
Measuring and Detecting Fast-Flux Service Networks

Thorsten Holz1 Christian Gorecki1 Konrad Rieck2 Felix C. Freiling1

1 University of Mannheim 2 Fraunhofer FIRST
Laboratory for Dependable Distributed Systems Intelligent Data Analysis

Mannheim, Germany Berlin, Germany
{holz, gorecki, freiling}@informatik.uni-mannheim.de konrad.rieck@first.fraunhofer.de

Abstract

We present the first empirical study of fast-flux service
networks (FFSNs), a newly emerging and still not widely-
known phenomenon in the Internet. FFSNs employ DNS
to establish a proxy network on compromised machines
through which illegal online services can be hosted with
very high availability. Through our measurements we show
that the threat which FFSNs pose is significant: FFSNs oc-
cur on a worldwide scale and already host a substantial
percentage of online scams. Based on analysis of the prin-
ciples of FFSNs, we develop a metric with which FFSNs can
be effectively detected. Considering our detection technique
we also discuss possible mitigation strategies.

1 Introduction

One of the most important properties of commercial ser-
vice providers in the Internet is the continuous availability
of their websites. If webservers are not online, the service
cannot be offered, resulting in loss of profit. It is estimated
that online shops like Amazon loose about $550,000 for ev-
ery hour that their website is not online [20]. The main
cause of unavailability have been hardware faults: Since
electronic components have only a limited lifetime, com-
puter and storage systems are prone to failures. Techniques
from the area of reliability engineering [5], e.g., redun-
dancy techniques like RAID [21] or commercial failover
systems [12], help to overcome these failures. Nowadays,
tolerance against the failure of individual hardware com-
ponents is rather well-understood. However, Distributed
Denial-of-Service attacks [17], especially in the form of net-
work bandwidth exhaustion, pose a significant threat. This
threat has become an almost daily nuisance with the advent
of botnets, large networks of compromised machines which
can be remote controlled by an attacker [9]. A medium-
sized botnet of 1000 or 2000 machines is usually sufficient
to take down almost any network service.

Several methods exist to alleviate the results of dis-
tributed denial-of-service attacks. We focus here on stan-
dard methods which use the global Domain Name Service
(DNS). A well-known method is called Round-robin DNS
(RRDNS) [7]. This method is used by large websites in
order to distribute the load of incoming requests to several
servers [8, 14] at a single physical location. A more ad-
vanced (and more expensive) technique is implemented by
so called Content Distribution Networks (CDNs) like Aka-
mai [1]. The basic idea is to distribute the load not only to
multiple servers at a single location, but to also distribute
these servers over the globe. The real benefit of CDNs
comes with using DNS: When accessing the name of the
service via DNS, the CDN computes with the help of so-
phisticated techniques the “nearest” server (in terms of net-
work topology and current link characteristics) and returns
its IP address. The client then establishes a connection to
this server and retrieves the content from there. In effect,
content is thereby moved “closer” to the client that sends
the request, increasing responsiveness and availability.

RRDNS and CDNs are techniques employed by legal
commercial organizations. Unfortunately, there are also a
lot of illegal commercial organizations offering services in
the Internet. Naturally, they also demand high availability
for the services they offer. For example, a spammer that
runs a website to sell pharmaceutical products, adult con-
tent, or replica watches can only make money if the website
is reachable. As another example, consider a phisher that
steals confidential information by redirecting users to fake
online sites and tricking them into revealing their creden-
tials. The phisher also requires the phishing website to be
online most of the time; only then victims can fall for this
scam. As a final example, consider a botherder who directs
a large botnet. The botnet itself requires a reliable hosting
infrastructure such that the botherder’s commands can be
sent to the bots or malicious binaries can be downloaded by
existing bots or new victims.

The starting point of this paper is the question, how il-
legal organizations achieve high availability of their online

services, explicitly focusing on HTTP services (i.e., web-
sites). The problems which such organizations face today
is that law enforcement’s abilities to take webservers with
illegal content down has reached a certain level of effective-
ness. RRDNS and CDNs are therefore no real alternatives
for hosting scams. In a slightly ironic repetition of history, it
seems that today illegal organizations are discovering clas-
sic redundancy techniques to increase the resilience of their
infrastructure, as we explain in this paper.

In this paper we report on a newly emerging and still not
widely-known threat in the Internet called a fast-flux service
network (FFSN). Such a network shows a similar behavior
as RRDNS and CDNs in regards to the network character-
istics: A single service seems to be hosted by many differ-
ent IP addresses. Roughly speaking, a FFSN uses rapid-
changing DNS entries to build a hosting infrastructure with
increased resilience. The key idea is to construct a dis-
tributed proxy network on top of compromised machines
that redirects traffic through these proxies to a central site,
which hosts the actual content. Taking down any of the
proxies does not effect the availability of the central site:
With the help of a technique similar to RRDNS, the at-
tacker always returns a different set of IP addresses for a
DNS query and thus distributes the traffic over the whole
proxy network. This leads to an increased resilience since
taking down such schemes usually needs cooperation with
a domain name registrar. As we will see in this paper, a
single fast-flux service network can consist of hundreds or
even thousands of compromised machines.

