
Managing Interoperability in Non-Hierarchical Public Key Infrastructures

Peter M. Hesse
Gemini Security Solutions

pmhesse@geminisecurity.com

David P. Lemire
A&N Associates

dlemire@anassoc.com

1 Introduction

This paper discusses considerations for certificate issuing
systems and certificate processing applications, and
directory systems in environments that employ non-
hierarchical public key infrastructures (PKIs). The
observations and recommendations here, while applicable to
almost any non-hierarchical PKI, are most relevant to
situations where the establishment of interoperability among
the PKIs of disparate organizations is a primary goal. They
are based on our work with a PKI interoperability testbed
comprised of a bridge certification authority (CA)
interconnecting multiple PKIs based on CA products from
several vendors. Our view is that the more sophisticated
aspects of X.509 certificate issuance and processing (e.g.,
certificate policies and mappings, name constraints) are tools
that allow the PKI to establish the limits of security
interoperability between organizations [1]. Consequently,
we believe that the extensions for these X.509 features
should be routinely populated by certificate issuing systems,
and expected and processed by certificate processing
applications. The goal of the recommendations herein is to
promote interoperability among the PKI relying parties,
while still allowing the owning organizations to maintain
security control.

1.1 PKI Structures

This discussion is oriented toward PKIs or combinations
of PKIs with non-hierarchical certificate graphs. Such a PKI
may result through the implementation of a non-hierarchical
mesh PKI, or the interconnection of hierarchical and non-
hierarchical PKIs via cross-certification.

1.1.1 Hierarchical: A hierarchical PKI, depicted in
Figure 1, is one in which all of the subscribers / relying
parties trust a single "root" CA. The root CA certifies the
public keys of subordinate CAs. These CAs then certify
subscribers or may, in a large PKI, certify other CAs. In this
architecture, certificates are issued in only one direction, and
a CA never certifies another CA "superior" to itself.
Typically, only one superior CA certifies each CA.
Certification path construction in a hierarchical PKI is a
straightforward process that simply requires the relying party

to successively retrieve issuer certificates until a certificate is
located that was issued by the trusted root.

Certification Authority

End Entity
Relying parties are colored the
same as their trust anchor.

Relying parties are colored the
same as their trust anchor.

Certificate

Figure 1 – Hierarchical PKI

A widely-used variation on the single-rooted hierarchical
PKI is the inclusion of multiple CAs as trusted roots. Here,
end entity certificates are validated using the same approach
as with any hierarchical PKI. The difference is that a
certificate will be accepted if it can be verified back to any
of the set of trusted roots. Popular web browsers use this
approach, and are shipped with trusted CA lists containing
dozens of CAs. While this approach simplifies the
implementation of a limited form of certificate verification,
it also has numerous security weaknesses. For example, the
user has little or no idea of the policies or operating practices
of the various roots, and is usually unaware of which root
was used to verify a given certificate. Also, the revocation
of a trusted CA is nearly impossible, since it requires that
every user somehow be notified of the CA’s change of
status. The organization must then rely on the users to take
the necessary actions to remove the CA from the trust list.

Certification Authority

End Entity

Certificate

Trusted CA List

Figure 2 – Multi-Rooted Hierarchical PKI



1.1.2 Mesh: In a mesh style PKI (depicted in Figure 3),
each subscriber trusts the CA that issued that subscriber's
certificate(s). The CAs in this environment have no superior
/ subordinate relationship. In a mesh, CAs in the PKI cross-
certify. That is, each CA both issues a certificate to and is
issued a certificate by peer CAs in the PKI. The figure
depicts a mesh PKI that is fully cross-certified, however it is
possible to architect and deploy a mesh PKI with a mixture
of unidirectional and cross-certifications. Certification path
construction in a mesh PKI is more complex than in a
hierarchical PKI due to the likely existence of multiple paths
between a relying party’s trust anchor and the certificate to
be verified, and the potential for loops and “dead ends” in
non-hierarchical certificate graphs. In addition, while a
diagram of the mesh PKI may appear similar to the
hierarchical PKI, the certificates for the bi-directional cross-
certifications are typically stored as certificate pairs, rather
than individual certificates. These pairs are stored in a
different directory attribute than is normally used for the
certificates in a hierarchical PKI.

Certification Authority

End Entity
Relying parties are colored the
same as their trust anchor.

Relying parties are colored the
same as their trust anchor.

Certificate

Cross Certificate

Figure 3 – Mesh PKI

1.1.3 Bilateral Cross-certification: PKIs can be connected
via cross certification to enable the relying parties of each to
verify and accept certificates issued by the other PKI. If the
PKIs are hierarchical, cross-certification will typically be
accomplished by each root CA issuing a certificate for the
other PKI’s root CA. This results in a slightly more
complex, but still essentially hierarchical environment. If
the PKIs are mesh style, then a CA within each PKI is
selected, more or less arbitrarily, to establish the cross-
certification, effectively creating a larger mesh PKI. Figure
4 depicts a hybrid situation resulting from a hierarchical PKI
cross-certifying a mesh PKI.

Certification Authority

End Entity
Relying parties are colored the
same as their trust anchor.

Relying parties are colored the
same as their trust anchor.

Certificate

Cross Certificate

Figure 4: A Hybrid PKI

In current implementations, this situation creates a concern
that the applications used under the hierarchical PKIs will
not have path building capabilities robust enough to handle
this more complex certificate graph. As the number of cross-
certified PKIs grows, the number of the relationships
between them grows exponentially. Two principal concerns
about cross certification are the creation of unintended trust
paths through transitive trust, and the dilution of assurance
when a high-assurance PKI with restrictive operating
policies is cross-certified with a PKI with less restrictive
policies.

