Limiting the Disclosure of Access Control Policies During
Automated Trust Negotiation

Kent E. Seamons

Computer Science Department
Brigham Young University
Provo, UT 84602, USA
seamons@cs.byu.edu

ABSTRACT

Automated trust negotiation is a new approach to
establishing trust between strangers through the exchange
of digital credentials and the use of mobile access control
policies that specify what combinations of credentials a
stranger must supply in order to gain access to each local
service or credential. In this paper, we show that access
control policies can also contain sensitive information that
should be protected from inappropriate access by
strangers during negotiation. We present and analyze two
automated trust negotiation strategies that support
protection for access control policies. The first is the
relevant credentials set strategy, which does not directly
disclose access control policies and has a fast running
time, but may disclose more credentials than strictly
necessary. The second strategy is the all relevant policies
strategy, which freely discloses all relevant access control
policies that the other negotiating party has earned access
to during negotiation, and offers the possibility of
disclosing fewer credentials during negotiation.

1. Introduction

Automated trust establishment between strangers
promises to extend trusted interactions to a much broader
range of participants than is possible with traditional
security approaches that are based on identity and
capabilities. With automated trust establishment between
strangers, the number of sensitive business processes that
can be accomplished electronically will grow substantially,
which in the long run will lead to more efficient markets
and reduce the cost of doing business. To accomplish this
goal, software to establish trust must be ubiquitous; to
reach this point, different approaches for establishing trust
must be developed and carefully evaluated. This paper
contributes to this effort by showing, for the first time, how

Marianne Winslett, Ting Yu

Department of Computer Science
University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA
{winglett,tingyu} @uiuc.edu

automated trust establishment can support access control
policies that contain sensitive information that should not
be given out to just any stranger.

In open systems such as the Internet, establishing trust
between participants engaged in a business transaction is
crucial when that transaction involves such things as the
exchange of sensitive information or the formulation of
contractual obligations. The problem of establishing trust
is complicated by the fact that the participants may have no
pre-existing relationship and may not share a common
security domain. For instance, web clients and servers
frequently begin an interaction as complete strangers.
Learning the identity of the client will not help the server
to determine whether the client should be trusted to access
the requested resource, and vice versa. Instead, trust may
be established by verifying properties other than identity.
For example, a service may need only to ensure that a
potential client is an Illinois resident. This can be
accomplished through an exchange of digital credentials
that tell each participant what others have to say about
their counterpart. Digital credentials are the on-line
analogues of paper credentials that people carry in their
wallets.

Today’s credentials are digitally signed assertions by a
credential issuer about the credential owner. A credential
is signed using the issuer’s private key and can be verified
using the issuer’s public key. A credential describes one
or more attributes of the owner, using attribute name/value
pairs to describe properties of the owner asserted by the
issuer. Each credential has a type based on the set of
attribute names in the credential. Each credential also
contains the public key of the credential owner. The owner
can use the corresponding private key to answer challenges
or otherwise demonstrate ownership of the credential. The
owner can also use the private key to sign another
credential, owned by a third entity.

Thus, credentials may be combined into chains, where
the owner of one credential is the issuer of the next
credential in the chain. Credential chains permit one entity

to trace a web of trust from a known entity, the issuer of
the first credential in the chain, to the submitting entity in
which trust needs to be established. Multiple chains can be
submitted to demonstrate additional properties of the
submitting entity and its relationships with known entities.
For example, one credential chain might be used to
establish that the server is a member of the Better Business
Bureau of the USA, and another chain might be used to
demonstrate that the server has agreed to safeguard private
information.

While some resources are freely available to all, many
require protection from unauthorized access. These
“protected” resources should be governed by access
control policies that specify the requirements to be
satisfied in order to be granted access. Access control
policies can be used to protect a wide variety of resources,
such as services accessed through URLs, roles in role-
based access control systems, and capabilities in
capability-based systems. Since credentials themselves,
and even access control policies, can contain sensitive
information, they can also be viewed as resources whose
disclosure will be governed by access control policies. In
our work, we are concerned with access control policies
that describe what credentials a party must submit to gain
access to the protected resource. Trust is established by
exchanging credentials and requests for credentials, an
iterative process known as trust negotiation. Different
negotiation strategies determine when and how credentials
are disclosed; many strategies will require that access
control policies be mobile, that is, that the policies
themselves, or some distillation of the policies, be sent to
the other party in a negotiation, so that the other party can
understand the requirements for gaining access to the
desired resource. To enable wide-scale -electronic
deployment of sensitive business processes, it is imperative
that trust negotiation be automated.

2. Limitations of existing systems

Figure 1 illustrates a protocol for the flow of policies
and credentials during trust negotiation between a client
and server [15][17]. In figure 1, the client is a stranger to
the server and requests a service from the server without
submitting any credentials (step 1). An access control
policy governs access to the service and specifies the
acceptable credentials for submission. When the server
receives a request without those credentials, it responds
with the policy governing access to the service (step 2).
The client consults the policy to determine if it has
credentials that satisfy the policy. If so, the client can
repeat the request with the appropriate credentials attached
(step 3). If the appropriate credentials are submitted, the
server grants access to the service (step 4). Step 2 is the
only opportunity for the server to tell the client about the

access control requirements the client must satisfy to gain
access to the service. At that stage in the negotiation
protocol, the server knows nothing about the client and
must fully disclose the policy governing access to the
service for the negotiation to proceed. Thus, existing
systems supporting trust negotiation have limitations when
mobile policies contain sensitive information, as illustrated
by the examples below.

1) Service request

>
2) Poli
. <) Policy
Client 3) Service request, credentials Server
< 4) Service
Figure 1. An example trust negotiation

protocol without support for sensitive
credentials and policies. The client is a
stranger to the server and requests a
protected service without submitting any
credentials.

Example 1. A corporate web server manages
information for a collaborative project between the
corporation and a secret business partner. The information
is accessible only to members of the project team from
both companies. To obtain authorized access, team
members must submit employee credentials that show that
they work in one of the departments associated with the
project. Since the access control policy includes
information about a business relationship and a secret
project, disclosing that policy to a stranger is undesirable.

A solution to this problem is for the server to begin trust
negotiation by requesting an employee credential, which
the server checks to see if the client works for the
corporation or for the business partner, without the client
knowing the details of the constraint. If the client is an
employee of the appropriate company and department,
access is granted. If not, access is denied without the
server divulging sensitive information that might disclose
the nature of the information the server manages.

Example 2. A corporate web server provides a protected
service intended for vice-presidents in Company A and all
employees in Company B. Revealing the vice-president
constraint to strangers unnecessarily raises interest or
concerns regarding the rationale behind the constraint,
especially by those who fail to satisfy the constraint. This
problem can be solved in the same way as example 1.

Example 3. A web server provides access to sensitive
corporate information for the corporation’s suppliers. The
corporation issues a credential to each supplier

organization. Suppliers in turn issue credentials locally to
their employees. Suppliers are autonomous, and each
supplier has its own approach to issuing credentials. For
instance, some suppliers may issue employee credentials at
the corporate level, while others will issue site credentials
at the corporate level, and employee credentials at the site
level. Suppliers will formulate their own policies about
which credentials can be used to authenticate their
employees. This situation creates the need for supplier-
specific access control policies. If the trust negotiation
system supports a single access control policy that
combines all the supplier-specific policies, outsiders could
learn about the security requirements of all the trusted
suppliers. In addition, the trusted suppliers would learn
about each other’s policies, which may not be desirable.
The solution is for the server initially to ask for a
credential chain that includes the supporting supplier
credential. Once the server knows which supplier the
client is associated with, the server can release the
supplier-specific access control policy information.

Example 4. A web server for a multinational corporation
automatically supports benefits enrollment and payroll
processing services. The available credentials and
associated policies vary dramatically from country to
country. To ensure that its policies are scalable and
maintainable, and to keep message sizes reasonably small,
the server requests a credential indicating the client’s
country of residence. Then it provides the policy
associated with that country only.

