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Signatures
Signature: function that acts as a classifier

Input: byte string
Output: Is byte string malicious or benign?

e.g., signature for Lion worm: 
“\xFF\xBF”

 
&& “\x00\x00\FA”

“aaaa”
 

“bbbb”
If both present in byte string, MALICIOUS
If either one not present, BENIGN 

This talk: focus on signatures that are sets of byte patterns
i.e., signature is conjunction of byte patterns
Our results for conjunctions imply results for more complex functions, 
e.g. regexp of byte patterns
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Automatic Signature Generation

Generating signatures automatically is important:
Signatures need to be generated quickly
Manual analysis slow and error-prone

Pattern-extraction techniques for generating signatures

Signature
Generator

Malicious
Strings

Normal
Strings

e.g., ‘aaaa’

 

&& ‘bbbb’
Signature for usage

Training Pool
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History of Pattern-Extraction Techniques

Our Work: Lower bounds on how quickly ALL such algorithms 
converge to signature in presence of adversaries 

Earlybird, Autograph, Honeycomb
[SEVS]           [KK]                    [KC]

Polygraph
[NKS]
Hamsa
[LSCCK]

Anagram
[WPS]

…

Signature Generation Systems

2003

2005

2007

Polymorphic 
worms

Malicious Noise Injection
[PDLFS]

Paragraph [NKS]

Allergy attacks [CM]

…

Evasion 
Techniques
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Learning-based Signature Generation

Signature generator’s goal:
Learn as quickly as possible

Signature
Generator

Malicious

Normal

Signature
Test Pool

Training Pool

Adversary’s goal:
Force as many errors as possible
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Our Contributions

Formalize a framework for analyzing performance of pattern-
 extraction algorithms under adversarial evasion

Show fundamental limits on accuracy of pattern-extraction algorithms with 
adversarial evasion

Generalize earlier work (e.g.,[FDLFS],[NKS,[CM]]) focused on individual systems
Analyze when fundamental limits are weakened 

Kind of exploits for which pattern-extraction algorithms may work
Applies to other learning-based algorithms using similar adversarial information 
(e.g., COVERS[LS])
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Outline

Introduction
Formalizing Adversarial Evasion

Learning Framework
Results
Conclusions
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Signature
Generator

‘aaaa’

 

&& ‘bbbb’

‘aaaa’

 

&& ‘dddd’

‘cccc’

 

&& ‘bbbb’

‘cccc’

 

&& ‘dddd’

Strategy for Adversarial Evasion

Increase resemblance between tokens in true signature and spurious tokens
e.g. can add infrequent tokens (i.e, red herrings [NKS]), change token 
distributions (i.e., pool poisoning [NKS]),  mislabel samples (i.e, noise-injection 
[PDLFS])
Could generate high false positives or high false negatives

Malicious

Normal

Signature
‘aaaa’

 

&& ‘bbbb’

Spurious
Patterns

True Signature
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Definition: Reflecting Set

Reflecting Sets:  Sets of Resembling Tokens
Critical token: token in true signature S. e.g., ‘aaaa’, ‘bbbb’
Reflecting set of a critical token i for a signature generator: 
All tokens as likely to be in S as critical token i, for current signature-generator
e.g., Reflecting set for ‘aaaa’: ‘aaaa’, ‘cccc’

‘aaaa’

 

&& ‘bbbb’
‘aaaa’

‘cccc’
‘bbbb’‘dddd’

Reflecting set of ‘bbbb’

S: True Signature

T: Set of Potential Signatures 

‘aaaa’

 

&& ‘bbbb’

‘aaaa’

 

&& ‘dddd’

‘cccc’

 

&& ‘bbbb’

‘cccc’

 

&& ‘dddd’ Reflecting 

set of ‘aaaa’
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Reflecting Sets and Algorithms

By definition of reflecting set, to signature-generation algorithm, 
true signature appears to be drawn at random from R1

 

x
 

R2

Signature
Generator 1

‘aaaa’

‘cccc’

‘bbbb’‘dddd’e.g. fine-grained
All tokens such that 
individual tokens and pairs 
of tokens infrequent

e.g., coarse-grained
All tokens infrequent in 
normal traffic, say, first-

 
order statistics

‘aaaa’

‘cccc’

‘eeee’

‘gggg’

‘bbbb’‘dddd’‘ffff’‘hhhh’

Signature
Generator 2

Specific to the family of algorithms under consideration

R2

R1

R2

R1
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Learning-based Signature Generation

Problem: Learning a signature when a malicious adversary 
constructs reflecting sets for each critical token
Lower bounds depend on size of reflecting set:

power of adversary, 
nature of exploit, 
algorithms used for signature generation

Signature
Generator

Malicious

Normal

‘aaaa’

‘cccc’