1.1.4 Bridge: Another approach to the interconnection of
PKIs is the use of a “bridge” certification authority (BCA).
A BCA is a nexus to establish trust paths among multiple
PKIs. The BCA cross-certifies with one CA (known as a
“principal” CA [PCA]) in each participating PKI. Since
each PKI only cross-certifies with one other entity (i.e., the
BCA), and the BCA cross-certifies only once with each
participating PKI, the number of relationships in this
environment grows linearly with the number of PKIs.
However, when interconnecting PKIs in this way, the
number and variety of PKIs involved can result in a complex
non-hierarchical environment, as shown in Figure 5.

The U.S. Federal government is in the process of
establishing a BCA intended to enable interoperability
among U.S. Government agencies by cross-certifying with
their PKIs. The recommendations in this paper are derived,
in large part, from the authors’ experience working on the
second phase of the DoD-sponsored BCA technology
demonstration. Detailed information about the BCA
technology demonstration can be found in the final report
[2].



Certification Authority

End Entity
Relying parties are colored the
same as their trust anchor.

Relying parties are colored the
same as their trust anchor.

Certificate

Cross Certificate

B

Figure 5: Cross-certification with a Bridge CA

1.2 Scope

The environment assumed for this paper is a non-
hierarchical PKI built using the conventions of X.509 and
the widely-followed PKIX (RFC 2459) profile [3]. We also
assume the use of a directory system for the dissemination of
certificates, certificate revocation lists (CRLs), and other
information of interest to relying parties. Within the
directory system, interactions among directory servers are
conducted using X.500 Directory System Protocol (DSP);
client access to the directory is typically via Lightweight
Directory Access Protocol (LDAP). Finally, we expect that
each organization will establish operating policies for its
PKI, and that the establishment of cross-certification carries
with it the need to determine the relationships between the
operating policies of the PKIs involved.

2 Certification Authorities

This section addresses considerations for Certification
Authorities (CAs). Certification Authorities are the heart of
a PKI; they process certificate requests, sign public key
certificates, create and sign CRLs, and publish certificates
and CRLs to a directory system to make them readily
available to certificate users. RFC 2459 requires conforming
CAs to support the authority key identifier, subject key
identifier, basic constraints, key usage, and certificate
policies extensions. We believe that in a non-hierarchical
PKI, support for the name constraints, certificate policy
constraints, and certificate policy mapping extensions are
also necessary. In addition, certain considerations apply to
some of the other extensions.

2.1 Standard certificate components

We have broken our discussion of CA operating practices
into those components of a public key certificate that are
commonly employed (i.e., standard components) and other
components, such as certificate policies, that might be

considered “advanced” and less commonly employed,
particularly in hierarchical PKIs. Our experience suggests
that these “advanced” elements are essential both to
achieving interoperability and to maintaining security
controls in non-hierarchical PKIs.

2.1.1 Public key/signature: In general, a CA may either
generate a key pair or receive, via a request, the public key
to be placed in end-entity certificates it issues. However,
support for receiving a public key in a certificate request,
rather than generating a key pair, is essential when a CA is
issuing certificates to other CAs; proper control of the
subject CA’s private signature key cannot otherwise be
guaranteed.

2.1.2 Names: The authors’ experience is primarily with
systems that use X.500 hierarchical naming conventions. In
a non-hierarchical PKI, proper management of the name
space is extremely important. In the operation of a CA, the
names it places in the subject name of the certificate must be
constrained, either procedurally or technically, to the name
space for which that CA has responsibility. Proper
management of the name space is essential to the regulation
of transitive trust in the PKI.

When a PKI is being deployed, the directory
administrators should work with the policy administrators in
advance to develop a naming architecture that will take into
consideration the possibility of future interoperability. This
will minimize future naming conflicts (namespace overlap)
with external directories. If two directories are configured to
chain, and their controlled namespaces overlap, the chaining
will not function correctly. (More on directory chaining is
found in section 3.1.3). This overlapped naming will cause
reduced functionality and interoperability problems once
deployed.

2.1.3 Basic Constraints and Key Usage: RFC 2459
requires the basic constraints extension to be present and
identified as critical in all CA certificates, and indicates that
it should not be present in end-entity certificates. The key
usage extension is considered optional in RFC 2459, but
must be marked critical if present. In a non-hierarchical
PKI, certificate processing systems can potentially benefit
from the information provided by these extensions. The
basic constraints extension simplifies the identification of
CA certificates. The key usage extension provides useful
information when a path building algorithm needs to choose
among several candidates as the next certificate in a path.
We recommend always including the key usage extension,
populated according to the proper use of the certificate and
any restrictions associated with the cryptographic algorithm
in use, and always including the basic constraints extension
in a CA certificate.



2.1.4 Authority and Subject Key Identifiers: The
authority key identifier (AKID) and subject key identifier
(SKID) can be placed in certificates to simplify the
certificate path building process. However, section 3.1.4
identifies reasons why the authorityCertIssuer and
authorityCertSerialNumber components of AKIDs should
not be used. If the key identifier component is used, the
AKID in certificate A should equate to the SKID in the
certificate of the authority that issued certificate A. Key
identifiers can be very beneficial to the efficiency of path
building algorithms, and should always be populated.

Some certificate path verification algorithms erroneously
require that SKIDs and AKIDs be matched as the path is
verified. Some certificate path building algorithms will fail
to locate valid paths if there are mismatches in the
SKID/AKID values of certificates evaluated as candidates
for inclusion in the path. To avoid both of these potential
problems, it is extremely important that a CA ensure that the
SKID in the certificate(s) issued to it match the AKIDs in
the certificates it issues.

2.1.5 Subject Alternate Name: One of the most common
applications for interoperable PKIs is electronic mail
(email). We recommend always populating the subject
alternate name of end-entity certificates with the email
address (rfc822Name) of the subject, in order to allow a
strong binding between an email address and the public key
certificate being used for secure email. Implementors should
be aware that a change in the email address will create the
need to revoke and replace the certificate.