These scenarios show that the mere mention of sensitive
credentials, and the constraints imposed upon them in an
access control policy, can leak sensitive corporate
information. ~ Adversaries might make use of that
information in attempts to gain illicit access. Even when a
policy is disclosed to an entity that eventually proves to be
trustworthy, disclosing all the constraints to it may be
undesirable. Subdivision of policies also has advantages
for performance and policy maintainability.

3. Gradual trust establishment

The examples in the previous section suggest that a
solution to the problem of disclosing sensitive policies to
strangers is to extend trust negotiation protocols to
establish trust gradually, so that a policy referencing a
sensitive credential or containing a sensitive constraint is
not disclosed to a total stranger. Figure 2 illustrates a
protocol that follows this approach. Initially, the client is a
stranger to the server and requests access to a service (step
1) without submitting any credentials. The server responds
with a policy (step 2) that governs access to the service.
This policy includes only information the server is willing
to disclose to a stranger. The client determines a

combination of credentials that satisfies the server’s
request and submits them along with another request for
the service (step 3). In contrast to the negotiation in figure
1, the client receives a second policy from the server (step
4). This is a sensitive policy that the server was not willing
to disclose until it had established sufficient trust in the
client using credentials submitted earlier (step 3). The
client determines a combination of credentials that satisfies
the second policy and repeats the request for service along
with those credentials (step 5). Finally, the server
determines that it trusts the client enough to provide the
service (step 6). Trust could also be established gradually
by iterating steps 4 and 5 as many times as necessary.

1) Service request
= »

2) Policy

<

3) Service request, credentials

Client Server

4) Polic
<) y

5) Service request, credentials

6) Service
<)

Figure 2. An example trust negotiation
protocol that extends the protocol in figure
1 to support gradual trust establishment.

The protocol in figure 2 allows several possibilities that
were missing in figure 1. The policy in step 4 may not be
the same for all clients. It could depend on the credentials
that were submitted by the client in step 3. Also,
constraints, such as the restriction to vice presidents in
example 2, can be expressed as policies and evaluated
locally using previously acquired credentials, so that the
other party never learns the constraints. Although hidden
policies can protect the security interests of those who
possess them, hidden policies are a potential source of
frustration to users, as access control decisions may appear
to be non-deterministic when access is denied after the user
provides credentials that satisfy a mobile policy. One
approach to alleviating this problem is through a provision
to inform the user of the presence of hidden policies,
assuming such disclosure is considered harmless.

For simplicity, the protocol examples shown thus far
show how a server can control access to a protected
service, with the service’s access control policy being
communicated to the client and the client submitting
credentials to the server. Current work on trust negotiation
includes a generalization of these ideas, where policies and
credentials flow in both directions [15]. The remainder of
this paper assumes the more general case where both

clients and servers possess sensitive resources and
sensitive policies that govern access to those resources.

4. Policies and policy graphs

When we step back to formalize the concepts of
credentials and policies, we see a need for a more abstract
representation of the information contained in credentials
and policies, free of implementation details such as
encryption protocols and data representation formats. In
our work, we assume that the information contained in
policies and credentials can be expressed as finite sets of
statements in a formal language with a well-defined
semantics. Mathematical logic is well-suited to this
purpose; for convenience, we will assume that the language
allows us to describe the meaning of a policy as the set of
all models that satisfy the policy, in the usual logical sense.
We say that a set X of statements satisfies a policy P if and
only if P is true in all models of X. To prove that it
satisfies a policy P, a negotiation participant will submit
sets of credentials, whose union forms the set X. For
convenience, we will often say that a negotiation
participant satisfies a policy P if the set X of credentials
provided so far by the participant satisfies P. The empty
set of formulas is a policy that is always satisfied.

The layers of access control policies used to guard a
resource during gradual trust establishment can be
represented as an access control policy graph (policy
graph, for short). In this paper, a protected resource can
be a service, a policy, or a credential. A policy graph for a
protected resource R is a finite directed acyclic graph with
a single source node S and a single sink R. (For simplicity,
we assume that the name of a node is the name of the
resource it represents.) All the nodes except R represent
policies that specify the properties that a negotiation
participant may be required to demonstrate in order to gain
access to R. Each sensitive credential and service will
have its own separate policy graph. Each policy
represented as a node in a policy graph G implicitly also
has its own graph---the maximum subgraph of G for which
that policy node is the sole sink. Example policy graphs
are given in figures 3 and 5; their meaning will be
discussed later.

If a negotiating party sends one of its credentials or
policies to the other party, we will say that that resource
has been disclosed. In this paper, to disclose a particular
policy node, a party sends the body of the policy
associated with the node to the other party, along with the
name of the resource whose policy graph contains the
node. Alternatively, the party can send some distillation of
this information, rather than the exact policy body and
resource name. If trust negotiation succeeds and a party is
allowed to access the originally requested service R, for
convenience we will also say that R has been disclosed.

Algorithms for trust negotiation must ensure that every
disclosure is safe, i.e., that it does not violate the policies
put in place to protect the disclosed resource. Under our
semantics for policy graphs, it is always safe to disclose
the source node of a policy graph. A party can safely
disclose a non-source node N in a policy graph if and only
if there is a directed path from S to one of N’s parents in
that graph, such that the other negotiation participant
satisfies every policy along the path. (We call such a path
an authorized path to N.) If every disclosure in a
negotiation is safe, we say that the negotiation itself is safe.
The goal of gradual trust establishment is to find a series of
safe disclosures that culminates in the disclosure of R.

In this paper, we only briefly mention the issues related
to policy languages. The most important point to note is
that in general, the semantics of the language(s) used to
represent policies must be defined over paths through
policy graphs, rather than only over isolated policies. This
is because the safety of the disclosure of a resource may
depend on the simultaneous satisfaction of many policies
in policy graphs, and these policies may need to share
references to variables.

The second noteworthy point is that negation must be
treated carefully in policy languages. In the context of
gradual trust establishment, suppose that a negotiation
participant first satisfies policy P; and then satisfies P,. At
that point, the participant might no longer satisfy P;. Asa
propositional example, perhaps P, is =p and P, is p. The
participant can satisfy P; by submitting nothing at all, then
satisfy P, by submitting p, at which point P; is no longer
satisfied. To avoid these situations, in this paper we
require that the language be monotonic, in the sense that if
a set of statements X satisfies P, then any superset of X will
also satisfy P. This restricts, but does not necessarily
eliminate, the use of negation in logic-based languages.
For example, a policy written in a first-order language
could require that a driver’s license be presented, and that
the state named in the license not be Wisconsin. Suitable
subsets of popular logics and their associated semantics
have already been identified in previous work, e.g., stable
models and the well-founded semantics from the logic
programming community [1].

Next we present one potential policy representation
language, based on first-order logic without quantifiers or
negation, with the following semantics: suppose that a
party would like to know if it would be safe to disclose
resource P,. In Py’s policy graph, there is an authorized
path Py, ..., P, from the source of the graph to the node
representing Py, if and only if the other party has supplied a
set W of credentials such that if Xj, ..., Xy, are the free
variables in policies Py, ..., Png, then W satisfies the
formula [X; ...[X;, (P, O ... OP,.1) under the usual first-
order semantics.

Example policy graphs for examples 1—4 are shown in
figure 3, using the first-order policy language just
presented. To save space and simplify presentation, we
elide the details of credential chaining and verification of
credential ownership, which would be needed in practice.

Although policy graphs are motivated by sensitive policy
information, they have other advantages in cases when a
policy graph is extremely large, as in example 4. Only the
relevant subset of the graph need be disclosed, potentially
saving communications and storage resources. For
example 4 in figure 3, a client will first be sent the policy
asking for an IBM employee credential. If one is supplied,
the client is then asked for a passport. (The policy does
not compare the names on the two credentials, instead
assuming that anyone who can pass the authentication
challenges for both credentials is the individual referred to
by both credentials.) The server then immediately
determines which successor node is satisfied, based on the
passport’s issuing country, without further communication
with the client. The process will then move on to the
appropriate subtree. Example 3 in figure 3 is quite similar;

here we see how the subtrees join together again.

