims only to replay the user code and
shared libraries; the user will not be able to see what goes
on during interrupts or system calls. BugNet works by sav-
ing the processor registers at the beginning of a checkpoint
and then capturing the value of load instructions to registers.

On replay, the initial processor state is restored and load in-
structions are replayed. Like Flight Data Recorder, BugNet
needs hardware support.

Dunlap and others developed ReVirt, an addition to User
Mode Linux that captures and replays the sequence of ma-
chine instructions during an execution of Linux [5]. Re-
Virt works by virtualizing the processes to be logged—
wrapping them in a virtual machine—and logging asyn-
chronous events to guarantee instruction-level replay. The
novel idea here is that it is not the host machine that is being
logged, but the virtual machine. This obviates the need for
hardware extensions that systems like Flight Data Recorder
or BugNet need.

All these systems were designed to facilitate or enable
deterministic replay, that is, replaying the exact sequence
of instructions that were executed previously. Malfor makes
no claim of determinism. In fact, the whole point of Mal-
for is to change the execution flow of the participating pro-
cesses to see whether the intrusion still occurs. When the
replayed process’s control flow changes, the whole notion
of “deterministic” replay becomes problematic because the
changed run cannot be compared to any previous run.

System call capturing or interposition has been in use
for some time to enable security analyses or policy enforce-
ment [9, 10]. System call interposition in the face of hos-
tile applications is difficult and most research in that area is
aimed at overcoming these difficulties [8]. The system that
is most similar to Solipsy is probably Systrace [22], a sys-
tem that helps formulate and enforce system call policies,
which also modifies system calls on the fly.

King and others used ReVirt to develop Backtracker, a
system that builds a graph of dependencies between events
such as process creation, I/O, or file deletion and uses these
dependencies for break-in analysis [12]. For example, if
Backtracker wants to find the cause for a modification of the
file /etc/passwd, it will look through its dependence graph,
find the process P that last modified the file and will then
recursively find all events and processes that could have in-
fluenced P.

An inherent limitation of Backtracker is that it cannot
find effects whose cause does not appear in the dependency
graph. In our above example, if Backtracker wants to find a
modification to /etc/passwd, it will look for system calls that
open and write the password file. We have written a program
that creates a new root account in the password file without
leaving traces in system calls. This program works as fol-
lows:

1. It loads a purpose-built kernel module.>

5 This presupposes that the attacker has already gained root access.
However, this program’s purpose is not to attack, but to install a back
door that cannot be analyzed by Backtracker.



2. Upon module initialization, the kernel module causes
a new root account to be added to the password file. It
does so by calling functions inside the kernel and not
by making additional system calls.

3. Finally, the program unloads the kernel module.

Backtracker will not be able to answer the question
“Which events caused the extra root account to appear in the
password file?” because it looks at the system calls and de-
duces that there is no relationship between /etc/passwd and
the process that loads the kernel module. Malfor will ac-
tually execute the processes in question and will be able to
produce a fairly small list of processes that have experimen-
tally been found to be responsible for the alteration of the
password file. This limitation exists for all purely deduc-
tive methods and is not specific to Backtracker.

We can also modify the attack so that the kernel module
delays installing the new root account. This means that sys-
tems are fooled that freeze the system as soon as they detect
a compromise in order to find the responsible processes.

James Newsome and others have developed Taintcheck
[20]. Taintcheck and produces attack signatures for certain
common exploits such as buffer overflows or format string
vulnerabilities by tainting all user-supplied input and fol-
lowing it through the computation with the help of Val-
grind [18]. Taintcheck looks for potentially harmful uses
of user-supplied input, whereas Malfor looks for the causes
of specific events, regardless of whether they are based on
harmful uses of input.

If there is much malicious traffic, such as in a worm
attack, this traffic may be characterized and characteristic
features exploited so that it may be possible to extract at-
tack vectors without deduction or experimentation. Exam-
ples of such systems are Autograph [11], EarlyBird, [24]
and PAYL [28]. If the attack is not only massive, but also
polymorphic, Polygraph can be used [19]. However, since
these systems are statistical in nature, they all need large
amounts of attack traffic in order to work. In contrast to this,
Malfor finds the relevant processes in a single targeted at-
tack.

Another system to detect targeted attacks is shadow hon-
eypots, introduced by Anagnostakis and others [1]. Traffic
that is classified as anomalous is processed separately on a
shadow honeypot, in order to see whether it leads to an at-
tack. If it does, the traffic is discarded. If it does not, the
traffic is transparently forwarded to the production system.
This approach will work well for attacks that move the sys-
tem from a secure to an insecure state in a short amount
of time. Attacks where the system is gradually and gen-
tly nudged to an insecure state through multiple stages of
attack are more difficult to handle because each stage ex-
cept the last one might escape detection. These attacks are
at least in principle analyzable by Malfor.

Sidiroglou and Keromytis introduce a technique that
patches a vulnerable program’s source code on the fly, once
the infection vector is isolated [23]. They focus on stack-
based buffer overflows and use heuristics that transform the
program’s source code so that the buffer overflow is con-
tained. The patched program is tested in a clean-room envi-
ronment, both against the original attack vector and against
a local test suite to ensure that it is no longer vulnerable
and that it still works as expected. Their technique presup-
poses that the attack vector has already been isolated, some-
thing that Malfor is designed to do.