Additionally, certificate processing systems may wish to
able to locate end entity certificates in the directory system
for retrieval and use in encryption operations. If the subject
DN of the desired certificate is known, the search is
straightforward. However, particularly in secure electronic
mail applications, the certificate processing system may only
know the email address of the end-entity whose certificate is
sought. It is our recommendation that the certification
authority populate the mail attribute of the certificate
subject’s directory entry with the email address placed in the
subject alternate name extension.

2.2 Advanced certificate components

This section addresses recommendations for other X.509
certificate extensions that are important to the management
of interoperability in non-hierarchical PKIs.

2.2.1 Name Constraints: As mentioned in the section
above on Names, management of the name space is a
particularly important consideration in a non-hierarchical
PKI. In a bridged environment, the name constraints certifi-
cate extension is the cornerstone tool for managing name
space and controlling transitive trust. CAs operating in this
environment must be able to populate this extension.

Figure 6 shows a BCA interconnecting three PKIs. In the
certificate issued by the bridge to each PKI, a permitted
subtree in the name constraints extension provides a
definitive specification of the name space that the other PKIs
in the environment will recognize for that PKI. For
example, the certificate issued by the BCA to the PCA of the
organization A PKI will include:

NameConstraints
PermittedSubtrees (c=US, o=A)

If Organization A issues any certificates outside this
permitted name space, those certificates will be rejected by
relying parties in Organizations B and C. Thus, in the larger
community formed by the cross-certification of these PKIs,
the Organization A PKI is restricted to a well-known name
space.

Certification Authority

End Entity
Relying parties are colored the
same as their trust anchor.

Relying parties are colored the
same as their trust anchor.Certificate

Cross Certificate

B

Organization A

Organization B

Organization C

c=US,o=A

c=US,o=B

c=US,o=C

c=US

Figure 6: Name Constraints with a Bridge CA

This mechanism also provides a means to eliminate PKIs
that an organization does not wish to trust. The use of an
excluded subtree in the certificate from a PCA to the bridge
will accomplish that goal.

For example, if the certificate issued by PCA-B to the
BCA included:

NameConstraints
ExcludedSubtrees (c=US, o=C)

then relying parties within organization B will be able to
validate certificates issued by Organizations A and B (and
future Organizations D, E, …), but will reject certificates
issued by Organization C.

Another benefit of this careful management of name space
is the ability of an organization to protect its name space in
the bridge environment. In our example, each organization’s
PCA can include an excluded subtree in the certificate issued
to the BCA, with that excluded subtree specifying the
organization’s own namespace. For example, the certificate
issued from the Organization A PCA to the BCA would
contain:

NameConstraints
ExcludedSubtrees (c=US, o=A)

This name constraint ensures that relying parties within the
Organization A PKI will reject certificates issued by PKIs
reached through the BCA that contain names within the
Organization A namespace. While certificates from a



“rogue” CA that have names within the Organization A
namespace may be recognized by other PKIs,
Organization A can be confident that it’s own subscribers
will not erroneously accept such certificates as valid.

The use of name constraints in an environment involving a
Bridge CA requires that interoperating organizations trust
the Bridge CA to set name constraints properly in all
certificates it issues. See section 2.3.5 for more information.

The combination of clear allocation of the overall name
space and routine inclusion of name constraints in the
certificates issued by and to PCAs according to strict policy
allows the organizations participating in this environment to
regulate interoperability as they see fit.

2.2.2. Certificate Policy: In a single organization PKI, the
use of certificate policies may be unnecessary. When
connecting the PKIs of multiple organizations, however,
certificate policies are an important tool for both regulating
interoperability and maintaining the level of assurance
required for high-sensitivity or high-dollar-value
transactions. For example, one organization may invest
considerable resources in a very high assurance PKI
operating with hardware cryptographic tokens, and
rigorously enforced procedures for personnel identification;
another PKI connected through cross-certification may
operate with software tokens and much less rigorous
procedures, and a correspondingly lower level of assurance.
The inclusion of certificate policies in all certificates issued
by each PKI offers the opportunity for relying parties both
within and outside of the PKI to take the PKI’s level of
assurance into account when accepting specific certificates
for specific purposes.

CAs operating in non-hierarchical, and especially multi-
organization, environments should routinely include the
certificate policies extension in all certificates they issue. In
order to simplify the use of mapping to establish
equivalencies among the policies of different organizations,
we also recommend that the certificate policies extension
include all of the organization’s policies that apply. For
example, assume an organization has established two
policies: “basic” and “enhanced”, with the “enhanced”
policy conveying a higher level of assurance. We
recommend all certificates that assert the “enhanced” policy
also assert the “basic” policy; this ensures that in situations
where the ‘less trustworthy’ certificate is adequate, the
‘more trustworthy’ certificate is also useable. This also
avoids the need for a user to be issued and have to choose
among multiple certificates when a single certificate is
sufficient.

The converse to this is when certificate policies are used in
a cross-certified, multi-organizational environment to create
isolated communities. An organization might create an
“internal use only” certificate policy that is not intended to
be verified by the relying parties of other, cross-certified
PKIs. In order to ensure that such policies achieve their

intent, they must appear in end-entity certificates without
other policies that may be acceptable to other PKIs through
policy mapping.

2.2.3 Certificate Policy Mapping: Certificate policy
mapping is an important feature for managing trust in non-
hierarchical PKIs. An important benefit of the use of policy
mapping is that relying party applications need only be
configured with the certificate policies of their own domain
as acceptable policies. This allows the organization to
manage policy interoperability through cross-certificate
content, rather than needing to actively manage the
acceptable policy settings of large numbers of relying party
applications distributed throughout the organization. CAs
need to populate the certificate policy mapping extension
whenever they issue a cross-certificate to a CA in another
domain.

