Limits of Learning-based Signature Generation with Adversaries

Shobha Venkataraman, Carnegie Mellon University Avrim Blum, Carnegie Mellon University Dawn Song, University of California, Berkeley

Signatures

- Signature: function that acts as a classifier
 - Input: byte string
 - Output: Is byte string malicious or benign?
- e.g., signature for Lion worm: "\xFF\xBF" && "\x00\x00\FA" "aaaa" "bbbb"
 - □ If both present in byte string, MALICIOUS
 - □ If either one **not** present, BENIGN
- This talk: focus on signatures that are sets of byte patterns
 - i.e., signature is conjunction of byte patterns
 - Our results for conjunctions imply results for more complex functions, e.g. regexp of byte patterns

Automatic Signature Generation

- Generating signatures automatically is important:
 - Signatures need to be generated quickly
 - Manual analysis slow and error-prone
 - Pattern-extraction techniques for generating signatures

History of Pattern-Extraction Techniques

Signature Generation Systems

Evasion Techniques

Our Work: Lower bounds on how quickly ALL such algorithms converge to signature in presence of adversaries

Learning-based Signature Generation

Signature generator's goal: Learn as quickly as possible

Adversary's goal: Force as many errors as possible

Our Contributions

Formalize a framework for analyzing performance of patternextraction algorithms under adversarial evasion

- Show fundamental limits on accuracy of pattern-extraction algorithms with adversarial evasion
 - Generalize earlier work (e.g., [FDLFS], [NKS, [CM]]) focused on individual systems
- Analyze when fundamental limits are weakened
 - Kind of exploits for which pattern-extraction algorithms may work
- Applies to other learning-based algorithms using similar adversarial information (e.g., COVERS[LS])

Outline

Introduction

Formalizing Adversarial Evasion

Learning Framework

Results

Conclusions

Strategy for Adversarial Evasion

Increase resemblance between tokens in true signature and spurious tokens

e.g. can add infrequent tokens (i.e, red herrings [NKS]), change token distributions (i.e., pool poisoning [NKS]), mislabel samples (i.e, noise-injection [PDLFS])

Could generate high false positives or high false negatives

T: Set of Potential Signatures

Reflecting Sets: Sets of Resembling Tokens

- Critical token: token in true signature S. e.g., 'aaaa', 'bbbb'
- Reflecting set of a critical token *i* for a signature generator:
 All tokens as likely to be in S as critical token *i*, for current signature-generator e.g., Reflecting set for 'aaaa': 'aaaa', 'cccc'

Reflecting Sets and Algorithms

Specific to the family of algorithms under consideration

By definition of reflecting set, to signature-generation algorithm, true signature appears to be drawn at random from $R_1 x R_2$

- Problem: Learning a signature when a malicious adversary constructs reflecting sets for each critical token
- Lower bounds depend on size of reflecting set:
 - power of adversary,
 - □ nature of exploit,
 - algorithms used for signature generation

Outline

Introduction

- Formalizing Adversarial Evasion
- Learning Framework
- Results
- Conclusions

Signature generator's goal:

Learn as quickly as possible Optimal to update with new information in test pool

Adversary's goal:

Force as many errors as possible Optimal to present only one new sample before each update

Equivalent to the mistake-bound model of online learning [LW]

Learning Framework: Problem

Mistake-bound model of learning

- Notation:
 - □ *n*: number of critical tokens
 - \Box *r*: size of reflecting set for each critical token
- Assumption: true signature is a **conjunction** of tokens
 - Set of all potential signatures: r^n
- Goal: find true signature from rⁿ potential signatures
 minimize mistakes in prediction while learning true signature

Learning Framework: Assumptions

Signature Generation Algorithms Used

 Algorithm can learn *any* function for signature Not necessary to learn only conjunctions

Adversary Knowledge

- Algorithms/systems/features used to generate signature
- Does not necessarily know how system/algorithm is tuned

No Mislabeled Samples

 No mislabeling, either due to noise or malicious injection e.g., use host-monitoring techniques[NS] to achieve this

Outline

Introduction

- Formalizing Adversarial Evasion
- Learning Framework
- Results:
 - General Adversarial Model
 - □ Can General Bounds be Improved?