Contributions. While the technology of FFSNs has been
reported on elsewhere [28], it is still unclear how large the
threat of FFSNs is and how they can be mitigated. In this
paper we present the first empirical study of the fast-flux
phenomenon giving many details about FFSNs we observed
during a two-month period in summer 2007. By analyz-
ing the general principles of these networks, we develop a
metric with which FFSNs can be effectively detected using
information offered by DNS. Such a metric can be used to
develop methods to mitigate FFSNs, a topic which we also
discuss in this paper. To summarize, the contributions of
this paper are:

• We present the first detailed empirical study of FFSNs
and measure with the help of several properties the ex-
tent of this threat. Our measurements show that almost
30% of all domains advertised in spam are hosted via
FFSNs and we found several ten thousands of compro-
mised machines during our study.

• We analyze the principles of FFSNs, from this develop
a metric to detect FFSN and show the effectiveness of
this metric by using measurements.

• We discuss mitigation strategies for FFSNs based on
the developed metric.

Our contribution does not only clarify the background be-
hind a fast growing threat within the Internet, but moreover
we presents new results obtained after reinterpreting pre-
vious measurements [3] taking our findings into consider-
ation. We are aware neither of any other work which has
investigated FFSNs in an empirical way nor of work which
discusses detection and mitigation strategies. Due to the
severity of the novel FFSN threat, we feel that our results
can also be helpful in practice.

Outline. In Sect. 2, we provide an overview of the tech-
nical background of RRDNS, CDNs, and FFSNs. We de-
velop a metrical framework to automatically detect FFSNs
based on their answers to DNS requests in Sect. 3 and show
that our metric can identify FFSNs with high accuracy and
almost no false positives. In Sect. 4, we provide detailed
results of empirical measures for several FFSNs. Several
strategies to mitigate FFSNs are proposed in Sect. 5 before
we conclude the paper in Sect. 6 with a brief overview of
future work in this area.

2 Technical Background

2.1 Round-Robin DNS

Round-robin DNS is implemented by responding to
DNS requests not with a single DNS A record (i.e., host-
name to IP address mapping), but a list of A records. The
DNS server cycles through this list and returns them in a
round-robin fashion.

Fig. 1 provides an example of round-robin DNS used by
myspace.com, one of the Top 10 websites regarding traf-
fic according to Alexa [2]. We performed the DNS lookup
with dig [13], a tool dedicated to this task, and only show
the ANSWER section for the sake of brevity. In total, three
A records are returned for this particular query, all point-
ing to servers hosting the same content. The DNS client
can then choose one of these A records and return the cor-
responding IP address. Basic DNS clients simply use the
first record, but different strategies can exist, e.g., using the
record which is closest to the DNS client in terms of net-
work proximity. Every A record also has a Time To Live
(TTL) for the mapping, specifying the amount of seconds
the response remains valid. RFC 1912 recommends mini-
mum TTL values of 1-5 days such that clients can benefit
from the effects of DNS caching [4]. Shaikh et al. study
the trade-off between responsiveness of round-robin based
server selection, client-perceived latency, and overall scal-
ability of the system and show that small TTL values can
have negative effects [25]. If the DNS lookup is repeated

;; ANSWER SECTION:
myspace.com. 3600 IN A 216.178.38.116
myspace.com. 3600 IN A 216.178.38.121
myspace.com. 3600 IN A 216.178.38.104

Figure 1: Example of round-robin DNS as used by myspace.com

while the answer is still valid, the query for myspace.com
returns the same set of IP addresses, but in a different order.
Even after the TTL has expired, i.e., after 3600 seconds in
this example, a subsequent DNS lookup returns the same
set of A records.

We tested all domains from the Alexa Top 500 list and
found that almost 33 percent use some form of RRDNS, i.e.,
more than one A record was returned in a DNS lookup. Fur-
thermore, we measured the TTL values used by these sites:
about 43 percent of these domains have a TTL ≤ 1800.

2.2 Content Distribution Networks

Like RRDNS, CDNs also usually implement their ser-
vice using DNS [10, 15, 24]: The domain name of the
entity which wants to host its content via a CDN points
to the nameservers of the CDN. With the help of sophis-
ticated techniques, the CDN computes the (in terms of net-
work topology and current link characteristics) nearest edge
server and returns the IP address of this server to which the
client then connects.