Certificate policy mapping is a fundamental requirement
in the United States Federal PKI Bridge CA (BCA)
environment. The U.S. Federal BCA will issue certificates
to other PKI asserting certificate policies unique to the BCA,
with mappings to the certificate policies of the subject
domain. Cross-certifying principal CAs are correspondingly
expected to issue certificates to the BCA that assert their
own issuer domain certificate policies, with mappings to the
BCA policies. This concept is illustrated in Figure 7.

In the example illustrated, a relying party application
within Organization B’s PKI configured to accept “B High”
as an acceptable certificate policy will, through policy
mapping, recognize and accept “A High” as an equivalent
policy. When adding a new PKI to the BCA community, the
BCA’s policy authority will evaluate the policies and
procedures of the new PKI and define policy equivalencies.
When cross-certifying with the BCA, an organization can
make an independent determination of the correspondence
between the BCA’s policies and those of the organization,
and provide that determination to the organization’s relying
parties using the certificate policy mappings.

Certification Authority Certificate

BCAA B

Issuer = BCA
Subject = Org B PCA

Certificate Policy = Bridge High
Policy Mapping: B High = Bridge High

Issuer = Org B PCA
Subject = BCA

Certificate Policy = B High
Policy Mapping: Bridge High = B High

Issuer = Org A PCA
Subject = BCA

Certificate Policy = A High
Policy Mapping: Bridge High = A High

Issuer = BCA
Subject = Org A PCA

Certificate Policy = Bridge High
Policy Mapping: A High = Bridge High

Figure 7: Policy Mapping with a Bridge CA

2.2.4 Certificate Policy Constraints: Certificate policy
constraints can be used to control the certificate policy



processing through a trust chain. BCA cross-certificates will
often contain certificate policy constraints extensions, with
the inhibitPolicyMapping field populated. The certificate
from the PCA to the BCA will contain an
inhibitPolicyMapping field with the skipCerts value set to 1.
This ensures that relying parties from the PCA domain will
allow the policy mapping from the Bridge to other PCAs’
policies, but no further mappings within or from the other
domains are permitted. The certificate from the BCA to the
PCA will contain an inhibitPolicyMapping field with the
skipCerts value set to 0. This ensures that relying parties
from other domains will not accept policy mappings that
occur within distant domains. CAs should be able to
populate certificate policy constraints in this fashion if they
intend to interoperate in a BCA environment.

2.2.5. CRL Distribution Points: Various commercial PKI
products have different conventions for where revocation
information is published. It may be found in an attribute of
the CA’s directory entry, stored in another directory
location, retrieved from a specified URI, etc. In a single-
vendor implementation, the knowledge of where revocation
information is published may be built into the applications.
However, in environments where multiple vendor products
may be employed, it cannot be assumed that applications
will have prior knowledge of the usual conventions or
specific configuration of any CA. In this environment, CAs
should routinely populate the CRL distribution points (DP)
extension of the certificates they issue in order to maximize
the likelihood that all certificate processing systems will
successfully locate the revocation information they need.

2.3 Issues

2.3.1 Cross Certificate Requests: Certification authority
products support many different request/response formats for
cross-certification. Some of these formats are self-signed
certificate exchange, PKCS#10 requests, and requests using
the PKIX Certificate Management Protocol (CMP) [4]. The
two most important components of the request format are the
subject public key, and the subject key identifier. The AKID
used in the certificates the requesting CA issues must be
passed as the SKID in the request because not all products
calculate SKIDs from the public key in the same fashion.
For example, in Figure 6, Organization A cross-certifies with
the Bridge CA. If the Organization A PCA places an AKID
in the certificates it issues, the Bridge CA must use that
AKID as the SKID in the cross-certificate issued to the
Organization A PCA for maximum interoperability.
Certification authority products should be able to fulfill
cross-certificate requests for specific public keys and SKIDs.

2.3.2 Policy Mapping: CAs operating in non-hierarchical
PKIs may need to deal with multiple certificate policies. In

this environment, a CA must be able to map to certificate
policies other than those of its own domain. It may also
need to include multiple policy mappings in a single cross-
certificate. While it is reasonable for a CA to be constrained
to only assert its own domain’s policy OIDs in the
certificates it issues, CA implementers should be wary of
imposing arbitrary constraints on the CA’s ability to specify
the policy mappings in the CA certificates it issues.

2.3.3. Population of Cross Certificates in Directory:
Directory systems are not trusted in PKI; they serve as
repositories for trusted (signed) objects, but there are no
security requirements on the directories themselves.
However, it is important to prevent unauthorized
modification of directory information because corrupted
directory information will lead to a denial of service for
directory users. It is important therefore to employ access
controls to prevent unauthorized directory modifications.

These access controls can complicate the population of
cross certificates. Cross certificates are stored together in the
crossCertificatePair attribute in the directory; this attribute
contains an ASN.1 encoded sequence of certificates.
Unfortunately, the two components of the pair are developed
and signed by two different entities. The same pair is also
reversed and placed in another entry. If CA X cross-certifies
with CA Y, two cross certificate pairs are created:

• In CA X’s entry, there is a pair with CA X as the
subject in the forward component, and CA Y as the
subject in the reverse component.

• In CA Y’s entry, there is a pair with CA Y as the
subject in the forward component, and CA X as the
subject in the reverse component.

Either both CA X and CA Y must have access to read and
write each others’ crossCertificatePair attribute, or some
manual process must be created which allows the data to be
updated properly. Certificate issuing systems and directory
administrators should consider this when cross-certifying
with other domains. Mechanisms, either technical or
procedural, must be established to ensure that both elements
of the cross-certificate pair are correctly encoded and
populated.