In example 1 in figure 3, the companies Microsoft and
IBM are not mentioned in the source node, instead
appearing only in its immediate successors. The employee
credential supplied to satisfy the source node will allow the
successor nodes to be evaluated without further
communication with the client, who will not see the
policies in the successor nodes. (If the company names
should not be secret, then the source node should also
require that the company name be IBM or Microsoft.)
Example 2 in the same figure is very similar.

For the remainder of the paper, we switch to a different
policy representation language: propositional logic
without negation. The semantics of this language will
already be familiar to the reader, and its semantics does not
need modification for use with policy graphs. This
simplicity allows us to focus on the properties of the
Negotiation strategy rather than on explanations of our
handling of variables, negation, graph semantics, and
determining whether a credential appears in a formula.

Emp_credential (X)

Company_Name(X)=
“1BM”

Company_Name(X)=
“Microsoft”

Example 1

Dept(X)=“Dept11” ...
Dept(X)="Dept1M”

)

R

IBM_supplier_credential (X)

Company_Name(X)=

ept(X)= “Dept21” O...
Dept(X)="Dept2N"

Company_Name(X)=

Emp_credential (X)

Company_Name(X)=

“IBM”
Company_Name(X)=
Example 2 “Microsoft”
Title(X)=
“Vice President”
o
R

Emp_credential (X)OCompany_name(X)="IBM”"

Passport_credential(Y)

“Intel” “EMC”
Country(Y)="USA" Country(Y)="China’
Example 3
Emp_credentia (Y)O
- » ” Example 4
Emp_credential (Y)O CompanyName(Y)=*EMC" L] P
CompanyName(Y)="Intel” Dept_credential (2)0J USA China
CompanyName(Z)="EMC"0 Benefits Benefits
° Issuer(Y)=Dept_Name(Z) Policy subtree Policy subtree
R

Figure 3. Policy graphs for examples 1-4, using a subset of first-order logic with a graph-based

semantics.

5. Negotiation strategies for sensitive policies

We say that a negotiation strategy is safe if all possible
negotiations conducted by two parties using the strategy
are safe. A strategy is complete if whenever there exists a
safe sequence of disclosures culminating in the disclosure
of R, the strategy will eventually disclose R. While all
negotiation strategies share the goal of safely disclosing R,
they differ in how they try to construct an authorized path
to R. For example, a negotiation participant might choose
to send a credential to the other side as soon as that
disclosure is safe—an eager approach [15]. Eager
strategies disclose credentials as soon as possible, trying to
negotiate trust as quickly as possible. The primary
disadvantage is that some credentials may be disclosed
unnecessarily. A more cautious alternative is to delay
sending the credential until the negotiation stage satisfies
certain properties. For example, perhaps the credential
will not be sent until the other party has demonstrated a
need to see it. At an extreme, a participant might refuse to
send any credentials until it has determined that an
authorized path exists for the originally requested resource
[15]. Another dimension of variation is whether both
parties must use the same strategy for a successful
negotiation. In this paper, we assume that both parties use
the same high-level strategy.

We say that a credential C is syntactically relevant to
obtaining access to resource R if C appears® in the policy
of a node N in R’s policy graph, and an authorized path to
N has already been found. Similarly, C is semantically
relevant if an authorized path to N has been found, C is a
member of some set X of credentials that satisfy N’s
policy, and no proper subset of X satisfies N’s policy.
Further, for either kind of relevance, if C is relevant to a
resource Ry, and Ry is relevant to R, then C is also relevant
to R. Ideally, we would only disclose semantically relevant
credentials, so that a policy of the form C; O (C; U Cy)
would not tempt us to disclose C,. Depending on the
language used to express policies, it can be extremely
expensive or effectively impossible to determine which
credentials are semantically relevant, or to convert a policy
into a form where all syntactically relevant credentials are
semantically relevant. Thus in this paper, we consider a
credential relevant if and only if it is syntactically relevant.

During negotiations, participants send each other
credentials and requests for credentials, often couched as
the bodies of policies. In practice, a received credential

1 Note that the definition of “appears” must be tailored to the particular
formal language used to represent policies and credentials. For example,
in our propositional language, a credential C appears in a formula if and
only if the propositional symbol associated with C occurs in the formula.
In a language based on first-order logic, the term “appears” will need to
be carefully defined to include not just exact occurrences of the
credential, but also an appropriate notion of unification.

will be an encrypted object that looks nothing like the
description of that credential in the original request for it.
In our formal language, however, the same propositional
symbol is used both to denote the credential itself and the
description of that credential that occurs in the request and
in the body of a policy. Thus software would not confuse
the two, but a human reader might. To help with this
problem, in the pseudocode of our algorithms, we say that
the description of a credential appears in the body of a
policy or in a request for that credential, rather than saying
that the credential itself appears in the policy or request.

When there is an authorized path to a resource, we say
that the resource is unlocked. All unlocked resources can
be safely disclosed.

Proposition 1. Suppose that a party satisfies the policy
represented by a policy graph node. Then the party will
satisfy that policy for the remainder of the negotiation. 4

Proof. Follows from the monotonicity property of the
language used to represent credentials and policies. ¢

Corollary 1. If there is an authorized path to node P in
a policy graph, then there will be an authorized path to P
for the remainder of the negotiation. ¢

Corollary 2. Once node P is unlocked, the credential
or policy represented by P can safely be disclosed at any
point in the remainder of the negotiation. 4

Suppose that there is an authorized path to a node P in a
policy graph. If one of P’s children is locked, we say that
P is an innermost unlocked policy, and the child is an
outermost unlocked policy.

Proposition 2. When new credentials are disclosed by
the other party in a negotiation, suppose that a node N in a
policy graph becomes unlocked for the first time. Then N
must be a descendant of a node that was an innermost
unlocked node immediately before the new disclosures.

Proof. Follows from Proposition 1 and its corollaries,
and the definition of an innermost unlocked node.

Proposition 2 tells us that upon receiving new credential
disclosures, a stateful negotiation strategy can determine
which graph nodes are newly unlocked by simply checking
whether any policy at an innermost unlocked node P is
now satisfied. If so, each child, Q, of P can now be
unlocked and tested to see if Q’s policy is now satisfied. If
Q’s policy is satisfied, then Q’s children can now be
unlocked, and so on. If the sink of the graph becomes
unlocked, the whole process can stop. Otherwise, when
the process stops, the newly unlocked descendants of P can
be checked to see which, if any, of them are now innermost
unlocked nodes.

In the pseudocode for our negotiation strategy
algorithms, we do not present the details of how each party
checks a policy for satisfaction (a language-specific
routine) or computes the set of innermost unlocked nodes.
A stateful negotiation participant would probably choose
to cache the set of innermost unlocked nodes at the end of
each round of negotiation.

Proposition 3. Given a sequence of safe disclosures
terminated by the disclosure of R, let C be the first
credential in the sequence. Then C must be freely
available (i.e., the policies in its policy graph are always
satisfied).

Proof. For C to be safely disclosed, there must be an
authorized path through its policy graph. Since no other
credentials have been disclosed, all the policies along that
path must be satisfied by the empty set of formulas. In
other words, C must be freely available. ¢

In general, negotiation strategies assume that both
participants bargain in good faith. A service provider or
client might wish to start its trust negotiation by verifying
that its negotiation partner is using a negotiation package
that has been certified by an appropriate inspection service,
giving confidence that the negotiations will adhere to
certain ethical guidelines.

5.1. The relevant credentials set strategy

In the naive eager approach, the two participants
repeatedly send each other all their credentials for which
an authorized path has been found [15]. An advantage of
this strategy is that it does not disclose one party’s access
control policies directly to the other party. However, the
naive eager strategy usually results in disclosure of
credentials that are actually irrelevant for access to the
desired resource. We now introduce a relevant credentials
set strategy that discloses only credentials that might be
considered relevant to the access control decision, while
still avoiding direct disclosure of policies.