6. Assumptions and limitations

Malfor works only under certain assumptions. If these
assumptions don’t hold, Malfor can be defeated. This sec-
tion lists some of these assumptions.

Determinism. Malfor will have problems analyzing at-
tacks that use race conditions or other forms of non-
determinism to succeed. In principle, context switches
could be added to the set of debuggable items, and
delta debugging has even been used to find failure-
inducing thread schedules [2], but it would be imprac-
tical to implement this in Malfor, since Malfor is very
much geared towards replaying system calls without
modifying the operating system or any applications.

Focus on Processes. If an attack succeeds because of a bug
in a shared library, Malfor will only find the processes
that were involved in this particular attack, not the li-
brary that is the real culprit. We hope, however, that
Malfor’s diagnosis enables administrators to analyze
the attack further and ultimately to find the bug in the
library.

Suitable Test. Malfor uses an automated test to check for
an intrusion. If this test is fuzzy or produces false pos-
itives or negatives, Malfor’s diagnosis can be faulty.
This can happen for example if the attack has a delayed
effect. This can be avoided by letting malfor replay all
processes prior to testing subsets. If Malfor does not
detect an attack immediately after replaying all pro-
cesses, the test is not suitable for Malfor and needs to
be adjusted.

State Equivalence. For our prototype, we cannot formally
prove that system states are equal during capture and
replay, because there exists no formal specification for
Linux’s behavior. In practice, it is also unrealistic to in-
sist on bit-by-bit identity. We settle instead for a form
of isomorphism between system states, plus mappings
that make that isomorphism (hopefully) undetectable
to user-mode processes. Finding out the system calls
that need to be replayed and finding out the right map-
pings is a manual process that is imperfect by nature



(because it relies on our understanding of the seman-
tics of Linux system calls), but we believe that such
isomorphisms can be created, given enough resources.

Undetectablilty. At the moment, Malfor can be circum-
vented once a process has gained sufficient privileges.
This means that a process could deliberately perform
differently during replay than during capturing. Inte-
grating Malfor more tightly with the kernel and us-
ing mandatory access controls like SELinux [17] could
mitigate this problem; these measures would leave
Malfor visible, but the attacker could not easily find
out whether it is in the capture or the replay phase.

7. Conclusion and further work

We have introduced Malfor, a system that uses a
new experiment-based approach to analyze security inci-
dents. Malfor produces results that are complete, minimal,
and correct because the processes it finds—and only these
processes—have been experimentally shown to be rele-
vant. The amount of information that needs to be exam-
ined in order to find the attack vector is greatly reduced, so
the relevant evidence has a much higher visibility. Attack-
ing processes cannot easily distinguish between their attack
and a replayed version.

In the future, we plan to extend Malfor in several ways.
These extensions include:

Finding attack vectors. Most importantly, we are already
working on applying the same simple technique to find
the relevant inputs, that is, the infection vector. In fact,
one of the original applications of delta debugging was
to minimize inputs to failing test cases [32]. This could
lead to the automatic generation of a signature for a
NIDS like snort [25], or to a vector that can be used
by Sidiroglou and Keromytis’s patch generation sys-
tem [23].

Using intrusion-causing and harmless runs together.
Currently, we use delta debugging only one run—the
run that causes the intrusion. We could also use it
with two runs: one that causes the intrusion, and an-
other similar one that does not. With these two runs,
we can find a relevant difference between two simi-
lar runs. Delta debugging is much faster for this case
than using only one run. Harmless runs are easy to
come by for network services like Spud or Apache be-
cause the session leader forks many similar workers,
most of which will not be causing intrusions.

Suggesting fixes in configurations. If we have two sys-
tems, one of which is vulnerable to an attack and an-
other that is not, we can use delta debugging to find a
relevant difference in the two systems’ configurations.
Which configuration files are read is apparent from the

process’s system calls. In fact, this information is al-
ready extracted from the system calls based on heuris-
tics. This could lead to an automated “quick fix” fea-
ture that suggests to apply a minimal set of changes to
the vulnerable system in order to make it immune to a
specific attack.

Analyzing distributed attacks. At the moment, we ana-
lyze break-ins that happen on a single computer. Many
important systems today are distributed, however, and
incident analysis on distributed systems is a relevant
problem. Apart from the problem of synchronizing
event streams between machines [14], this work could
also make use of results derived by Mattern and oth-
ers [15] to find events that cannot be the cause of the
break-in because they happen concurrently with it. It
is easier to find concurrent events in a distributed sys-
tem than on a single machine, so it could turn out that
finding causes of break-ins is easier in distributed sys-
tems.

Our broad vision is that of a self-diagnosing and self-
healing system: computers detect when they are under at-
tack, use Malfor to find the attack vectors and possibly even
fixes, apply the fixes and deploy the fixed components. In
the race between attackers and administrators, this should
give the administrators some breathing space in which they
can fortify their systems and devise and deploy more gen-
eral defenses.

Information about Malfor can be obtained from http:
//www.st.cs.uni-sb.de/malfor/.
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