2.3.4. Criticality of Extensions: Certain extensions have
their criticality defined by RFC 2459. Other extensions,
such as key usage, certificate policies, and CRL distribution
points can be marked critical or not at the CA’s discretion.
Marking an extension critical will require it to be processed
by relying parties, but will cause failures with any software
incapable of processing that extension. This balance
between maintaining security controls and allowing
interoperability is an important one to consider. Before
marking extensions critical, authorities should consider
whether it would reduce interoperability with relying parties
in cross-certified domains.



2.3.5. Interoperating with a Bridge CA: The population
of certain extensions and settings must be done properly in
order to reduce the risk of unintended trust. This is
especially true in environments involving a Bridge CA. If
the Bridge CA violates the trust of the organizations it is
involved with and issues certificates improperly (e.g.
without proper name constraints or policy constraints
specified), relying parties may trust certificates they did not
expect or intend to trust. To reduce this risk, the
organizations along with the Bridge CA operators need to
clarify how certificates and their components are issued.
This will most often be specified through certificate profiles
as a part of the certificate policy and certification practices
of the Bridge CA and PCAs.

3 Certificate Processing Systems

A certificate processing system is a system that is acting
on behalf of a relying party in order to determine the validity
of a certificate. The most common example of a certificate
processing system is found in S/MIME email applications.
These applications validate certificates used to verify
signatures of incoming messages, as well as validate key
management certificates used when encrypting outgoing
messages. These applications, hereafter referred to as “thick
clients,” perform all the necessary processing to build and
validate certificate chains. It is expected that some client
software that needs to validate certificates will be developed
as a “thin client,” offloading some or all of the required
processing to a server component [5]. In these cases, the
certificate processing system is the server component. This
section of the document discusses how certificate processing
systems need to behave in order to properly process
certificates within a non-hierarchical PKI structure. The
recommendations here apply to both thick clients and to
server components performing these functions on behalf of
thin clients. Generally, certificate processing systems
perform two logical functions: building the certificate path,
and validating the certificate path.

3.1 Certificate Path Building

Certificate path building is the process by which the
certificate processing system obtains the certificate path
between the trust root and the target certificate. Different
implementations build the certificate path in different ways;
it is not our intent to recommend a single “best” way to
perform this function. Guidance is provided on the technical
issues that surround the path building process, and the
capabilities a path building implementation must have in
order to build certificate paths successfully in non-
hierarchical PKI structures.

3.1.1. Certificate Path Completeness: A certificate path is
an ordered list of certificates starting with a certificate issued

by the relying party’s trust root, and ending with the target
certificate that needs to be validated. Figure 8 shows an
example of a certificate path. In this figure, the arrows
represent certificates.

Trust
Root

A

Certification Authority End Entity Certificate

TargetCB

Certificate 1
A(Trust Root)

Certificate 2
B(A)

Certificate 3
C(B)

Certificate 4
Target(C)

Figure 8: Example Certificate Path

The notation for the certificates is Subject(Issuer). In all
certificate paths, the issuers and subjects match in this
relationship so that the issuance relationship flows from the
trust root to the target, with zero or more intermediate
certificates between. In order for the certificate path to
successfully validate, the names and signatures must chain
throughout the path. In the example in Figure 9, the issuer
distinguished name in certificate 1 must match the
distinguished name of the trust root. Additionally, the
signature on certificate 1 must be verified cryptographically
using the trust root public key. Likewise, the issuer name in
certificate 2 must match the subject name in certificate 1,
and so forth. This must be true for all certificates in the
path. Once this information has been verified for all
certificates in the path, the certificate path is considered to
be complete.

3.1.2. Building Paths in Non-Hierarchical PKI
Structures: In a hierarchical PKI, the process of building a
path is quite simple; the application starts with the target
certificate, obtains the issuer’s certificate, and repeats this
process until a certificate is encountered that is issued by the
trust root. This method, to be referred to as the “find issuer”
method, will always find a complete certificate path if one
exists in the strictly hierarchical PKI. However, this simple
method cannot be used in non-hierarchical PKI structures for
a few different reasons.

Dead-ends In a non-hierarchical PKI structure the simple
“find issuer” algorithm may fail prematurely without finding
an existing path due to a “dead-end”. Consider the example
in Figure 9:

Trust
Root

C

Target

Z

Y

Certification Authority End Entity Certificate

Figure 9: Dead-end Example



Note that in this example, C has two certificates: one issued
by Y, and the other issued by the Trust Root. Let us suppose
that the “find issuer” algorithm is used, and the order in
which it retrieved the certificates was Target(C), C(Y), Y(Z),
Z(Z). In this case, Z has no certificates issued by any other
entities, and so the path building process stops. Since Z is
not the relying party’s trust root (Z may be the Target’s trust
root), the certificate path is not complete, and will not
validate. This example shows that in a non-hierarchical PKI,
additional complexity must be included to handle the cases
in which entities are issued multiple certificates from
different issuers.
Loop Detection In a non-hierarchical PKI structure, the
“find issuer” algorithm may become caught in a loop
without finding an existing path. Consider the example in
Figure 10:

A

B

Target

Z

Y

Trust
Root

Certification Authority End Entity Certificate

Figure 10: Loop Example

Let us suppose that in this example the “find issuer”
algorithm is used, and the order in which certificates are
retrieved is Target(B), B(Y), Y(Z), Z(B), B(Y), Y(Z), Z(B),
B(Y)… You can see that a loop has formed, which will
cause the correct path (Target, B, A) to never be found. The
certificate processing system must recognize loops before
they form to allow the certificate path building process to
continue and find valid paths. We recommend that the loop
detection not only detect the repetition of a certificate in the
path, but also detect the presence of the same subject
distinguished name / subject public key pair occurring twice
in the path. A name/key pair should only appear once in the
path, otherwise the trust chain is diluted.