We say that a credential is local to a party if the party
possesses or has been asked for that credential; remote
credentials are those that the other party possesses or has
been asked for. We assume that the access policies for a
local resource will never ask for credentials from the local
party, since the remote party is the one who needs access.
For convenience, but without loss of generality, we will go
a step further and say that local credentials will not appear
in access control policies for local resources.

In the relevant credentials set strategy, the negotiation
participants do not send policies to each other; instead,
they only tell each other what credentials are syntactically
relevant to the authorized paths that they are trying to

construct. The two parties are trying to construct
authorized paths to the credentials that have previously
been requested during the negotiation, and the server is
trying to construct an authorized path to the protected
service R that the client originally requested.

More precisely, the parties take turns sending each other
messages of the form (Credentials, CredentialRequest),
where Credentials is a set containing the sender’s relevant
credentials that have become unlocked since the last time
the sender sent a message, and CredentialReguest is a set
containing descriptions of all the syntactically relevant
credentials that could advance the negotiation. The
negotiation terminates with failure whenever one of the
participants has no new credentials to disclose or further
credentials to request.

During negotiation, each participant maintains four sets
of local information constituting the state of the
negotiation’ The set DisclosedRemoteCredentials
contains all the credentials disclosed by the other
negotiation participant. Set RequestedLocalCredentials
contains descriptions of the local credentials that have
been requested by the other participant during the
negotiation. The set DisclosedLocalCredentials contains
all the local credentials previously disclosed to the other
negotiation participant. Set RequestedRemoteCredentials
contains a description of all the remote credentials
requested from the other negotiation participant.

The pseudocode for the relevant credentials set strategy
is contained in figure 4. When a client requests a protected
service R, the server initiates trust negotiation with the
client, to obtain client credentials from the client to
authorize access to the service. To do this, the server
invokes the RCS Message Handler() function with the
arguments initialized to the empty set. During the
negotiation, when a party receives a message (Credentials,
Credential Request), it must also invoke the same function.

Figure 5 includes an example of a 9-message trust
negotiation using the relevant credentials set strategy.
Note that it discloses more credentials than strictly
necessary to satisfy the policies.

Theorem 1. The relevant credentials set strategy is safe
and complete for monotonic propositional languages.

Proof. Safety: Under the relevant credentials set
strategy, if a credential C 1is put into the set
NewlyUnlockedCredentials, the precondition is that C is
unlocked by the credentials received from the other party.
By the definition of ‘“unlocked resource”, there is an
authorized path to C. Therefore, the disclosure of

1 To create a stateless version of this negotiation strategy for the server,
each message sent between the two parties would need to include the
four sets used to record state.

RCS_Message Handler (Credentials, CredentialRequest)
If service R is unlocked by DisclosedRemoteCredentials,

Else // determine the next outgoing message.
RequestedLocalCredentials

NewlyUnlockedCredentials

RemoteCredentialRequest = [J.

Let G be the policy graph for Ry
For each credential C,enete that is described in P

/I Cremote has not been received or requested.

Then send a Failure message to the other party.
Else

End of RCS_Message_Handler.

DisclosedRemoteCredentials = DisclosedRemoteCredentials [J Credentials.
/I This check applies only to the server.
Then exit the negotiation and grant the other party access to R.

= RequestedlLocalCredentials J CredentialRequest.
UnlockedRequestedCredentials = the set of all local credentials described in RequestedLocalCredentials
that are unlocked by DisclosedRemoteCredentials.

= the set of unlocked local credentials in UnlockedRequestedCredentials
that are not in DisclosedLocalCredentials.

LockedLocalCredentials = the set of all local credentials described in RequestedLocalCredentials that are locked.
For each local resource Rjocg Where Rjocq is credential C [0 LockedLocalCredentials or Ryyeqis service R

For each innermost unlocked policy node Pin G // P has an authorized path and is unlocked but not satisfied.
/I Local policies describe needed remote credentials.
If C emote U DisclosedRemoteCredentials and C,emote L] RequestedRemoteCredentials

Then add the description of C;engte to RemoteCredential Request.
If NewlyUnlockedCredentials and RemoteCredentialRequest are both empty sets,

DisclosedLocalCredentials = DisclosedLocalCredentials [1 NewlyUnlockedCredentials.
RequestedRemoteCredentials = RequestedRemoteCredentials [RemoteCredentialRequest.
Send the message (NewlyUnlockedCredentials, RemoteCredentialRequest) to the other party.

Figure 4. The pseudo-code for the relevant credentials set strategy.

credential C in the relevant credentials set strategy is safe.
Similarly, a description of a remote credential C”’is put
into the set RemoteCredential Request only if C”appears in
a local innermost unlocked policy P, in which case there is
an authorized path to P. Therefore, the request for a remote
credential C“is also safe.

Completeness: If there is a safe credential disclosure
sequence Seq terminated by the disclosure of R, we need
to prove that when the negotiation stops, R is disclosed.
We prove this by induction on n, the total number of
credentials and services possessed by the two parties. By
Lemma 1 below, we can assume Seq does not contain any
syntactically irrelevant credentials. When n = 1, then R is
the only credential or service possessed by the two parties.
If R is freely available, the negotiation succeeds
immediately; otherwise the negotiation fails. Either way,
the theorem holds.

Assume when n = k, the relevant credentials set strategy
is complete. When n = k+1, let E be the set of all policies
held by the two parties.

First suppose that the strategy fails without disclosing
any credentials. In that case, then when the negotiation
stops, no relevant credentials were unlocked. That means
there are no freely available relevant credentials. However,
this contradicts Proposition 3 and the fact that Seq is a safe

credential disclosure sequence containing only credentials
relevant to R. We conclude that the strategy discloses at
least one credential.

Suppose credential C is the first credential to be
disclosed during the negotiation. By Proposition 3, C must
be freely available. Let us replace every occurrence of C
in the bodies of all policies by true. We call the new set of
policies E . Obviously, E has a sequence to unlock R if and
only if E”has one. Since in E”there are only Kk credentials
and services possessed by the two parties, by the induction
hypothesis, at the end of a negotiation using E’ and the
relevant credentials set strategy, R is disclosed. Suppose
that Seql is the resulting disclosure sequence, and let us
watch the strategy as it negotiates using E and creates a
new disclosure sequence Seg_2.

Suppose that the first point in which Seql and Seq2
differ is the disclosure messages M; and M, respectively.
The difference can only occur because C has now become
relevant for Seq2, while C will never become relevant for
Seql. Thus these two messages can only differ in that M,
includes a request for C, and M; does not. Further, M;’s
successor will include the disclosure of C, while M4’s does
not. Other than that, every credential that becomes
relevant and is requested in Seql will also become relevant
and be requested in Seq2, although the request will come

one round of messages later if the disclosure of the
requested credential depends directly or indirectly on the
disclosure of C. Similarly, every credential that is
requested and later disclosed in Segl will also be
requested and disclosed in Seg2, although it will be
disclosed one round of messages later in Seq2, if its
disclosure directly or indirectly depends on the disclosure
of C. We conclude that if R is disclosed in Seql, then R
will also be disclosed at the end of Seq2.

Lemma 1. Suppose that Seq is a sequence of safe
credential disclosures, terminated by the disclosure of R.
Let Seq’be created by removing from Seq all disclosures
of syntactically irrelevant credentials. Then Seq’is also a
safe disclosure sequence for R.

Proof. Suppose the sequence Seq of safe credential
disclosures is Cy, ..., C, R. If there is no syntactically
irrelevant credential in the sequence, the lemma holds.