Conclusions

Deterministic Algorithms

Theorem: For any **deterministic** algorithm, there exists a sequence of samples such that the algorithm is forced to make at least *n log r* mistakes.

Additionally, there exists an algorithm (Winnow) that can achieve a mistake-bound of $n(\log r + \log n)$

Practical Implication:

For arbitrary exploits, any pattern-extraction algorithm can be forced into making a number of mistakes:

- even if extremely sophisticated pattern-extraction algorithms are used
- even if all labels are accurate, e.g., if TaintCheck [NS] is used

Randomized Algorithms

Theorem: For any **randomized** algorithm, there exists a sequence of samples such that the algorithm is forced to make at least $\frac{1}{2} n \log r$ mistakes in expectation.

Practical Implication:

For arbitrary exploits, any pattern-extraction algorithm can be forced into making a number of mistakes:

- even if extremely sophisticated pattern-extraction algorithms are used
- even if all labels are accurate (e.g., if TaintCheck [NS] is used)
- even if the algorithm is randomized

One-Sided Error: False Positives

Theorem: Let t < n. Any algorithm forced to have fewer than t false positives can be forced to make at least (n - t) (r - 1) mistakes on malicious samples.

Practical Implication:

Algorithms that are allowed to have few false positives make significantly many more mistakes than the general algorithms e.g., at t = 0, bounded false positives: n(r - 1)general case: $n \log r$

One-Sided Error: False Negatives

Theorem: Let t < n. Any algorithm forced to have **fewer than** t **false negatives** can be forced to make at least $t^{n/(t+1)} - 1$ mistakes on non-malicious samples.

Practical Implication:

Algorithms allowed to have bounded false negatives have *far* worse bounds than general algorithms e.g., at t = 0, bounded false negatives: r^n - 1 general algorithms: *n log r*

Different Bounds for False Positives & Negatives!

- Bounded false positives: $\Omega((r(n-t)))$
 - learning from positive data only
 - No mistakes allowed on negatives
 - Adversary forces mistakes with positives
- Bounded false negatives: $\Omega(r^{n/t+1})$
 - learning from negative data only
 - No mistakes allowed on positives
 - Adversary forces mistakes with negatives
- Much more "information" about signature in a malicious sample

e.g. Learning: What is a flower?

Outline

Introduction

- Formalizing Adversarial Evasion
- Learning Framework

Results:

- General Adversarial Model
- Can General Bounds be Improved?

Conclusions

Can General Bounds be Improved?

- Consider Relaxed Problem:
 - Requirement: Classify correctly only
 - Malicious packets
 - Non-malicious packets regularly present in normal traffic
 - Classification does NOT have to match true signature on rest
- Characterize "gap" between malicious & normal traffic
 - **Overlap-ratio** *d*: Of tokens in true signature, fraction that appear together in normal traffic.

e.g., signature has 10 tokens, but only 5 appear together in normal traffic: d = 0.5

Bounds are a function of overlap-ratio

Lower bounds with Gaps in Traffic

Theorem: Let d < 1. For a class of functions called linear separators, any deterministic algorithms can be forced to make $log_{1/d}r$ mistakes, and any randomized algorithm can be forced to make in expectation, $\frac{1}{4} log_{1/d} r$ mistakes.

As d approaches $\frac{n-1}{n}$, $\log_{1/d} r$ approaches n log r!

Practical Implication:

Pattern-extraction algorithms may work for exploits if:

- □ signatures overlap very little with normal traffic
- algorithm is given few (or no) mislabeled samples

Related Work

- Learning-based signature-generation algorithms: Honeycomb[KC03], Earlybird [SEVS04], Autograph[KK04],
 Polygraph[NKS05], COVERS[LS06], Hamsa[LSCCK06], Anagram[WPS06]
- Evasions:

[PDLFS06], [NKS06],[CM07],[GBV07]

- Adversarial Learning:
 - Closely Related: [Angluin88], [Littlestone88]
 - Others: [A97][ML93],[LM05],[BEK97],[DDMSV04]

Conclusions

Formalize a framework for analyzing performance of pattern-extraction algorithms under adversarial evasion

- Show fundamental limits on accuracy of pattern-extraction algorithms with adversarial evasion
 - Generalize earlier work focusing on individual systems
- Analyze when fundamental limits are weakened
 - Kind of exploits for which pattern-extraction algorithms may work

Thank you!