Fig. 2 depicts the A and CNAME (canonical name, an
alias for one name to another) records returned in DNS
lookups for images.pcworld.com, which uses Akamai
to host its content. Again, the DNS lookup returns multi-
ple A records which all belong to the network of Akamai.
Compared to the previous example, the TTL is significantly
lower. A low TTL is used by CDNs to quickly enable them
to react to changes in link characteristics. The Akamai edge
server is automatically picked depending on the type of con-
tent and the user’s network location, i.e., it can change over
time for a given end-user.

2.3 Fast-Flux Service Networks

From an attacker’s perspective, the ideas behind round-
robin DNS and content distribution networks have some in-
teresting properties. For example, a spammer is interested
in having a high reliability for hosting the domain adver-
tised in his spamming e-mails. If he could advertise several
IP addresses for a given domain, it would become harder to
shut down the online pharmacy shop belonging to the scam:
If at least one of the IP addresses returned in an A record is
reachable, the whole scam is working. Moreover, a both-
erder is interested in scalability and he could use round-
robin DNS to split the bots across multiple Command &

Control servers in order to complicate shutdown attempts.
In both examples, the resulting scam infrastructure would
be more resilient to mitigation attempts.

RRDNS and CDNs return several IP addresses in re-
sponse to a DNS request. As long as one of these addresses
responds, the entire service is online. Fast-flux service net-
works (FFSNs) employ the same idea in an innovative way.
The main characteristic of fast-flux is the rapid (fast) change
in DNS answers: A given fast-flux domain returns a few A
records from a larger pool of compromised machines (“flux-
agents”) and returns a different subset after the (low) TTL
has expired. By using the compromised machines as prox-
ies to route an incoming request to another system (control
node / “mothership”), an attacker can build a resilient, ro-
bust, one-hop overlay network.

We explain the structure behind FFSNs with the help
of a short example. The domain thearmynext.info
was found in a spam e-mail in July 2007. The dig re-
sponse for this domain is shown in the upper part of Fig. 3.
We repeated the DNS lookup after the TTL timeout given
in the first answer to have two consecutive lookups of the
same domain. The results of the second lookup is shown
in the lower part of Fig. 3. The DNS request returns
five A records, similar to the round-robin DNS example
above. However, all IP addresses belong to different net-
work ranges. We performed a reverse DNS lookup, resolved
the Autonomous System Number (ASN), and determined
the country via geolocation lookup for each of the IP ad-
dresses returned in the first lookup. The results are shown
in Tab. 1. Overall, we identify several interesting features:
First, all IP addresses are located in DSL/dial-up network
ranges located in several different countries, e.g., United
States, Germany and Portugal. Second, the IP addresses be-
long to several different Autonomous Systems (AS). Third,
the TTL is rather low with 600 seconds. And fourth, the
DNS server returns a set of five totally different IP addresses
in the second request.

A closer examination reveals that the A records returned
by the DNS lookup point to IP addresses of suspected com-
promised machines which run a so called flux-agent. The
flux-agents are basically proxies which redirect an incom-
ing request to the control node [28], on which the actual
content of the scam is hosted.

Fig. 4 illustrates the process of retrieving the content
from a legitimate site: The client contacts the webserver
and the content is sent directly from the server to the client.

;; ANSWER SECTION:
images.pcworld.com. 900 IN CNAME images.pcworld.com.edgesuite.net.
images.pcworld.com.edgesuite.net. 21600 IN CNAME a1694.g.akamai.net.
a1694.g.akamai.net. 20 IN A 212.201.100.135
a1694.g.akamai.net. 20 IN A 212.201.100.141

Figure 2: Example of DNS lookup for domain images.pcworld.com hosted via Content Distribution Network, in this
case Akamai

;; ANSWER SECTION:
thearmynext.info. 600 IN A 69.183.26.53
thearmynext.info. 600 IN A 76.205.234.131
thearmynext.info. 600 IN A 85.177.96.105
thearmynext.info. 600 IN A 217.129.178.138
thearmynext.info. 600 IN A 24.98.252.230

;; ANSWER SECTION:
thearmynext.info. 600 IN A 213.47.148.82
thearmynext.info. 600 IN A 213.91.251.16
thearmynext.info. 600 IN A 69.183.207.99
thearmynext.info. 600 IN A 91.148.168.92
thearmynext.info. 600 IN A 195.38.60.79

Figure 3: Example of A records returned for two consecutive DNS lookups of domain found in spam e-mail. The DNS
lookups were performed 600 seconds apart

This is a common setup used by many websites.

Figure 4: Content retrieval process for benign HTTP server

In a scam that uses FFSN for hosting, the process is
slightly different (Fig. 5): The client uses DNS to resolve
the domain and then contacts one of the flux-agents. The
agent relays the request to the control node, which sends
the content to the flux-agent. In the fourth step, the content
is delivered to the client. Note that if the TTL for the fast-
flux domain expires and the client performs another DNS
lookup, the DNS lookup process will most likely return a
different set of A records. This means that the client will
then contact another flux-agent, but the request is relayed
from that machine to the control node in order to retrieve

the actual content. More technical details on fast-flux ser-
vice networks can be found in a recent paper by the Hon-
eynet Project [28].