Otherwise, let C; be the last syntactically irrelevant
credential appearing in Seq. Therefore, Cj does not appear
in the policy graphs of Gy, ..., R. Thus, removing C; from
Seq will not affect the safe disclosure of Cjy, ..., R So
after removing C; from Seq, the resulting sequence is still a
safe credential disclosure sequence. Repeat the above step
until the sequence does not contain any syntactically
irrelevant credentials. Therefore the final sequence Seq’,
which does not contain any syntactically irrelevant
credentials, is also a safe disclosure sequence.4

For propositional languages, an upper bound on the
total number of messages exchanged can be computed by
determining the credential count of each party, that is, the
number of credentials the party possesses plus the number
of credentials appearing in the party’s policies.

Proposition 3. In the worst case, the relevant
credentials set strategy exchanges 2c+2 messages, where ¢
is the smaller of the two credential counts of the

1 1
(O4R}) w);
S S 2
I I (O{Ca) {(RCa}
3 3
S S S S @{sh {(C4.52)}
1111 4
[J .0
Ci C C3 C4 ()0) (s
5 5
client credential access ({ca.0) {C4}
control policy graphs
(0.{C1,C2,C3}) {(R,C3),(R,C1OC2)} 6
< ! (04Ssh) ! {(C1.%3).(C2:59).(Cs. S3)}
Cs Cs C3 GG, 8
S3},0
I I I \ f ({ss1.0) ()
S ss 9 (CLCah {S) 9 .
2,51,
server credential access \ \
control policy graphs 10
{(S1. Ca)}
Relevant credentials set strategy 1
T
All relevant policies strategy

Figure 5. Two example trust negotiations using the relevant credentials set strategy and the all
relevant policies strategy. In this example, the all relevant policies strategy allows the client to
access the service with fewer credential disclosures. Credential disclosures are indicated in

italics.

negotiating parties. If each credential and credential
description has length 1, then the sum of the lengths of all
messages sent during negotiation is no more than cq + c,,
where c1 and c, are the credential counts of the two
parties.

Proof. Suppose the party with the smaller credential
count is A. Each time A sends a message, it either discloses
at least one of its credentials in Credentials or mentions the
description of at least one credential appearing in its
policies in CredentialRequest. During the negotiation, A
discloses each credential and credential description at most
once. Since the two parties of the negotiation take turns
sending messages, after at most 2¢ messages, A will have
disclosed all its credentials and descriptions of all the
credentials in its policies. After that, if A receives another
message from the other party, it should send a Failure
message and the negotiation terminates. Therefore the total
number of messages during the negotiation will not exceed
2c+2.

During the negotiation, a credential’s description and its
disclosure each appear in at most one message. Thus each
credential contributes at most 2 to the sum of lengths of all
messages. If a credential is disclosed, then its description
must appear in the policy graphs of the other party, so the
size of the description of a disclosed credential is included
in the other party’s credential counts. Each credential
appearing in a party’s policy graphs but not possessed by
the other side can contribute at most 1 to the sum of
lengths of all messages. Therefore the sum of lengths of all
messages will not be more than ¢;+ c,. Here we assume the
Failure message’s size is 0. ¢

While the relevant credentials set strategy does not
directly disclose policies, in the worst case an adversary
who satisfies an unlocked policy P can learn every disjunct
it satisfies in the disjunctive normal form of P, by
submitting different subsets of its unlocked credentials and
seeing which lead to failure. An adversary who cannot
satisfy P can learn very little.

Proposition 4. Suppose that during a negotiation
where the local party is using the relevant credentials set
strategy, an adversary has obtained an authorized path to
a remote policy graph node representing policy P, and the
adversary’s set U of its own credentials does not satisfy P.
Let C be a set containing two or more credentials
appearing in P but not in U. Then the adversary cannot
determine whether any particular subset of the union of U

and C would satisfy P.

Proof. The relevant credentials set strategy will give the
adversary the set C (more precisely, a superset of C, since
other policies may have become newly relevant in the same
round of negotiation). Thus in the worst case, the

adversary knows that P is entailed by the union of U and
C. Proposition 4 says that the adversary cannot pin down
the form of P more precisely than that. According to the
relevant credentials set strategy, all the adversary can do is
to submit a subset of U and check whether it leads to
failure. Since U cannot satisfy P, the result is always
failure. Let U be the set {S,, ..., S}, and let C = {Cq, ...,
Ci}, 22, be those credentials appearing in P but not in U.
To make the adversary’s attack even simpler, suppose the
adversary knows that P is one of the following policies: S;
0..050CG0...0CGor (§50...050C) (G 0U...
0SS O0C) O... 0 0O... 0% OC). Obviously no
matter what P is and what subset of U the adversary
submits, P is never satisfied. Thus the adversary learns
nothing new about P, although the adversary may learn
more about the other policies relevant to R.

On the other hand, if C contains only a single credential,
the adversary might be able to figure out the exact form of
P. For example, suppose the adversary has supplied every
credential ever requested but one. When negotiations fail,
the adversary will realize that the failure is due to the lack
of that single credential, which must appear in one of the
party’s relevant policies. For example, if failure occurs
during the first round of negotiations, then the adversary
can think of that single missing credential as the policy
associated with the source node of the requested resource’s
policy graph.’e

We can modify the relevant credentials set strategy to
reduce the number of credentials disclosed, on average. To
do this, a party may decide to remove one or more
credentials from NewlyUnlockedLocalCred, reserving the
possibility of including them in a later message. If a party
has employed this strategy and it receives a Failure
message, it should then disclose more of its unlocked
credentials. The negotiation does not fail until two Failure
messages in a row are sent.

The disadvantage of this variant is that it will require
more messages on average and may sometimes reveal
more information about a party’s access control policies.
For instance, consider the example given in figure 5. After
message 9 has been received, C; and C3 are both unlocked.
In such a situation, the original relevant credentials set
strategy requires the client to disclose both of them, even if
the policy to be satisfied is (C; 0 C;) O Cs. Under the
variant, the client can disclose the credentials one by one.
If it discloses C; first, then the server will make R available

! Due to the existence of equivalent policy graphs with different
topologies, the missing credential might not be logically equivalent to the
policy associated with the graph’s source node. For example, the source
node policy could be the empty set of formulas, and the missing
credential could be the policy of one of its children. The distinction is
unimportant for us here.

immediately. Then the client knows that C; alone is
sufficient to gain access to R.

5.2. The all relevant policies strategy

As the example in figure 5 shows, the credentials
disclosed by the relevant credentials set strategy are
relevant but perhaps redundant for gaining access to the
desired service R. This is because the parties share only
high-level information about their access control policies,
even when the policies are unlocked. A more reasoned
strategy, with respect to credential disclosure, can be used
if the parties do not mind eagerly disclosing relevant
unlocked policies.

In the all relevant policies strategy, the parties take turns
disclosing policies and credentials to one another. Each
negotiation participant must always disclose all innermost
unlocked relevant policies. If a participant has no
additional policies to disclose, then the participant must
disclose enough credentials to unlock at least one more
policy. More precisely, the parties take turns sending each
other messages of the form (0, Policies) or (Credentials,
). Policies is a set of disclosed policies, i.e., ordered
pairs of the form (C, P;), where each C describes a
credential (or possibly a service in the case of the server)
and P is the body of a policy represented by a node in the
policy graph for C. Credentials is a set of the sender’s
relevant unlocked credentials that, together with the
sender’s previously disclosed credentials, will satisfy at
least one policy the recipient has previously disclosed.
The negotiation terminates with failure if the two parties
both send empty disclosure messages, one immediately
after the other.

During negotiation, each participant maintains four sets
of local information constituting the state of the
negotiation. The set DisclosedRemoteCredential s contains
all the credentials disclosed by the other negotiation
participant. The set DisclosedRemotePolicies contains a
set of policy disclosures, each an ordered pair as described
above. The bodies of these remote policies contain
descriptions of local credentials. The set
DisclosedLocalCredentials ~ contains all the local
credentials previously disclosed to the other negotiation
participant. The set DisclosedLocalPolicies contains all
the local policies (ordered pairs) disclosed to the other
negotiation participant. These policies contain
descriptions of remote credentials.