Comparison with Existing Techniques

Form of True Signature: Conjunction

- Simplifying assumption: true signature is a conjunction
 - **•** E.g.
- Motivation:
 - Earlier experimental work shows conjunctions to be useful signatures on traffic traces
 - Lower bounds for conjunctions => lower bounds for more complex functions (e.g., regexp

Why do our bounds eventually converge to the right answer?

- Strong model for learning
 - Every mistake gains information: draw hypercube
 - □ Adversary not allowed to change
 - □ Algorithm is allowed to change
 - □ => Finite number of mistakes before convergence
- Change any of these, never converge
 - Maybe use algorithms designed for adversarial environments (with this kind of adversarial bounds)

Lower Bounds with Gaps in Traffic

• Measuring the Gap in Traffic:

Overlap-ratio d: Of tokens in the true signature, fraction that appear together in normal traffic.

e.g., true signature has 10 tokens, but only 5 appear together in normal traffic: d = 0.5

• Lower bounds are representation-dependent, when d < 1.

- Algorithms learning linear separators: $log_{1/d}k$ (Linear weighted function of attributes)
- Pattern-extraction algorithms may work for exploits whose signatures overlap very little with normal traffic, with host-monitoring techniques
 - Representation-dependent lower bounds that are much weaker

Lower Bounds with Gaps in Traffic

- Lower bounds are representation-dependent, when d < 1.
 Algorithms learning linear separators: log_{1/d} k

 (Linear weighted function of attributes)
- Pattern-extraction algorithms may work for exploits whose signatures overlap very little with normal traffic, with hostmonitoring techniques
 - Representation-dependent lower bounds that are much weaker

Practical Implications

- For arbitrary exploits, any pattern-extraction algorithm can be forced into making a large number of mistakes, with common assumptions:
 - even if the algorithm is randomized
 - even if host-monitoring techniques are used, to avoid noise in labels
 - even if arbitrarily complex representations of signatures are allowed
- Existing research demonstrates feasibility of attacks on real systems; our results generalize to all systems that use similar properties of traffic.
- Algorithms that tolerate only one-sided error are significantly easier to manipulate by the adversary.
- Pattern-extraction algorithms may work for exploits whose signatures overlap very little with normal traffic, with host-monitoring techniques
 - Weaker lower bounds
 - Bounds depend on complexity of signature used by learning algorithm

Formal Definition of Reflecting Set?

When might signature-generation work?

- When the attacker cannot find reflecting set
 - "gaps" in traffic mean that

Table

Discussion: Notice they eventually converge

Finding Reflecting Sets

- Exist for current generations of pattern-extraction systems
 - Learning from adversarially-generated features that can be manipulated
 - All attributes in reflecting set [do not need to have identical statistics]
 Sufficient to bias away from true signature.
- Likely to exist for algorithms using traffic statistics of normal and malicious traffic
 - Heavy-tailed nature of traffic patterns (e.g., polymorphic blending attacks illustrate similar behaviour)

Learning Framework: Problem (II)

- Assumption: True signature is a Conjunction of tokens
 - Lower bounds for conjunctions imply lower bounds for more complex functions
 - Common systems have signatures as conjunctions
 - Set of all potential signatures: n^k
- Goal: learn true signature from n^k possible signatures
 - □ Identify *n* tokens that constitute true signature
 - **Lower bounds** on the mistakes that can be forced by an adversary

Can General Bounds be Improved?

Do not always need to classify *all* packets correctly

- Only need to classify correctly:
 - Malicious packets
 - Non-malicious packets regularly present in normal traffic
- Classification does not have to match target signature on others

Exploit Gaps in traffic

- Measure how close malicious traffic is to normal traffic
 - Measure should not be subject to adversarial manipulation
- Bounds are a function of this measure

Generating Signatures Automatically

- Generating signatures automatically is important:
 - Signatures need to be generated quickly
 - Manual analysis slow and error-prone
- Pattern-extraction techniques for signature-generation

