
1

Limits of Learning-based Signature
Generation with Adversaries

Shobha

Venkataraman, Carnegie Mellon University
Avrim

Blum, Carnegie Mellon University

Dawn Song, University of California, Berkeley

2

Signatures
Signature: function that acts as a classifier

Input: byte string
Output: Is byte string malicious or benign?

e.g., signature for Lion worm:
“\xFF\xBF”

&& “\x00\x00\FA”

“aaaa”

“bbbb”
If both present in byte string, MALICIOUS
If either one not present, BENIGN

This talk: focus on signatures that are sets of byte patterns
i.e., signature is conjunction of byte patterns
Our results for conjunctions imply results for more complex functions,
e.g. regexp of byte patterns

3

Automatic Signature Generation

Generating signatures automatically is important:
Signatures need to be generated quickly
Manual analysis slow and error-prone

Pattern-extraction techniques for generating signatures

Signature
Generator

Malicious
Strings

Normal
Strings

e.g., ‘aaaa’

&& ‘bbbb’
Signature for usage

Training Pool

4

History of Pattern-Extraction Techniques

Our Work: Lower bounds on how quickly ALL such algorithms
converge to signature in presence of adversaries

Earlybird, Autograph, Honeycomb
[SEVS] [KK] [KC]

Polygraph
[NKS]
Hamsa
[LSCCK]

Anagram
[WPS]

…

Signature Generation Systems

2003

2005

2007

Polymorphic
worms

Malicious Noise Injection
[PDLFS]

Paragraph [NKS]

Allergy attacks [CM]

…

Evasion
Techniques

5

Learning-based Signature Generation

Signature generator’s goal:
Learn as quickly as possible

Signature
Generator

Malicious

Normal

Signature
Test Pool

Training Pool

Adversary’s goal:
Force as many errors as possible

6

Our Contributions

Formalize a framework for analyzing performance of pattern-
 extraction algorithms under adversarial evasion

Show fundamental limits on accuracy of pattern-extraction algorithms with
adversarial evasion

Generalize earlier work (e.g.,[FDLFS],[NKS,[CM]]) focused on individual systems
Analyze when fundamental limits are weakened

Kind of exploits for which pattern-extraction algorithms may work
Applies to other learning-based algorithms using similar adversarial information
(e.g., COVERS[LS])

7

Outline

Introduction
Formalizing Adversarial Evasion

Learning Framework
Results
Conclusions

8

Signature
Generator

‘aaaa’

&& ‘bbbb’

‘aaaa’

&& ‘dddd’

‘cccc’

&& ‘bbbb’

‘cccc’

&& ‘dddd’

Strategy for Adversarial Evasion

Increase resemblance between tokens in true signature and spurious tokens
e.g. can add infrequent tokens (i.e, red herrings [NKS]), change token
distributions (i.e., pool poisoning [NKS]), mislabel samples (i.e, noise-injection
[PDLFS])
Could generate high false positives or high false negatives

Malicious

Normal

Signature
‘aaaa’

&& ‘bbbb’

Spurious
Patterns

True Signature

9

Definition: Reflecting Set

Reflecting Sets: Sets of Resembling Tokens
Critical token: token in true signature S. e.g., ‘aaaa’, ‘bbbb’
Reflecting set of a critical token i for a signature generator:
All tokens as likely to be in S as critical token i, for current signature-generator
e.g., Reflecting set for ‘aaaa’: ‘aaaa’, ‘cccc’

‘aaaa’

&& ‘bbbb’
‘aaaa’

‘cccc’
‘bbbb’‘dddd’

Reflecting set of ‘bbbb’

S: True Signature

T: Set of Potential Signatures

‘aaaa’

&& ‘bbbb’

‘aaaa’

&& ‘dddd’

‘cccc’

&& ‘bbbb’

‘cccc’

&& ‘dddd’ Reflecting

set of ‘aaaa’