The pseudocode for the all relevant policies strategy is
contained in figure 6. When a client requests a protected
service R, the server initiates trust negotiation with the
client to obtain client credentials from the client that
authorize access to the service. To do this, the server
invokes the ARP_Message Handler() function with the
arguments initialized to the empty set. During the

negotiation, when a party receives a message, it invokes
the same function.

The example negotiation in figure 5 illustrates the main
points of the all relevant policies strategy. First, the
strategy errs on the side of gathering as much relevant
policy information as possible before ever disclosing any
credential. For example, once Cj is unlocked, theoretically
the client could disclose C3 and immediately obtain access
to R. However, the client does not know if there are
hidden policies that will be disclosed only after it discloses
Cs; thus the client does not know that disclosure of Cs will
immediately lead to obtaining the service. Further, from
the client’s point of view, perhaps Cz is more sensitive than
C; and Cy; it might be better not to disclose Cz and instead
to disclose C; and C,, if possible, to gain access to R.
Thus once Cj is unlocked, the client discloses additional
policies rather than disclosing C; immediately. Only after
all innermost unlocked policies are disclosed does the
client determine that Cz is the only credential it has whose
disclosure will lead to satisfaction of an additional policy.
In general, if the client had other unlocked credentials that
satisfied some disclosed policy, it would be free to choose
to satisfy that other policy instead of policy C; for R. It
could also choose to satisfy both policies with a single,
larger credential disclosure message. This flexibility
allows the client to use whatever intelligence it has at its
disposal: it can examine and search potential proof trees
using a breadth-first or depth-first approach, look for
minimal satisfying sets of credentials, or use whatever
heuristics it chooses. At the other extreme, it can use
minimal cleverness and simply disclose every unlocked
credential it has, in order to satisfy one more disclosed

policy.

Theorem 2. The all relevant policies strategy is safe
and complete for monotonic propositional languages.

Proof. Safety: Under the all relevant policies strategy,
before a credential C can be put into the set
DisclosedLocalCredentials, C must be unlocked by the
credentials received from the other party. By the definition
of “unlocked resource”, there is an authorized path to C.
Therefore, the disclosure of C in the all relevant policies
strategy is safe. Similarly, a policy P from the policy graph
of a local credential C is put into the set
DisclosedLocal Policies only if P is an innermost unlocked
policy in C’s graph, in which case there is an authorized
path to P. Therefore, the disclosure of P is also safe.

Completeness: If there is a safe credential disclosure
sequence Seq terminated by the disclosure of R, we need
to prove that when the negotiation stops, R is disclosed.
We prove this by induction on n, the total number of
credentials and services possessed by the two parties. By
Lemma 1, we can assume Seq does not contain any

ARP_Message Handler (Credentials, Policies)
DisclosedRemoteCredentials = DisclosedRemoteCredentials [1 Credentials.
If service R is unlocked by DisclosedRemoteCredentials, // This check applies only to the server.
Then exit the negotiation and grant the other party access to R.
Else // determine the next outgoing message.
DisclosedRemotePolicies = DisclosedRemotePolicies [1 Policies.
PolicyDisclosure = 0. // Create an initially empty set of policy disclosures to send to the other party.
For each local credential Cjyy that is described in some policy P in Policies // Remote policies describe local credentials.

Add Cjeq to LocalRelevantCredentials.

For each local resource Rjocg Where Ryoeqis credential C [0 LocalRelevantCredentials or Rjocq is service R

Let G be the policy graph for Rjoey.

If Rjoca is not unlocked by credentials in DisclosedRemoteCredentials,

Then for each innermost unlocked policy P in G

If (Rjoca, P) is not in DisclosedLocalPolicies, then add (R)oe, P) to PolicyDisclosure.
/Il We have policy information to disclose. Do not disclose any credentials.

If PolicyDisclosure is nonempty,
Then

DisclosedLocalPolicies = DisclosedLocalPolicies [1 PolicyDisclosure.

Send the message (U, PolicyDisclosure) to the other party.

Else /' We must disclose credentials if we can satisfy any remote policy with them.
UnlockedRelevantCredentials = the set of all local credentials that are not in DisclosedLocalCredentials,
are unlocked by DisclosedRemoteCredentials, and are in LocalRelevantCredentials.
CredentialDisclosure = A subset U of UnlockedRelevantCredentials such that U [DisclosedLocalCredentials
will satisfy at least one policy P in DisclosedRemotePolicies
that is not satisfied just by the disclosed credentials in DisclosedLocalCredentials.

If CredentialDisclosure is not empty

DisclosedLocalCredentials = DisclosedLocalCredentials [1 CredentialDisclosure.
Send the message (CredentialDisclosure, [1) to the other party.

Else /I Have negotiations failed?

If the last message received contained an empty set of disclosures,

Then send a Failure message to the other party.
Else
Send the message (U,) to the other party.
End of ARP_Message Handler.

Figure 6. The pseudo-code for the all relevant policies strategy.

syntactically irrelevant credentials. When n = 1, then R is
the only credential or service possessed by the two parties.
If R is freely available, the negotiation succeeds
immediately; otherwise it fails. Either way, the theorem
holds.

Assume when n = k; the all relevant policies strategy is
complete. When n = k+1, let E be the set of all policies
held by the two parties.

First suppose that the negotiation fails without disclosing
any credentials. In that case, the negotiation participants
send only policy disclosure messages until the negotiation
stops. Further, once the two parties ran out of policies to
disclose, they did not disclose any credentials. But by
Proposition 3, in any sequence of safe disclosures
terminated by R, the first disclosed credential is freely
available. Further, by Lemma 1, there must be a safe
sequence terminated by R in which the first disclosed
credential is relevant. That means no party’s freely
available credentials can be used to satisfy any relevant

credentials’ innermost unlocked policies, and the theorem
holds.

Otherwise, suppose credential C is the first credential to
be disclosed during the negotiation. By Proposition 3, C
must be freely available. Let us replace every occurrence
of C in the bodies of all policies by true. We call the new
set of policies E” Obviously, E has a sequence to unlock R
if and only if E’ has one. Since in E’ there are only k
resources possessed by the two parties, by the induction
hypothesis, at the end of a negotiation using E “and the all
relevant policies strategy, R is disclosed. Suppose that
Seql is the resulting disclosure sequence, and let us watch
the strategy as it negotiates using E and creates a new
disclosure sequence Seq2. We assume that the details not
specified in the pseudocode are handled in the same
manner during the runs for Seql and Seg2.

Suppose that the first point in which Seql and Seq2
differ is the messages M; and M,, respectively. The
difference can only occur because an innermost unlocked

policy in which C appears has become relevant and been
disclosed in M,, while that same innermost unlocked
policy P (but with C replaced by true) has become relevant
and either been disclosed in My, or if P is already satisfied
due to the replacement of C by true, not disclosed at all (in
that case either a policy node that is one of P’s descendants
will be disclosed, or if all unlocked innermost policies
from all relevant policy graphs have already been
disclosed, then a credential disclosure message containing
the credential at the graph’s sink will be sent). If the
immediately following messages disclose only policies,
those messages will be identical in Seql and Seq2. The
next difference will not come until the next credential
disclosure message. In that message, the all relevant
policies strategy can choose to disclose C in Seg2, while C
will never be disclosed in Seql. We assume that the
strategy does disclose C at this point (the pseudocode does
not specify that level of detail).

After C has been disclosed in Seg2, every policy that is
subsequently disclosed in Seql will also be disclosed in
Seqg2, although the disclosure will be delayed to a later
round of policy disclosure messages if the policy’s
disclosure depends directly or indirectly on C. Even the
descendants of P that are disclosed in Segql will eventually
be disclosed in Seg2. Similarly, every credential that is
disclosed in Seql will also be disclosed in Seg2, although
it will be disclosed one round of credential disclosures
later in Seq2, if its disclosure directly or indirectly depends
on the disclosure of C. We conclude that if R is disclosed
in Segl, then R will also be disclosed at the end of Seg2.
L4

Proposition 5. For monotonic propositional languages,
the all relevant policies strategy requires 2¢ + p + 2
messages in the worst case, where c is the total number of
credentials possessed by the two parties and p is the total
number of policies at both parties. If each credential and
description has length 1, then the sum of the lengths of all
messages sent during negotiation is bounded by ¢ + Py,
where Py is the total size of all policies possessed by the
two parties.