3.1.3. Certificate Retrieval in Non-Hierarchical PKI
Structures: If the certificate path building function uses an
X.500 or LDAP repository to obtain certificates, there are
multiple attributes that must be examined within the
directory entries for the entities in the path. There are two
common protocols for accessing information from a
directory system, Directory Access Protocol (DAP) and
LDAP. LDAP has become the protocol of choice for client-
to-directory communications. Many directory products
available today support client-to-directory communications
via either DAP or LDAP, while using Directory System
Protocol (DSP) for directory-to-directory communications.

As mentioned earlier, directory systems are capable of
interoperating via the use of DSP chaining. This chaining
relationship allows for a distributed directory system,
thereby taking the burden off of the client when performing
retrievals. It is important to note that DSP chaining
eliminates the need to configure client software to access
multiple directories. The DSP chained directory system will
obtain the information requested by the client (if it is
available through one of its chaining relationships) in the
client’s original request.

Some directory systems are not capable of performing
DSP chaining or are intentionally not chained to other
directories for various reasons. In these cases, LDAP
referrals are often used. When queried for information that
is not available in the directory system, the system may
respond with a “not found” error, and an LDAP referral in
the extra information portion of the LDAP response. The
referral contains a list of one or more other servers that
should be contacted to check for the information [6]. When
directories without chaining relationships are used, directory
clients must be capable of receiving LDAP referral
information, and following the referrals to obtain the
required data.

Typically, end-user certificates are found within the
userCertificate attribute, and CA certificates are found
within the cACertificate attribute. In non-hierarchical PKIs,
the crossCertificatePair attribute must also be examined to
obtain cross certificates issued between entities. The object
within the crossCertificatePair attribute is not itself a
certificate; it is an ASN.1 encoded sequence of two
certificates. Certificate processing systems that use X.500 or
LDAP repositories to obtain certificates must be able to
retrieve and parse crossCertificatePair attributes in order to
successfully build paths in non-hierarchical PKIs.

3.1.4. Improving Path Building Efficiency using Key
Identifiers: Key identifiers refer to two extensions that may
appear in certificates; subject key identifier (SKID), and
authority key identifier (AKID). These extensions were
created to assist in the path building process. Consider the
example in Figure 11:

Trust
Root

Target

Z

Certification Authority End Entity Certificate

Target(A)
AKID=ABC

A(Z)
SKID=XYZ

A(Trust Root)
SKID=ABC

A1 A2

?

Figure 11: Key Identifier Example



In this example, our target has one certificate, but there are
two certificates for the issuer A. These two certificates have
the same subject distinguished name, but different public
keys and subject key identifiers. The path building
algorithm should favor the certificate in which the target’s
AKID matches the issuer’s SKID when choosing between
the two issuer certificates. This will most likely lead the
path building in the correct direction.

There are two issues with the use of AKID and SKID that
we will present. The first is the use of the
authorityCertIssuer and authorityCertSerialNumber parts of
the AKID to identify the issuer of a certificate. This type of
AKID is not useful in finding the issuer of a certificate in a
cross-certified environment. This is because the issuer of a
certificate may itself be the subject of many certificates from
different issuers, and the AKID may not have been
developed from the point of view of the relying party.
Consider the example in Figure 12:

Trust
Root

A

Target

Z

Certification Authority End Entity Certificate

Target(A)
AKID

AuthorityCertIssuer=Z
AuthorityCertSerialNum=123

Figure 12: Authority Key Identifier Example

If the target certificate contains an AKID with the
authorityCertIssuer and authorityCertSerialNumber
components, the information in that extension may lead to
the certificate A(Z), which leads away from the relying
party’s trust root. Therefore, in a non-hierarchical PKI,
AKIDs containing authorityCertIssuer and
authorityCertSerialNumber should be ignored by certificate
processing systems.

The second issue is a weakness of many current certificate
processing systems. Although the AKID and SKID
extensions may be used to assist in the path development
process, no standard requires them to match or be present in
order for a path to be valid. Certificate processing systems
should use AKID and SKID values to assist in path building,
but should not require them to be available or to match
appropriately in order to successfully build and validate a
complete certificate path.

3.1.5. Caching and Retrieval Efficiency: Certificate
processing systems operating in a non-hierarchical PKI will
often need to retrieve certificates and certificate revocation
lists (CRLs) from a source outside the application protocol.
Typically, these objects are retrieved from an X.500 or

LDAP repository, an Internet URI, or some other non-local
source. Due to the delays associated with both the
establishing of connections as well as network transfers,
certificate processing systems should attempt to be as
efficient as possible when retrieving data from external
sources. Certificate processing systems that are consistently
very slow during processing will be disliked by users and
will be slow to be adopted into organizations. Certificate
processing systems should do whatever possible to reduce
the delays associated with requesting and retrieving data
from external sources.

Perhaps the best way in which retrieval efficiency can
often be improved is by the use of a caching mechanism.
Certificate processing systems should cache data retrieved
from external sources for some period of time, not to exceed
the useful period of the data (i.e., an expired certificate
should not be cached). Although this comes at a cost of
increased memory/disk consumption by the system, the
benefit of reducing network transmissions is great. In the
testing performed during the NSA Bridge CA Phase II
demonstration [2][7], the applications that performed
caching consistently demonstrated significantly improved
performance the second or subsequent time a certificate path
was processed, or when similar (e.g., same issuer) target
certificates needed to be validated.

3.1.6. Other Optimizations: The Certificate Path
Development Library (CPDL), developed by Entrust
CygnaCom, provides a freeware implementation of a path
building algorithm that works in non-hierarchical PKI
structures. This algorithm performs a few additional
optimizations that may be worthwhile to implement in other
certificate processing systems. The first is filtering. While
building paths, the CPDL filters out any certificate that can
be ruled out because it would cause the current path to be
invalid. Two examples of filters that are used are filtering
expired certificates and certificates that will invalidate the
policy requirements of the current path. In these cases, if a
choice needs to be made between multiple certificates that
may all be the next part of the certificate path, the filtering
sometimes allows the choices to be reduced.