‘bbbb’‘dddd’
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Outline

Introduction
Formalizing Adversarial Evasion
Learning Framework

Results
Conclusions
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Framework: Online Learning Model

Signature generator’s goal:
Learn as quickly as possible

Optimal to update with new 
information in test pool

Signature
Generator

Malicious

Normal

Signature
Test Pool

Feedback

Training Pool

Adversary’s goal: 
Force as many errors as possible

Optimal to present only one new 
sample before each update

Equivalent to the mistake-bound model of online learning [LW]
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Learning Framework: Problem

Signature
Generator

(after initial training)

1. Byte string

3. Correct Label

2. Predicted Label

Mistake-bound model of learning

Notation:
n: number of critical tokens
r: size of reflecting set for each critical token

Assumption: true signature is a conjunction of tokens
Set of all potential signatures: rn

Goal: find true signature from rn potential signatures
minimize mistakes in prediction while learning true signature
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Learning Framework: Assumptions  

Signature Generation Algorithms Used
Algorithm can learn any function for signature
Not necessary to learn only conjunctions

Adversary Knowledge
Algorithms/systems/features used to generate signature
Does not necessarily know how system/algorithm is tuned

No Mislabeled Samples
No mislabeling, either due to noise or malicious injection
e.g., use host-monitoring techniques[NS]

 

to achieve this
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Outline

Introduction
Formalizing Adversarial Evasion
Learning Framework
Results:

General Adversarial Model

Can General Bounds be Improved?

Conclusions
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Deterministic Algorithms

Theorem: For any deterministic

 
algorithm, there 

exists a sequence of samples such that the algorithm 
is forced to make at least n log r mistakes. 

Practical Implication:
For arbitrary exploits, any pattern-extraction algorithm can be forced into 

making a number of mistakes:
even if extremely sophisticated pattern-extraction algorithms are used
even if all labels are accurate, e.g., if TaintCheck [NS] is used

Additionally, there exists an algorithm (Winnow) that 
can achieve a mistake-bound of n(log

 

r + log n)
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Randomized Algorithms

Theorem: For any randomized

 
algorithm, there exists 

a sequence of samples such that the algorithm is forced 
to make at least ½ n log r mistakes in expectation. 

Practical Implication: 
For arbitrary exploits, any pattern-extraction algorithm can be forced into 

making a number of mistakes:
even if extremely sophisticated pattern-extraction algorithms are used
even if all labels are accurate (e.g., if TaintCheck [NS] is used)
even if the algorithm is randomized
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One-Sided Error: False Positives

Theorem: Let t < n. Any algorithm forced to have 
fewer than t false

 
positives

 
can be forced to make 

at least (n – t) (r – 1) mistakes on malicious samples. 

Practical Implication:

Algorithms that are allowed to have few false positives make 
significantly many more mistakes than the general algorithms
e.g., at t = 0, bounded false positives: n(r

 

–

 

1)
general case: n log r
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One-Sided Error: False Negatives

Theorem: Let t < n. Any algorithm forced to have 
fewer than t false

 
negatives

 
can be forced to make at 

least rn/(t+1) _ 1 mistakes on non-malicious samples. 

Practical Implication:
Algorithms allowed to have bounded false negatives have far worse 
bounds than general algorithms

e.g., at t = 0, bounded false negatives: rn- 1
general algorithms: n log r
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Different Bounds for False Positives & Negatives!

Bounded false positives: Ω((r(n-t))
learning from positive data only

No mistakes allowed on negatives
Adversary forces mistakes with  positives

Bounded false negatives: Ω(rn/t+1)
learning from negative data only

No mistakes allowed on positives
Adversary forces mistakes with negatives

Much more “information” about 
signature in a malicious sample

e.g. Learning: What is a flower?

Positive data only

Negative data only
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Outline

Introduction
Formalizing Adversarial Evasion
Learning Framework
Results:

General Adversarial Model
Can General Bounds be Improved?

Conclusions



23

Can General Bounds be Improved?
Consider Relaxed Problem:

Requirement: Classify correctly only
Malicious packets
Non-malicious packets regularly present in normal traffic

Classification does NOT have to match true signature on rest 

Characterize “gap” between malicious & normal traffic 
Overlap-ratio d:  Of tokens in true signature, fraction that appear 
together in normal traffic.
e.g., signature has 10 tokens, but only 5 appear together in normal traffic: d = 0.5

Bounds are a function of overlap-ratio
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Lower bounds with Gaps in Traffic
Theorem: Let d < 1. For a class of functions called linear 
separators, any deterministic algorithms can be forced to 
make log1/d

 

r  mistakes, and any randomized algorithm can 
be forced to make in expectation, ¼ log1/d

 

r  mistakes. 