Figure 5: Content retrieval process for content being hosted
in fast-flux service network

IP address returned in A record Reverse DNS lookup for IP address ASN Country
69.183.26.53 69.183.26.53.adsl.snet.net. 7132 US
76.205.234.131 adsl-76-205-234-131.dsl.hstntx.sbcglobal.net. 7132 US
85.177.96.105 e177096105.adsl.alicedsl.de. 13184 DE
217.129.178.138 ac-217-129-178-138.netvisao.pt. 13156 PT
24.98.252.230 c-24-98-252-230.hsd1.ga.comcast.net. 7725 US

Table 1: Reverse DNS lookup, Autonomous System Number (ASN), and country for first set of A records returned for
fast-flux domain from Figure 3.

3 Automated Identification of Fast-Flux
Domains

As we want to distinguish between FFSNs and other le-
gitimate domains in an automated way, we now turn to the
extraction of features enabling us to decide whether a given
domain is using the FFSN infrastructure or not.

Restrictions in establishing an FFSN. In contrast to le-
gitimate service providers which may buy availability over
CDNs, providers running FFSNs naturally suffer from two
main restrictions:

• (IP address diversity) A scammer is not as free to
choose the hardware and network location (IP address)
of an individual node as freely as in a CDN. Basically,
the FFSN has to live with those machines which can
be compromised to run a flux-agent. The range of IP
addresses must therefore be necessarily rather diverse
and the attacker can not choose to have a node with a
particular IP address.

• (No physical agent control) In contrast to CDNs which
run in large computing centers which professionally
host the servers and manage server failures through
planned downtimes, a scammer does not have direct
control over the machines which run the FFSN. Even
worse, flux-agents usually run on ill-administered ma-
chines in dial-up networks which may go down any
minute even if their uptime is rather large. This implies
that there is no guaranteed uptime of the flux-agent the
scammer can rely on.

Possible distinguishing parameters. Based on these two
restrictions in establishing a FFSN, we now enumerate a set
of parameters which can be used to distinguish DNS net-
work behavior of CDNs from FFSNs. The absence of phys-
ical control over the flux-agents results in the consideration
of the following two values:

• nA, the number of unique A records returned in all
DNS lookups: Legitimate domains commonly return

only one to three A records, whereas fast-flux domains
often return five or more A records in a single lookup
in order to have a higher guarantee that at least one of
the IPs is online.

• nNS , the number of nameserver (NS) records in one
single lookup: FFSNs can also host the nameserver
within the fast-flux network [28] and often return sev-
eral NS records and A records for the NS records. In
contrast, legitimate domains commonly return a small
set of NS records.

The restriction of IP address diversity results in the consid-
eration of the following value:

• nASN , the number of unique ASNs for all A records:
Legitimate domains and even the domains hosted via
CDNs tend to return only A records from one partic-
ular AS. In contrast, FFSNs tend to be located in dif-
ferent ASs since the infected machines are scattered
across different ISPs.

All the above parameters can be determined via DNS
lookups and short post-processing of the result. Note that
we do not consider the TTL value of the DNS entries as
a good parameter. This is because legitimate domains like
those hosted via CDNs have similar requirements as FFSNs
with respect to the speed of adaptation to network conges-
tion or server outages. The TTL value is, however, a good
indicator to distinguish FFSN/CDN from RRDNS. There-
fore we take only domains with a TTL of the A records
below 1800 seconds into account, since higher TTL values
can not be considered fast enough for rapid changes.

Fluxiness. In general, a metric to distinguish FFSNs from
CDNs is a function of nA, nAS , and nNS . Several pos-
sibilities to define this function exist. For example a first
approximation could be the following value, which we call
the fluxiness of a domain:

ϕ = nA/nsingle

The value nsingle is the number of A records a single lookup
returns. A value ϕ = 1.0 means that the set of A records

remains constant over several consecutive lookups, which is
common for benign domains. In contrast, ϕ > 1.0 indicates
that at least one new A record was observed in consecutive
requests, a strong indication of CDNs and FFSNs. In the
example of Fig. 3, ϕ = 2.0 since the second set of returned
A records has no overlap with the first lookup.

Note that the fluxiness of a domain is implicitly con-
tained in nA and nASN : For FFSNs (and also CDNs), the
number of observed A records (and thus potentially also
number of ASNs) grows over time since the lookup process
returns a different set of IPs over time.