Proof. The messages exchanged during a negotiation
using the all relevant policies strategy can be divided into
four categories:

1. Messages containing only policies: since a policy is
disclosed at most once during the negotiation, the
number of such messages will not exceed p.

2. Messages containing only credentials: since a
credential is disclosed at most once during the
negotiation, the number of such messages will not
exceed C.

3. Empty messages in the form (O, O): according to the
all relevant policies strategy, if an empty message does

not cause the other party to have nothing to disclose,
then the other party will disclose some credentials in
the next message instead of disclosing a policy.
Therefore, including the last empty message which
may cause negotiation failure, there are no more than
c+1 empty messages.

4. Failure message: there is at most one failure message
during the negotiation.

Therefore, the total number of messages will not exceed

2c+p+2.

In the worst case, all the credentials and policies are
disclosed. Since each credential or policy is disclosed at
most once, the total length of all messages sent during the
negotiation will be no more than c+p;. Here we assume the
size of empty messages and Failure messages is 0. ¢

Theorem 3. Suppose that we remove the line of code in
the relevant credentials set strategy that halts negotiations
once R is unlocked. Then the set of credentials disclosed
by the all relevant policies strategy is always a subset of
the set of credentials disclosed by the relevant credentials
Set strategy. ¢

Proof. We call the new strategy RCS2. The
proposition holds in this special case because the two
strategies visit the exact same policy nodes. The proof
proceeds by induction on n, the number of credentials and
services owned by the two parties. If n =1, then R is the
only resource and the negotiation will succeed or fail
immediately, so the theorem holds.

Assume that the theorem holds for n = k, and now
consider the case where N = k+ 1. Suppose that C is the
first credential disclosed by the all relevant policies
strategy (ARP). Then by Proposition 3, C must be freely
available. Replace all occurrences of C by the special
prepositional constant true in the bodies of all the policies
of the two parties, and the result is a set of policy graphs
that no longer include a policy graph for C. The revised
graphs will have a safe disclosure sequence for R if and
only if the original policies did. By the induction
hypothesis, we can run ARP and RCS2 on the revised
policies, and all credential disclosures made by ARP are
also made by RCS2. As in the proofs of Theorems 1 and
2, we can turn the disclosure sequences for the revised
policy bodies into disclosure sequences for the original
bodies. It remains to show that C will occur in the revised
disclosure sequence for RCS2 and the original policy
bodies.

Because no credential disclosures are made in ARP
before C is disclosed, C must appear in a freely available
unsatisfied policy P; for a credential C; that is mentioned
in a freely available unsatisfied policy P, for a credential
C, that—and so on, to a credential C, that is mentioned in
a freely available unsatisfied policy P, for resource R.

Because P, 1is freely available, unsatisfied, and
immediately relevant to gaining access to R, RCS2 will
request all the credentials in P, in the first message of
negotiations. Having received a request for all the
credentials in P,, the RCS2 strategy will request all the
credentials in Py, in the next message, even if it also
discloses enough credentials in the same message to satisfy
Pn. And so on: after the nth message, RCS2 will have
requested all the credentials that appear in Py, including C.
RCS2 discloses every unlocked requested credential, and
C is freely available, so RCS2 will disclose C in the next
message.

The theorem does not hold for the original relevant
credentials set strategy (RCS) because RCS finds the
shortest path through the policy graphs that leads to
disclosure of R. For example, suppose that the sole
unlocked and unsatisfied policy remaining in R’s graph is
C, O C, Suppose that C; is already unlocked, but C; is
locked and has not been mentioned previously. RCS will
disclose C; immediately, thus ending negotiations before
the graph for C, can be explored. RCS2 will disclose C;
and go on to explore the graph for C,. ARP will explore
the graph for C, before disclosing anything, and may
eventually decide to disclose only one of C; and C,. ¢

In general, the all relevant policies strategy may actually
disclose more credentials than the relevant credentials set
strategy. This is because the all relevant policies strategy
can look at all the unlocked policies, and choose which one
to satisfy first, e.g., which branch to take out of a node. If
that branch eventually leads to additional policies which
cannot be satisfied, then the choice was an unlucky one
and the disclosures required to travel in that direction may
have been completely wasted, as the negotiating party will
have to backtrack and follow a different branch out of one
of the previously satisfied policy nodes. The possibility of
hidden policies means that a negotiating party can never be
entirely sure of the wisest course of action, until after the
fact.

We could lessen this problem by having the all relevant
policies strategy tell the other party whether additional
locked policies apply to a credential. Such information
could be very helpful to the other party in deciding exactly
which subset of Candidates to disclose. For example, a
party might choose to satisfy those policies that would give
immediate access to new credentials or the service, rather
than just giving access to another layer of policy.

6. Technology transfer

We have implemented the relevant credentials set
strategy and the all relevant policies strategy in Java. We
plan to integrate these strategies into a system based on a
trust negotiation framework we built earlier at IBM in
collaboration with Dr. William Winsborough [16]. The

framework currently does not support sensitive policy
information. It also does not exchange policy information
during trust negotiation; instead it utilizes a naive strategy
of disclosing all unlocked credentials at each stage of the
negotiation. The components we have developed can
serve as a basis for extending the framework to manage
sensitive policy information during trust negotiation.

The trust negotiation framework is written in Java. The
framework’s architecture includes a security agent that
manages credentials and access control policies that
govern disclosure of those credentials. The framework
utilizes the Trust Establishment Package that was
developed at IBM’s Haifa Research Center [9], available
at IBM’s alphaWorks web site (see
http://www.al phaworks.ibm.conv).

The trust negotiation framework was integrated into a
web-based demonstration prototype. The prototype
architecture is built around a standard web browser and
web server, with security agents managing credentials and
access control policies for the client and server. The
various system components communicate via HTTP.
Browser requests are routed through a client security agent
that manages trust negotiations on behalf of the client. A
server security agent negotiates trust with clients on behalf
of the web server before granting access to web resources.

In the future, information regarding the integration of
this work into a system that extends the trust negotiation
framework can be obtained at either http://drl.cs.uiuc.edu/
security/ or http://www.cs.byu.edu/~seamony/.

7. Related work

Credential-based authentication and authorization
systems fall into three groups: identity-based, property-
based, and capability-based. Originally, public key
certificates, such as X.509 [18] and PGP [19], simply
bound keys to names, and X.509 v. 3 certificates later
extended this binding to general properties (attributes).
Such certificates form the foundation of identity-based
systems, which authenticate an entity’s identity or name
and use it as the basis for authorization. Identity is not a
useful basis for our aim of establishing trust among
strangers. Bina et al. [2] introduced our digital credentials
to allow the binding of arbitrary attributes and support trust
negotiation between strangers. Systems have emerged that
use these attribute-describing credentials to manage trust in
decentralized, distributed systems [9][15][17]. This paper
extends our earlier work by providing support to gradually
establish trust before allowing access to a credential,
policy, or service, as well as offering new strategies for
gradual and immediate trust establishment.

Johnston et al. [11] use attribute certificates (property-
based credentials) and use-condition certificates (policy
assertions) for access control. Use-condition certificates

enable multiple, distributed stakeholders to share control
over access to resources. In their architecture, the policy
evaluation engine retrieves the certificates associated with
a user in order to determine if all the use conditions are
met. Their work could be extended using our approach to
protect sensitive certificates.