The second optimization performed by the CPDL is
certificate sorting. Once again, at some point during the path
building process the algorithm may be faced with the choice
of more than one certificate that may complete the path. The
CPDL sorts these certificates according to rules designed to
favor certificates that are more likely to lead to a valid
certificate path. Two examples of sorting rules are sorting
certificates that contain consistent signature algorithms
ahead of those that do not, and sorting certificates that have
more relative distinguished name (RDN) components in
common with the trust root ahead of those that have fewer.
Complete details on the filtering and sorting rules performed
by the CPDL are available at the CPDL website,
http://www.cygnacom.com/products



3.1.7. Building Direction: A certificate path can be built in
two common directions. These directions are sometimes
referred to by “forward” and “reverse”, but those names can
be misleading. They will be referred to here as “building
from the root” and “building from the target”. In the case of
building from the root, the algorithm generally starts with
the root, and attempts to retrieve certificates that are the
subject of the current certificate, until ending at the target
certificate. Building from the target starts with the target
certificate, and attempts to retrieve the certificate(s) of the of
the current certificate’s issuer, until ending with a certificate
issued by the root.

Both methods may be possible in differing PKI structures.
It may be difficult to build from the root in a strict hierarchy;
it may be difficult to build from the target in a highly cross-
certified environment. A paper entitled “Building Certificate
Paths: Forward vs. Reverse” [8] was presented at the 2001
NDSS conference, and favored building from the root.
Building from the root, while appealing because of the
optimizations that can be performed during the path building
process, has some practical problems. The first is requiring
the presence of reverse cross certificates. Building from the
root can only be performed when the reverse element of
crossCertificatePair components are present for most (if not
all) of the CA certificates in the path. Unfortunately, the
standard LDAP v3 schema requires the presence of the
forward element of crossCertificatePair, but allows the
reverse element to remain optional (this aspect of the LDAP
v3 schema is being changed to require populating both
elements). Therefore the certificates desired may not be
present. The second is the act of performing signature
validation while building certificate paths. Building from
the root allows path completeness to be checked as each new
certificate is added to the path—to ensure no certificate with
an invalid name or signature is ever added to the path. In
practice, this approach may be counterproductive because
cryptographic verification operations are relatively slow
compared to other, simpler checks of certificate content. If
many subject certificates are present (which might be the
case in an environment containing a Bridge CA), it is
possible that many unnecessary signature validations may
occur which would slow down the path building process.

This document does not favor either direction for building.
Implementors of building algorithms should consider the
points made in the aforementioned paper as well as the items
discussed here before making a decision on building
direction.

3.2 Certificate Path Validation

Certificate path validation is not much different in a non-
hierarchical PKI than it is in a strict hierarchy. This is
because once the certificate path has been constructed, it
will, in any case, be presented to the validation algorithm as
a simple chain of certificates, starting with a certificate

issued by the root, and ending with the target. The main
concern for certificate processing systems is that the
validation algorithm is able to process and validate basic
certificates along with the certificate extensions outlined in
Sections 2.1 and 2.2 of this document. Standards such as
PKIX RFC 2459 do not mandate support for all of those
extensions; in order to maintain all security controls while
allowing interoperability, these extensions must be
processed. (A chart detailing differences between the
requirements of PKIX RFC 2459 and this document is found
in the conclusion) The extensions should be processed
exactly as outlined in the X.509 or PKIX RFC 2459; no
special handling outside those standard recommendations is
needed.

Experience has identified certain issues regarding
certificate path validation in non-hierarchical PKI structures.
The remainder of this section will address those issues and
provide recommendations.

3.2.1. Extensions in Trusted Root Certificates: In the
previous section entitled Certificate Path Building, a
certificate path was defined as the set of certificates between
the target and a certificate issued by the trust root. It is the
opinion of the authors that a certificate path does not include
the self-signed trusted root certificate. The X.509 standard
leaves room for interpretation as to whether or not the self-
signed trusted root certificate should be part of the certificate
path, and used in the validation process. After much
discussion and debate with people involved in both the
X.509 and PKIX standards processes, the authors have
concluded that self-signed trusted root certificate should not
be part of the validation process. The self-signed trusted
root certificate simply provides a convenient container to
store both a distinguished name and public key for the
trusted root. Extensions in the self-signed trusted root
certificate such as basic constraints, name constraints,
certificate policy constraints, etc. should be ignored during
the validation process. If the trusted root wishes to impose
these constraints on the certificate path, these extensions
should be present in all certificates issued by the trusted root
in order to ensure they are processed by all certificate
processing systems.

3.2.2. Order of Validation Operations: Both the X.509
and PKIX RFC 2459 standards provide example algorithms
for the validation of certificate paths. These algorithms
provide a reference to establish the correct results of path
processing, but are not necessarily the best or most
optimized way to validate certificate paths. More likely,
these algorithms were chosen because of the ability to
describe them fully and accurately. Certificate processing
systems are free to implement whatever validation algorithm
they choose, as long as the end results are guaranteed to be
the same as these standard algorithms.



It is our recommendation that the algorithm used to
validate certificate paths perform all checks on the path in
the order from fastest checks to slowest checks. Consider
three aspects of certificate path validation: name chaining,
policy chaining, and signature chaining. Checking name
chaining is extremely fast, so that might occur first.
Checking policy chaining is also quite fast, although a bit
more involved than name chaining, so it might be performed
second. Checking signature chaining requires cryptographic
operations that are computationally intensive, and may
involve an external cryptographic device such as a smart
card. This is potentially quite slow, in relative terms, so it
should be performed last. Performing these checks in order
from fastest to slowest allows invalid paths to be ruled out
quickly, so that the next possibly valid path can be built and
validation attempted. Reducing unnecessary delays will
increase the usability of any certificate processing system.