Flux-Score. A general metric for detection of fast-flux
domains can be derived by considering the observed pa-
rameters as vectors x of the form (nA, nASN , nNS). The
resulting vector space enables definition of a linear decision
function F using a weight vector w and a bias term b by

F (x) =

{
wTx− b > 0 if x is a fast-flux domain
wTx− b ≤ 0 if x is a benign domain

The decision surface underlying F is the hyperplanewTx+
b = 0 separating instances of fast-flux service networks
from benign domains.

Given a corpus of labeled fast-flux and benign domains,
there exist numerous assignments of w and b correctly dis-
criminating both classes, but differing in their ability to gen-
eralize beyond the seen data. A well-known technique for
obtaining strong generalization is determining the optimal
hyperplane, which separates classes with maximum mar-
gin [29]. For the linear case of the decision function F , an
optimal hyperplane can be efficiently computed using the
technique of linear programming [6].

Based on a labeled corpus of domains, we can determine
a decision function F with high generalization ability by
computing the weight vectorw and bias b of the optimal hy-
perplane. The decision function F induces a scoring metric
f for the detection of fast-flux domains referred to as flux-
score and given by

f(x) = wTx = w1 · nA + w2 · nASN + w3 · nNS (1)

A flux-score f(x) > b indicates an instance of a fast-flux
service network, while lower scores correspond to benign
domains. Furthermore, the flux-score provides a ranking
of domains, such that higher values reflect a larger degree
of fast-flux characteristics – implicitly corresponding to a
larger distance from the optimal hyperplane of F .

Validation of current FFSN. To instantiate the weights
w, we used empirical measurements of 128 manually veri-
fied fast-flux domains and 5,803 benign domains as input.
The latter were randomly taken from the Open Directory

Project [19], a human-edited directory, and the Alexa Top
500 list. Since these two sets of domains are legitimate and
do not contain fast-flux domains, they can be used as a be-
gin set to instantiate the weights. At first, we performed two
consecutive DNS lookups of all domains. This lookup pro-
cess took the TTL of each domain into account: We waited
TTL + 1 seconds between two lookups to make sure not to
get a cached response from the nameserver in the second
lookup. We repeated the lookup process several times.

In order to evaluate the detection performance of the pro-
posed flux-score, we performed a 10-fold cross-validation
on the corpus of labeled fast-flux and benign domains using
different model parameters for finding the optimal hyper-
plane. The best model achieves an average detection ac-
curacy of 99.98% with a standard deviation of 0.05%, thus
almost no predictions on the testing data sets are incorrect.
Regarding the weight vector w and bias b, the obtained as-
signments yield the following definition of the flux-score:

f(x) = 1.32 · nA + 18.54 · nASN + 0 · nNS (2)
with b = 142.38

Note, that the weight corresponding to nNS is 0 and
does not contribute to the detection of current FFSNs. Even
though the flux-score is constructed from only two observed
parameters, evading detection is difficult as the involved pa-
rameters nA and nASN reflect essential properties of the
underlying distributed structure of a FFSN.

The values of w1, w2 and w3 as well as the threshold
should be adjusted periodically since attackers could try to
mimic CDNs in order to evade our metric, e.g., by sorting
the IP addresses from their flux-agents according to IP ad-
dress and then return only sequences of IP addresses that
look like CDNs. We claim however that due to the two re-
strictions described above, it is hard for scammers to mimic
exactly the behavior of a CDN. A fundamental difference
between FFSNs and CDNs remains: A FFSN is built on top
of compromised machines and the attacker has only limited
influence on the availability, e.g., the user of the compro-
mised machine can turn off the machine at arbitrary times.
As part of future work, we want to examine how we can
build a metric that automatically adapts to changes in FF-
SNs. This could for example implicitly include the fluxiness
ϕ since ϕ for benign domains reaches its saturation limit
pretty quickly comparing to fast-flux domains which have a
growing fluxiness over time. In particular, benign domains
with only one fixed IP have a constant ϕ (= 1) from the
very beginning of repeated DNS lookups. We would sacri-
fice our fast detection metric (only two DNS lookups), but
could possibly also detect stealth FFSNs.

4 Empirical Measurements on Fast-Flux Ser-
vice Networks

We now present results of studies on fast-flux domains
and the underlying scam infrastructure. This is the first
empirical study of the fast-flux phenomenon giving de-
tails about FFSNs we observed during a two-month pe-
riod in July/August 2007. Most important, we demonstrate
that some results of a previous study in this area [3] have
changed, since scammers now operate differently because
they adopted FFSNs and use this technique to host their
scams. Even in the short period since the results of that
study, there is already a change in tactic by the scammers.

4.1 Scam Hosting via Fast-Flux Service Networks

In this section, we focus on how FFSNs are used by
spammers, e.g., for hosting websites that offer pharmaceu-
tical products or replica watches. We study the domains
found in spam e-mails (spamvertized domains). There are
commonly both fast-flux and benign domains in this set: A
spammer could host the online shop for his scam on a nor-
mal server or use a FFSN to have a more reliable hosting
infrastructure which is hard to take down.