Practical Implication:
Pattern-extraction algorithms may work for exploits if:

signatures overlap very little with normal traffic
algorithm is given few (or no) mislabeled samples

As

 
d approaches        ,  log1/d r

 
approaches n log r!

n
n 1−
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Related Work

Learning-based signature-generation algorithms:
Honeycomb[KC03], Earlybird

 

[SEVS04], Autograph[KK04], 
Polygraph[NKS05], COVERS[LS06], Hamsa[LSCCK06], Anagram[WPS06]

Evasions: 
[PDLFS06], [NKS06],[CM07],[GBV07]

Adversarial Learning: 
Closely Related: [Angluin88],[Littlestone88]
Others: [A97][ML93],[LM05],[BEK97] ,[DDMSV04]
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Conclusions

Formalize a framework for analyzing performance of 
pattern-extraction algorithms under adversarial evasion

Show fundamental limits on accuracy of pattern-extraction algorithms with 
adversarial evasion

Generalize earlier work focusing on individual systems
Analyze when fundamental limits are weakened 

Kind of exploits for which pattern-extraction algorithms may work
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Thank you!
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Comparison with Existing Techniques
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Form of True Signature: Conjunction

Simplifying assumption: true signature is a 
conjunction

E.g.

Motivation:
Earlier experimental work shows conjunctions to be 
useful signatures on traffic traces 
Lower bounds for conjunctions => lower bounds for 
more complex functions (e.g., regexp
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Why do our bounds eventually converge 
to the right answer?

Strong model for learning
Every mistake gains information: draw hypercube
Adversary not allowed to change
Algorithm is allowed to change
=> Finite number of mistakes before convergence

Change any of these, never converge
Maybe use algorithms designed for adversarial 
environments (with this kind of adversarial bounds)
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Lower Bounds with Gaps in Traffic

Measuring the Gap in Traffic:
Overlap-ratio

 

d:  Of tokens in the true signature, fraction that appear together in 
normal traffic.
e.g., true signature has 10 tokens, but only 5 appear together in normal traffic: d = 0.5

Lower bounds are representation-dependent, when d < 1.
Algorithms learning linear separators: log1/d k
(Linear weighted function of attributes)

Pattern-extraction algorithms may work for exploits whose signatures overlap 
very little with normal traffic, with host-monitoring techniques

Representation-dependent lower bounds that are much weaker
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Lower Bounds with Gaps in Traffic

Lower bounds are representation-dependent, when d < 1.
Algorithms learning linear separators: log1/d k
(Linear weighted function of attributes)

Pattern-extraction algorithms may work for exploits whose 
signatures overlap very little with normal traffic, with host-
monitoring techniques

Representation-dependent lower bounds that are much weaker
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Practical Implications
For arbitrary exploits, any pattern-extraction algorithm can be forced into 
making a large number of mistakes, with common assumptions:

even if the algorithm is randomized
even if host-monitoring techniques are used, to avoid noise in labels
even if arbitrarily complex representations of signatures are allowed

Existing research demonstrates feasibility of attacks on real systems; our 
results generalize to all systems that use similar properties of traffic.

Algorithms that tolerate only one-sided error are significantly easier to 
manipulate by the adversary.

Pattern-extraction algorithms may work for exploits whose signatures overlap 
very little with normal traffic, with host-monitoring techniques

Weaker lower bounds 
Bounds depend on complexity of signature used by learning algorithm
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Formal Definition of Reflecting Set?
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When might signature-generation work?

When the attacker cannot find reflecting set
“gaps” in traffic mean that
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Summary

Table
Discussion: Notice they eventually converge
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Finding Reflecting Sets

Exist for current generations of pattern-extraction systems
Learning from adversarially-generated features that can be manipulated
All attributes in reflecting set [do not need to have identical statistics]
Sufficient to bias away from true signature.

Likely to exist for algorithms using traffic statistics of normal 
and malicious traffic

Heavy-tailed nature of traffic patterns (e.g., polymorphic blending 
attacks illustrate similar behaviour)
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Learning Framework: Problem (II)

Assumption: True signature is a Conjunction of tokens
Lower bounds for conjunctions imply lower bounds for more 
complex functions
Common systems have signatures as conjunctions
Set of all potential signatures: nk

Goal: learn true signature from nk possible signatures
Identify n tokens that constitute true signature
Lower bounds on the mistakes that can be forced by an adversary
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Can General Bounds be Improved?

Do not always need to classify all packets correctly
Only need to classify correctly: 

Malicious packets
Non-malicious packets regularly present in normal traffic

Classification does not have to match target signature on others

Exploit Gaps in traffic
Measure how close malicious traffic is to normal traffic

Measure should not be subject to adversarial manipulation
Bounds are a function of this measure
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Generating Signatures Automatically

Generating signatures automatically is important:
Signatures need to be generated quickly
Manual analysis slow and error-prone

Pattern-extraction techniques for signature-generation

Signature
Generator

Malicious
Strings

Normal
Strings

‘aaaa’

 

&& ‘bbbb’

Signature
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