3.2.3. Revocation Checking: As a part of the certificate
path validation process, all certificates should be checked to
ensure they have not been revoked. In certain PKIs this is
handled by the use of certificate revocation lists (CRLs); in
others, an on-line protocol such as the online certificate
status protocol (OCSP) is used. A requirement of any
certificate processing system wishing to operate in a specific
PKI environment is to be able to retrieve and process
revocation data for that environment in whatever form it
may be provided. Applications operating in non-
hierarchical, multi-vendor PKIs may encounter several
different approaches to publishing revocation data in the
validation of a single certificate path.

OCSP Processing A certificate validation algorithm that
issues an OCSP request will encounter some delays in the
network communication associated with this request. As
was mentioned before, it is important to consider these
communication delays while developing the algorithm for
the validation process to ensure as minimal a delay as
possible.

CRL Retrieval While certificate status checking is
typically considered part of the validation process, the
certificate processing system may actually wish to obtain
CRLs during the path building process. This is because
while certificates for intermediate CAs are being retrieved
during the building process, the additional delay and
overhead to obtain the associated CRL at the same time may
be small enough to warrant this extra processing. However,
if CRLs are expected to be large, or if the PKI is highly
cross-certified, leading to many incorrect retrievals before
the correct path is found, it may not be as beneficial to
retrieve CRLs during the certificate path building process.

3.2.4. CRL Distribution Point Processing: The CRL
Distribution Points (CRL DP) extension is commonly found
in certificates operating in both hierarchical and non-
hierarchical structures. This extension identifies a list of one

or more locations where the CRL that may contain the
current certificate can be found. Certificate processing
systems should process this extension to maximize
interoperability.

4 Conclusion

We have successfully applied these concepts in the DOD
BCA technology demonstration to show how cross domain
PKIs can work with each domain controlling how much to
trust another domain. The demonstration illustrates that the
more sophisticated aspects of X.509 certificate issuing and
processing, especially certificate policies, policy mappings,
and name constraints, are effective tools that allow the PKI
to establish the limits of security interoperability between
organizations in tangible form. Consequently, these X.509
features should be populated by certificate issuing systems,
and expected and processed by certificate processing
applications. We believe that this will promote
interoperability among the relying parties within non-
hierarchical PKIs, while still allowing the participating
organizations to maintain security control.

The following chart outlines the differences between the
recommendations of this paper and guidance given by PKIX
RFC 2459 on particular certificate extensions used when
working in non-hierarchical PKI structures.

RFC 2459 This Document
Basic
Constraints

Populate
and process

Populate and
process

Key Usage Populate
and process

Populate and
process

Certificate
Policies

Populate
and process

Populate and
process

Authority and
Subject Key
Identifiers

Populate,
recommend
process

Populate and
process (see
3.1.3.1)

Certificate Policy
Mappings

Optional Populate and
process

Name
Constraints

Optional Populate and
process

CRL Distribution
Points

Optional Populate and
process

Subject
Alternative Name

Optional Populate

Specific recommendations for those that are using or plan
to use a non-hierarchical PKI structure are listed below for
convenience. For more information about each
recommendation, see the referred section.

Certification Authorities must be able to…
• Populate all the extensions listed in sections 2.1 and 2.2
• Populate subject key identifier with a requested value

provided by the authority being cross-certified (section
2.3.1)



• Perform policy mappings to policies other than those
configured by the system at installation time (section
2.3.2)

• Perform multiple policy mappings within the same
certificate (section 2.3.2)

• Populate the crossCertificatePair attribute in a directory
if applicable (section 2.3.3)

• Configure the criticality of extensions as allowed by
PKIX RFC 2459

Certificate Processing Systems must be able to…
• Build certificate paths using cross certificates (section

3.1.2)
• Build certificate paths in the presence of dead-ends and

loops in the PKI structure (section 3.1.2)
• Build certificate paths without requiring the presence of

properly configured key identifiers in all certificates
(section 3.1.4)

• Processing all extensions listed in sections 2.1 and 2.2
as outlined in PKIX RFC 2459

• Ignore extensions in trusted root certificates when
validating certificate paths (section 3.2.1)

• Be as efficient as possible when building and validating
certificate paths (sections 3.1.5 and 3.2.2)

5 References

1. ITU-T Recommendation X.509: Information Technology –
Open Systems Interconnection, “The Directory: Public-key
and Attribute Certificate Frameworks”, March 2000.

2. National Security Agency. “Phase II Bridge Certification
Authority Interoperability Demonstration Final Report”,
prepared by A&N Associates, 2001. Available at
http://www.anassoc.com/Techno.htm

3. R. Housley, W. Ford, W. Polk, D. Solo, “Internet X.509
Public Key Infrastructure--Certificate and CRL Profile”, IETF
Request for Comments No. 2459, January 1999.

4. C. Adams, S. Farrell, “Internet X.509 Public Key
Infrastructure--Certificate Management Protocols”, IETF
Request for Comments No. 2510, March 1999.

5. A. Malpani, P. Hoffman, R. Housley, T. Freeman, “Simple
Certificate Validation Protocol (SCVP)”, IETF PKIX
Working Group Internet Draft, July 2000 (work in progress).

6. M. Wahl, T. Howes, S. Kille, “Lightweight Directory Access
Protocol (v3)”, IETF Request for Comments No. 2251,
December 1997.

7. National Security Agency. “Technical Interoperability Profile
for the Bridge Certification Authority (BCA) Interoperability
Demonstration Phase II”, prepared by A&N Associates, 2001.

8. Y. Elley, A. Anderson, S. Hanna, S. Mullan, R. Perlman, S.
Proctor. “Building Certification Paths: Forward vs. Reverse”,
In Network and Distributed System Security Symposium
Conference Proceedings: 2001