FFSNs Used by Spammers. Our study is based on
a spam corpus from http://untroubled.org/
spam/. The corpus contains 22,264 spam mails collected
in August 2007 with the help of spam-traps, thus we can
be sure that our corpus contains only spam. From all these
mails, we were able to extract 7,389 unique domains. We
performed two dig lookups on all these domains and com-
puted the flux-score according to Equation 2. In total, we
could identify 2,197 (29.7%) fast-flux domains in the cor-
pus. Anderson et al. used in their study a spam corpus col-
lected in November 2006, and they did not find any FF-
SNs [3]. They found that 6% of scams were hosted on mul-
tiple IP addresses, with one scam using 45. All the scams
hosted on multiple IP addresses could be FFSNs, which
were not identified as such.

The two dig lookups for all fast-flux domains identi-
fied in our spam corpus resulted in an observation of 1,737
unique IP addresses pointing to compromised machines
running flux-agents. This demonstrates that FFSNs are a
real threat and nowadays commonly used by attackers. By
performing a reverse DNS lookup, we confirmed that the
flux-agents are commonly located in DSL/dial-up ranges,
thus presumably belong to inexperienced users.

The majority of the fast-flux domains (90.9%) consist
of three domain-parts. For these, the third-level domain is
usually a wildcard that acts as a CNAME (canonical name)
for the second-level domain. To exclude wildcards, we only
take the top- and second-level domain into account: In total,

we can then identify 563 unique fast-flux domains. Only
four top-level domains are targeted by attackers: .com was
used 291 times (51.7%), .cn 245 times (43.5%), .net 25
times (4.4%), and .org twice (0.4%).

Similarity of Scam Pages. We also want to study how
many scams are hosted via these FFSNs. Similar to a
previous study [3], we want to explore the infrastructure
used in these fraud schemes. We thus downloaded a snap-
shot of the webpage of each IP addresses returned in the
dig lookup. The retrieved webpages comprise various
dynamic content such as sessions numbers or randomized
hostnames. These random strings, however, render analy-
sis of content common to multiple webpages at the same
IP address difficult. To tackle this issue we apply so called
string kernels: A comparison method for strings, which is
widely used in bioinformatics to assess similarity of DNA
sequences [16, 26]. Compared to image shingling [3], a
graphical method to find similar webpages, string kernels
are more resilient to obfuscations: We found several web-
pages that simply changed the background image and such
similar sites can not be identified via image shingling. Fur-
thermore, string kernels enable comparison of documents
with linear run-time complexity in the number of input
bytes and yield performance rates up to 5,000 comparisons
per second [23, 27]. Moreover, as our approach considers
the original HTML documents, no further preprocessing or
rendering of HTML content is required. Thus using a string
kernel approach to detect similarity of scam pages is signif-
icantly faster than image shingling.

For our setup, we employ a string kernel that determines
the similarity of two webpages by considering n-grams
(substrings of n bytes) shared by both pages. Given web-
pages p1, p2 and an n-gram a shared by p1 and p2, we first
define φa(p1) and φa(p2) as the number of occurrences of a
in p1 and p2, respectively. The string kernel is then defined
over the set A of all shared n-grams as

k(p1, p2) =
∑
a∈A

φa(p1) · φa(p2)

Note, that k(p1, p2) corresponds to an inner-product in a
vector space, whose dimensions are enumerated by all pos-
sible n-grams. Since φa(p1) and φb(p2) are natural num-
bers k is not bounded, so that we need to normalize it by
considering a normalized variant k̂

k̂(p1, p2) =
k(p1, p2)√

k(p1, p1) · k(p2, p2)

The output of the kernel k̂ is in the range 0 to 1, such that
k̂(p1, p2) = 0 implies that no shared n-grams exists and
k̂(p1, p2) = 1 indicates equality of p1 and p2. For all other
cases 0 < k̂(p1, p2) < 1, the kernel k̂ can be used as a
measure of similarity between webpages.

Grouping of Webpages. Using string kernels, we can de-
fine an intuitive method for determining groups of similar
webpages located at a given IP address. For each address
we compute a matrix K, whose entries Kij correspond to
kernel values k̂(pi, pi) of the i-th and j-th webpage. We
then define a similarity threshold 0 < t < 1 and assign two
webpages pi and pj to the same group if k(pi, pj) > t holds.
Computing these assignments for all pages is carried out by
simply looping over the columns of the matrix K. Empiri-
cally we found a value of k = 0.85 to be a good threshold
using the string kernel method for grouping webpages into
scam hosts with the same content.