10

Reflecting Sets and Algorithms

By definition of reflecting set, to signature-generation algorithm,
true signature appears to be drawn at random from R1

x

R2

Signature
Generator 1

‘aaaa’

‘cccc’

‘bbbb’‘dddd’e.g. fine-grained
All tokens such that
individual tokens and pairs
of tokens infrequent

e.g., coarse-grained
All tokens infrequent in
normal traffic, say, first-

order statistics

‘aaaa’

‘cccc’

‘eeee’

‘gggg’

‘bbbb’‘dddd’‘ffff’‘hhhh’

Signature
Generator 2

Specific to the family of algorithms under consideration

R2

R1

R2

R1

11

Learning-based Signature Generation

Problem: Learning a signature when a malicious adversary
constructs reflecting sets for each critical token
Lower bounds depend on size of reflecting set:

power of adversary,
nature of exploit,
algorithms used for signature generation

Signature
Generator

Malicious

Normal

‘aaaa’

‘cccc’

‘bbbb’‘dddd’

12

Outline

Introduction
Formalizing Adversarial Evasion
Learning Framework

Results
Conclusions

13

Framework: Online Learning Model

Signature generator’s goal:
Learn as quickly as possible

Optimal to update with new
information in test pool

Signature
Generator

Malicious

Normal

Signature
Test Pool

Feedback

Training Pool

Adversary’s goal:
Force as many errors as possible

Optimal to present only one new
sample before each update

Equivalent to the mistake-bound model of online learning [LW]

14

Learning Framework: Problem

Signature
Generator

(after initial training)

1. Byte string

3. Correct Label

2. Predicted Label

Mistake-bound model of learning

Notation:
n: number of critical tokens
r: size of reflecting set for each critical token

Assumption: true signature is a conjunction of tokens
Set of all potential signatures: rn

Goal: find true signature from rn potential signatures
minimize mistakes in prediction while learning true signature

15

Learning Framework: Assumptions

Signature Generation Algorithms Used
Algorithm can learn any function for signature
Not necessary to learn only conjunctions

Adversary Knowledge
Algorithms/systems/features used to generate signature
Does not necessarily know how system/algorithm is tuned

No Mislabeled Samples
No mislabeling, either due to noise or malicious injection
e.g., use host-monitoring techniques[NS]

to achieve this

16

Outline

Introduction
Formalizing Adversarial Evasion
Learning Framework
Results:

General Adversarial Model

Can General Bounds be Improved?

Conclusions

17

Deterministic Algorithms

Theorem: For any deterministic

algorithm, there

exists a sequence of samples such that the algorithm
is forced to make at least n log r mistakes.

Practical Implication:
For arbitrary exploits, any pattern-extraction algorithm can be forced into

making a number of mistakes:
even if extremely sophisticated pattern-extraction algorithms are used
even if all labels are accurate, e.g., if TaintCheck [NS] is used

Additionally, there exists an algorithm (Winnow) that
can achieve a mistake-bound of n(log

r + log n)

18

Randomized Algorithms

Theorem: For any randomized

algorithm, there exists

a sequence of samples such that the algorithm is forced
to make at least ½ n log r mistakes in expectation.

Practical Implication:
For arbitrary exploits, any pattern-extraction algorithm can be forced into

making a number of mistakes:
even if extremely sophisticated pattern-extraction algorithms are used
even if all labels are accurate (e.g., if TaintCheck [NS] is used)
even if the algorithm is randomized

19

One-Sided Error: False Positives

Theorem: Let t < n. Any algorithm forced to have
fewer than t false

positives

can be forced to make

at least (n – t) (r – 1) mistakes on malicious samples.

Practical Implication:

Algorithms that are allowed to have few false positives make
significantly many more mistakes than the general algorithms
e.g., at t = 0, bounded false positives: n(r

–

1)
general case: n log r

20

One-Sided Error: False Negatives

Theorem: Let t < n. Any algorithm forced to have
fewer than t false

negatives

can be forced to make at

least rn/(t+1) _ 1 mistakes on non-malicious samples.