The Trust Establishment Project at the IBM Haifa
Research Laboratory [9] has developed a system for
establishing trust between strangers according to policies
that specify constraints on the contents of public-key
certificates. ~ Servers can use a collector to gather
supporting credentials from issuer sites. Each credential
contains a reference to the site associated with the issuer.
That site serves as the starting point for a collector-
controlled search for relevant supporting credentials.
Security agents in our work could adopt the collector
feature, and we could use their policy definition language.
Their work could be extended using our approach to
protect sensitive credentials and gradually establish trust.

Capahility-based systems manage delegation of authority
for a particular application. Capability-based systems are
not designed to establish trust between strangers, since
clients are assumed to possess credentials that represent
authorization of specific actions with the application
server. In the capability-based KeyNote system of Blaze et
al. [3][4], a credential describes the conditions under
which one principal authorizes actions requested by other
principals. KeyNote policies delegate authority on behalf
of the associated application to otherwise untrusted parties.
KeyNote credentials express delegation in terms of actions
that are relevant to a given application. KeyNote policies
do not interpret the meaning of credentials for the
application. This is unlike policies designed for use with
attribute-describing credentials, which typically derive
roles from credential attributes. The IETF Simple Public
Key Infrastructure [14] uses a similar approach to that of
KeyNote by embedding authorizations directly in
certificates.

The P3P standard [12] defined by W3C focuses on
negotiating the disclosure of a user’s sensitive private
information based on the privacy practices of the server.
Trust negotiation is generalized to base disclosure on any
server property of interest to the client that can be
represented in a credential. The work on trust negotiation
focuses on certified properties of the credential holder
while P3P is based on data submitted by the client that are
claims the client makes about itself. Support for both
kinds of information in trust negotiation is warranted.

SSL [8], the predominant credential-exchange
mechanism in use on the web today, and its successor TLS
[6][7], support credential exchange during client and
server authentication. The protocol is suited for identity-
based credentials and would need extension to make it
adaptable to property-based credentials. Needed additions

include protection for sensitive server credentials and a
way for the client to explain its policies to the server.

Islam et al. [10] show how to control downloaded
executable content using policy graphs. Their definition of
policy graphs is different from ours, and their information
that is akin to policies is not mobile, thus has no access
control mechanism. Their system assumes that all the
appropriate credentials accompany downloaded content.
Their work could be extended using our approach to
mobile policies and negotiation.

8. Conclusions and future work

This paper presented two trust negotiation strategies that
support limited disclosure of credentials and access control
policies during automated trust negotiation. The relevant
credentials set strategy eagerly discloses credentials, but is
more cautious in disclosing policy information. The all
relevant policies strategy eagerly discloses policies, but
allows each party to be more careful about which
credentials to disclose. Both strategies are safe and
complete and have low communication costs.

Previous work in trust negotiation assumed that
participants were using the exact same negotiation strategy.
The all relevant policies strategy provides flexibility in
how each participant selects the policy it will satisfy first.
Further work in negotiation strategies is needed to explore
the limits on when and how negotiation participants can
use different negotiation strategies.

Another area for potential future exploration is tighter
bounds on the meaning of the term “relevant”. For
example, the all relevant policies strategy allows a party to
send credentials to satisfy a policy node P, even if the
credential to whose graph P belongs has already been
disclosed. More generally, the two strategies presented in
this paper do not include any mechanism for deciding or
declaring that certain policies or credentials are no longer
relevant. Even the definition of “innermost unlocked
policy” used in this paper may cause a party to spend time
checking the satisfaction of a policy P that is no longer
relevant for finding an authorized path to the sink of a
credential’s policy graph. For example, P may be
irrelevant due to the presence of other authorized paths that
already go deeper into the graph than P.

Another potential area for future exploration is the use of
policy languages that violate our assumptions regarding
monotonicity and/or satisfiability. The most important of
these are languages that can express constraints on the
times of day when access is permitted. In such a language,
a party might satisfy a policy now, but fail to satisfy the
policy later on.

Finally, the strategies presented in this paper do not
guarantee disclosure of a minimal set of credentials, under
any reasonable definition of “minimal”. Such a guarantee

is impossible in the general case, due to the presence of
hidden policies. Even for policy graphs containing just
two nodes, we can show that it is an NP-complete problem
to minimize the size of the set of disclosed credentials for a
negotiation.

9. Acknowledgements

This research was supported by DARPA through AFRL
contract number F30602-98-C-0222 and by DARPA
through AFRL contract number F30602-97-C-0336 to NAI
Labs. The authors would like to thank William
Winsborough, Vicki Jones, and Sushil Jajodia for their
helpful discussions on trust negotiation. The authors also
thank the reviewers for their extremely detailed feedback,
which directly helped improve the quality of the paper.

10. References

[1] Krzysztof R. Apt, David S. Warren, and Mirek Truszczynski
(editors), The Logic Programming Paradigm: A 25-Year
Perspective, Springer-Verlag, 1999.

[2] E. Bina, V. Jones, R. McCool and M. Winslett, “Secure
Access to Data Over the Internet,” ACM/IEEE International
Conference on Parallel and Distributed Information
Systems, Austin, Texas, September 1994,

[3] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis,
“The KeyNote Trust Management System Version 2,”
Internet Draft RFC 2704, September 1999.

[4] M. Blaze, J. Feigenbaum, and A. D. Keromytis, “KeyNote:
Trust Management for Public-Key Infrastructures,” Security
Protocols, 6™ International Workshop, Cambridge UK,
1998.

[5] M. Blaze, J. Feigenbaum, and J. Lacy, ‘“Decentralized Trust
Management,” IEEE Symposium on Security and Privacy,
Oakland, May 1996.

[6] T. Dierks, C. Allen, “The TLS Protocol Version 1.0,” draft-
ietf-tls-protocol-06.txt, Nov. 12, 1998.

[7] S. Farrell, “TLS Extensions for Attribute Certificate Based
Authorization,” draft-ietf-tls-attr-cert-01.txt, Aug. 20, 1998.

[8] A. Frier, P. Karlton, and P. Kocher, “The SSL 3.0
Protocol,” Netscape Communications Corp., Nov. 18, 1996.

[9] A. Herzberg, J. Mihaeli, Y. Mass, D. Naor, and Y. Ravid,
“Access Control Meets Public Key Infrastructure, Or:
Assigning Roles to Strangers,” IEEE Symposium on
Security and Privacy, Oakland, May 2000.

[10] N. Islam, R. Anand, T. Jaeger, and J. R. Rao. "A Flexible
Security System for Using Internet Content." I[EEE
Software, Vol. 14, No. 5, September - October 1997.

[11] W. Johnston, S. Mudumbai, and M. Thompson, “Author-
ization and Attribute Certificates for Widely Distributed
Access Control,” IEEE International Workshops on
Enabling Technologies: Infrastructure for Collaborative
Enterprises, 1998.

[12] “Platform for Privacy Preferences (P3P) Specification,”
W3C, http://www.w3.0org/TR/WD-P3P/Overview.html.

[13] B. Schneier, Applied Cryptography, John Wiley and Sons,
Inc., second edition, 1996.

[14] Simple Public Key Infrastructure
http://ww.ietf.org/html.charters/spki-charter.html.

[15] W. Winsborough, K. Seamons, and V. Jones, “Automated
Trust Negotiation,” DARPA Information Survivability
Conference and Exposition, Hilton Head, January 2000.

[16] W. Winsborough, K. Seamons, and V. Jones, "Automated
Trust Negotiation," submitted for journal publication, April
2000, currently available at http://www.csc.ncsu.edu/
faculty/vej/atn.ps.

[17] M. Winslett, N. Ching, V. Jones, and 1. Slepchin, “Using
Digital Credentials on the World-Wide Web,” Journal of
Computer Security, 5, 1997, 255-267.

[18] International Telecommunication Union, Rec. X.509 -
Information Technology - Open Systems Interconnection -
The Directory: Authentication Framework, August 1997.

[19] P. Zimmerman, PGP User's Guide, MIT Press, 1994,

(SPKI),