Fig. 6 shows the distribution of retrieved webpages per
flux-agent. Please note that the x-axis is grouped into bins
that grow quadratically. A little more than 50% of the flux-
agents host just one webpage, but several pages per IP are
not uncommon.

Figure 6: Distribution of virtual hosts per IP address per
flux-agent

In Fig. 7, we depict the distribution of unique scams
hosted on one particular IP after having applied the group-
ing algorithms. We see that commonly attackers just proxy
one scam via one flux-agent, but in 16.3% of our observa-
tions, also multiple scams are proxied through one partic-
ular flux-agent. This is significantly less than in the study
performed by Anderson et al. [3], who found that 38% of
scams were hosted on machines hosting at least one other
scam. This indicates that scammers can now have a broader
distribution of their infrastructure due to FFSNs.

4.2 Long-Term Measurements on Fast-Flux Ser-
vice Networks

To study the long-term characteristics of FFSNs, we
observed several of them over a longer period of time:
For 33 fast-flux domains found in spam e-mails, we per-
formed a DNS lookup every 300 seconds over a period of
seven weeks. In total, we observed 18,214 unique IP ad-
dresses during the measurement period between July 24 and
September 10, 2007. This confirms that FFSNs are a real

Figure 7: Distribution of unique scams per IP address per
flux-agent

threat, with thousands of machines being compromised and
abused. The monitored IPs belong to 818 unique ASNs and
Table 2 lists the top eight ASNs we found. We see a wide
distribution of flux-agents all over the (networked) world.
Furthermore, the distribution follows a long-tail distribu-
tion, with 43.3% of all IPs contained in the top 10 ASNs.

This measurement does not take churn effects caused by
DHCP into account1. However, we estimate that the per-
centage of churn caused by DHCP is rather small: In order
to be a reliable flux-agent, the machine should be online
for a longer time as otherwise it could cause downtime for
the scam infrastructure. Thus an attacker will make sure to
only include stable nodes, i.e., nodes that have a high up-
time and constant IP address, into the pool of IP addresses
served within FFSNs.

For each of the 33 FFSN domains, we examined the di-
versity of returned A records: Each time we observe a new
A record, we assign an ascending ID to this IP address. This
allows us to keep track of how often and when we have seen
a particular IP. Fig. 8 plots the diversity of IPs for a period
of 12.5 hours for two exemplary fast-flux domains. We see
a wide variety of IPs returned in our DNS lookups and a
steady increase of new fast-flux IPs we monitor (leading to
an increase in the fluxiness ϕ). The slope of both graphs
is different, indicating that different FFSNs have a differ-
ent value for ϕ. Furthermore, this graph also highlights the
dimension of flux-agents: within the short amount of time,
more than 600 unique flux-agents were returned for the fast-
flux domain in the lower part of the figure.

In contrast we also plot IP diversity over time for two
benign domains in Fig. 9. Please note that the measurement
period for benign domains is ten times more DNS lookups
to show some effects in the plot. For the CDN domains, we
observe only a small total number of unique IP addresses

1NAT is no problem since a flux-agent needs to be reachable in order
to serve as content proxy.

1) 7132 (AT&T Internet Services, US) 2,677 2) 9304 (Hutchison Global, HK) 1,797
3) 4766 (Korea Telecom, KR) 590 4) 3320 (Deutsche Telekom, DE) 500
5) 8551 (Bezeqint Internet, IL) 445 6) 12322 (Proxad/Free ISP, FR) 418
7) 8402 (Corbina telecom, RU) 397 8) 1680 (NetVision Ltd., US) 361

Table 2: Top eight ASNs observed while monitoring 33 fast-flux domains over a period of seven weeks. The table includes
the name and country of the AS, and the number of fast-flux IPs observed in this AS.

Figure 8: IP address diversity for two characteristic fast-flux
domains

returned and a clear pattern.
We found the fluxiness ϕ to be a reliable feature in case

of many repeated DNS lookups: Even though it grows
for both CDNs and fast-flux domains during the first DNS
lookups, a saturation can be seen earlier for the CDNs
and hence we can reliably decide fast-flux after repeated
lookups by only considering the number of unique IP ad-
dresses observed during lookups, i.e., nA.

To further study the long-term growth of nA and nASN ,
we present in Fig. 10 the cumulative number of distinct A
records and in Fig. 11 the cumulative number of ASNs ob-
served for each of the 33 fast-flux domains during a period

Figure 9: IP address diversity for two characteristic do-
mains hosted via CDNs

of more than 15 days. We see three different classes of
growth in both figures. This means that different fast-flux
domains have a characteristic distribution of flux-nodes. If
two domains have a similar growth of the cumulative num-
ber of distinct A records or ASNs, this could indicate that
both domains belong to the same FFSN: the nameservers
return A records with similar characteristics. We plan to
examine this in the future as a possible way to identify dif-
ferent domains belonging to the same control infrastructure.
Furthermore, the two figures also show a declining growth
over time. A longer measurement of the number of distinct
A records or ASNs could be used to estimate the overall size

Figure 10: Cumulative number of distinct A records ob-
served for 33 fast-flux domains.