Practical Implication:
Algorithms allowed to have bounded false negatives have far worse
bounds than general algorithms

e.g., at t = 0, bounded false negatives: rn- 1
general algorithms: n log r

21

Different Bounds for False Positives & Negatives!

Bounded false positives: Ω((r(n-t))
learning from positive data only

No mistakes allowed on negatives
Adversary forces mistakes with positives

Bounded false negatives: Ω(rn/t+1)
learning from negative data only

No mistakes allowed on positives
Adversary forces mistakes with negatives

Much more “information” about
signature in a malicious sample

e.g. Learning: What is a flower?

Positive data only

Negative data only

22

Outline

Introduction
Formalizing Adversarial Evasion
Learning Framework
Results:

General Adversarial Model
Can General Bounds be Improved?

Conclusions

23

Can General Bounds be Improved?
Consider Relaxed Problem:

Requirement: Classify correctly only
Malicious packets
Non-malicious packets regularly present in normal traffic

Classification does NOT have to match true signature on rest

Characterize “gap” between malicious & normal traffic
Overlap-ratio d: Of tokens in true signature, fraction that appear
together in normal traffic.
e.g., signature has 10 tokens, but only 5 appear together in normal traffic: d = 0.5

Bounds are a function of overlap-ratio

24

Lower bounds with Gaps in Traffic
Theorem: Let d < 1. For a class of functions called linear
separators, any deterministic algorithms can be forced to
make log1/d

r mistakes, and any randomized algorithm can
be forced to make in expectation, ¼ log1/d

r mistakes.

Practical Implication:
Pattern-extraction algorithms may work for exploits if:

signatures overlap very little with normal traffic
algorithm is given few (or no) mislabeled samples

As

d approaches , log1/d r

approaches n log r!

n
n 1−

25

Related Work

Learning-based signature-generation algorithms:
Honeycomb[KC03], Earlybird

[SEVS04], Autograph[KK04],
Polygraph[NKS05], COVERS[LS06], Hamsa[LSCCK06], Anagram[WPS06]

Evasions:
[PDLFS06], [NKS06],[CM07],[GBV07]

Adversarial Learning:
Closely Related: [Angluin88],[Littlestone88]
Others: [A97][ML93],[LM05],[BEK97] ,[DDMSV04]

26

Conclusions

Formalize a framework for analyzing performance of
pattern-extraction algorithms under adversarial evasion

Show fundamental limits on accuracy of pattern-extraction algorithms with
adversarial evasion

Generalize earlier work focusing on individual systems
Analyze when fundamental limits are weakened

Kind of exploits for which pattern-extraction algorithms may work

27

Thank you!

28

Comparison with Existing Techniques

29

Form of True Signature: Conjunction

Simplifying assumption: true signature is a
conjunction

E.g.

Motivation:
Earlier experimental work shows conjunctions to be
useful signatures on traffic traces
Lower bounds for conjunctions => lower bounds for
more complex functions (e.g., regexp

30

Why do our bounds eventually converge
to the right answer?

Strong model for learning
Every mistake gains information: draw hypercube
Adversary not allowed to change
Algorithm is allowed to change
=> Finite number of mistakes before convergence

Change any of these, never converge
Maybe use algorithms designed for adversarial
environments (with this kind of adversarial bounds)

31

Lower Bounds with Gaps in Traffic

Measuring the Gap in Traffic:
Overlap-ratio

d: Of tokens in the true signature, fraction that appear together in
normal traffic.
e.g., true signature has 10 tokens, but only 5 appear together in normal traffic: d = 0.5

Lower bounds are representation-dependent, when d < 1.
Algorithms learning linear separators: log1/d k
(Linear weighted function of attributes)

Pattern-extraction algorithms may work for exploits whose signatures overlap
very little with normal traffic, with host-monitoring techniques

Representation-dependent lower bounds that are much weaker

32

Lower Bounds with Gaps in Traffic

Lower bounds are representation-dependent, when d < 1.
Algorithms learning linear separators: log1/d k
(Linear weighted function of attributes)

Pattern-extraction algorithms may work for exploits whose
signatures overlap very little with normal traffic, with host-
monitoring techniques

Representation-dependent lower bounds that are much weaker

33

Practical Implications
For arbitrary exploits, any pattern-extraction algorithm can be forced into
making a large number of mistakes, with common assumptions:

even if the algorithm is randomized
even if host-monitoring techniques are used, to avoid noise in labels
even if arbitrarily complex representations of signatures are allowed

Existing research demonstrates feasibility of attacks on real systems; our
results generalize to all systems that use similar properties of traffic.

Algorithms that tolerate only one-sided error are significantly easier to
manipulate by the adversary.

Pattern-extraction algorithms may work for exploits whose signatures overlap
very little with normal traffic, with host-monitoring techniques

Weaker lower bounds
Bounds depend on complexity of signature used by learning algorithm

34

Formal Definition of Reflecting Set?

35

When might signature-generation work?

When the attacker cannot find reflecting set
“gaps” in traffic mean that

36

37

Summary

Table
Discussion: Notice they eventually converge

38

Finding Reflecting Sets

Exist for current generations of pattern-extraction systems
Learning from adversarially-generated features that can be manipulated
All attributes in reflecting set [do not need to have identical statistics]
Sufficient to bias away from true signature.

Likely to exist for algorithms using traffic statistics of normal
and malicious traffic

Heavy-tailed nature of traffic patterns (e.g., polymorphic blending
attacks illustrate similar behaviour)

39

Learning Framework: Problem (II)

Assumption: True signature is a Conjunction of tokens
Lower bounds for conjunctions imply lower bounds for more
complex functions
Common systems have signatures as conjunctions
Set of all potential signatures: nk

Goal: learn true signature from nk possible signatures
Identify n tokens that constitute true signature
Lower bounds on the mistakes that can be forced by an adversary

40

Can General Bounds be Improved?

Do not always need to classify all packets correctly
Only need to classify correctly:

Malicious packets
Non-malicious packets regularly present in normal traffic

Classification does not have to match target signature on others

Exploit Gaps in traffic
Measure how close malicious traffic is to normal traffic

Measure should not be subject to adversarial manipulation
Bounds are a function of this measure

41

Generating Signatures Automatically

Generating signatures automatically is important:
Signatures need to be generated quickly
Manual analysis slow and error-prone

Pattern-extraction techniques for signature-generation

Signature
Generator

Malicious
Strings

Normal
Strings

‘aaaa’

&& ‘bbbb’

Signature

	Limits of Learning-based Signature Generation with Adversaries
	Signatures
	Automatic Signature Generation�			
	History of Pattern-Extraction Techniques
	Learning-based Signature Generation
	Our Contributions
	Outline
	Strategy for Adversarial Evasion
	Definition: Reflecting Set
	Reflecting Sets and Algorithms
	Learning-based Signature Generation
	Outline
	Framework: Online Learning Model
	Learning Framework: Problem
	Learning Framework: Assumptions �	
	Outline
	Deterministic Algorithms
	Randomized Algorithms
	One-Sided Error: False Positives
	One-Sided Error: False Negatives
	Different Bounds for False Positives & Negatives!�
	Outline
	Can General Bounds be Improved?
	Lower bounds with Gaps in Traffic
	Related Work
	Conclusions
	Slide Number 27
	Comparison with Existing Techniques
	Form of True Signature: Conjunction
	Why do our bounds eventually converge to the right answer?
	Lower Bounds with Gaps in Traffic
	Lower Bounds with Gaps in Traffic
	Practical Implications
	Formal Definition of Reflecting Set?
	When might signature-generation work?
	Slide Number 36
	Summary
	Finding Reflecting Sets
	Learning Framework: Problem (II)
	Can General Bounds be Improved?
	Generating Signatures Automatically	�			