Figure 11: Cumulative number of distinct ASNs observed
for 33 fast-flux domains.

of the pool of compromised machines used for a particular
FFSN: Since the curves will eventually reach a saturation,
this is an upper bound of the pool size. The initial strong
growth in Fig. 11 also indicates that flux-agents are com-
monly spread over several ASs, confirming our weighting
for the flux-score.

One goal of FFSNs is to provide a robust hosting infras-
tructure for cybercriminals. However, we found that FFSNs
also need to deal with unavailability of the site, especially
caused by the unavailability of the DNS server itself. From
the 374,427 DNS queries during the measurement period,
16,474 (4.60%) failed. We also monitored 16 legitimate do-
mains from the Alexa Top 500 to measure the reliability of
benign domains. From 128,847 lookups against these do-
mains, only 17 (0.01%) failed.

4.3 Fast-Flux Service Network Characteristics

In FFSNs, several flux-agents are used for proxying con-
tent provided by a single control node, as schematically
shown in Fig. 5. We now want to study this infrastructure
more in-depth. The individual agents are compromised ma-
chines, used by attackers to form a proxy network providing
them with a robust hosting infrastructure. By sending dif-
ferent types of HTTP requests, we are able to obtain service
banners, i.e., version and configuration information, from
both the agents and the control node. The key idea is to
send HTTP GET and TRACE requests and examine the dif-
ferences in answers to both requests. While flux-agents and
their corresponding control node usually have different ser-
vice banners, we observed the same banner for control node
behind different flux-agents. We also observed that all of
the 300 probed flux-agents responded with the same banner
to our requests. Probing the control node behind the same
flux-agents, we found three different service banners, where
one of these banners appeared 275 times among 300 probes.
This indicates that there are at least three control node, pre-
sumably many more. Even though banners in general do
not give trustworthy information on the server version, the
empirical observation is consistent with our theory of mass-
distributed, similar configured flux-agents and only a small
number of unique control node that host the content. Fur-
thermore, we also tested all Alexa Top 500 domains and
the 5,803 domains randomly chosen from the Open Direc-
tory Project and we witnessed none of these servers having
the particular Server header information we found when
probing the flux-agents and the control node. Since we did
not do any further investigation in this direction yet, we do
not want to overrate these findings, but want to point them
out as one idea on how to identify control nodes.

4.4 Other Abuses of Fast-Flux Service Networks

Besides using FFSNs to host scam sites related to spam,
we also found several other illegal use cases for these net-
works. This is presumably due to the fact that FFSNs pro-
vide a robust infrastructure to host arbitrary content: They
are not restricted to work with HTTP servers, but an attacker
could also set up a fast-flux SMTP or fast-flux IRC server.
In this section, we briefly provide information about two
additional examples of how attackers use FFSNs as part of
their infrastructure.

First, fast-flux networks are commonly used by phish-
ing groups. Rock phish is a well-known phishing toolkit
which allows an attacker to set up several phishing scams
in parallel: The attacker installs the phishing kit on a web-
server and different URL-paths lead to different phishing
pages [18]. The actual domain belonging to these phishing
pages commonly uses fast-flux. For example, the domain

regs26.com was used for phishing in September 2007.
By performing a DNS lookup every time the TTL expired,
we observed a total of 1,121 unique A records during a mea-
surement period of four days.

Second, also botherders use FFSNs to host malicious
content. The P2P bot Storm Worm [11], one of the most
prevalent bots nowadays, uses fast-flux domains to host the
actual bot binary. We monitored the domain tibeam.com
for a period of four weeks in August 2007 and observed
more than 50,000 unique IP addresses in the returned A
records for this particular domain. This indicates that Storm
Worm is a large botnet, since the pool of IP addresses served
for the FFSNs is apparently large. Furthermore, monitoring
the domain allows us to keep track of the botnet: since each
compromised machine also runs a webserver, which hosts
the actual bot binary, we can download the current binary
from this host.

5 Mitigation of Fast-Flux Service Networks

In this section, we briefly review several strategies to
mitigate the threat posed by FFSNs. Even though the
client’s view onto an FFSN is pretty limited (we can only
monitor the flux-agents), we try to collect as much informa-
tion as possible with the techniques outlined in the previ-
ous sections. Our metric helps us to automatically find fast-
flux domains, which can be collected in a domain blacklist.
First, such a blacklist can be used to stop a fast-flux do-
main with the help of collaboration from domain name reg-
istrars: A registrar has the authority to shut down a domain,
thus effectively taking down the scam. An automated black-
list of fast-flux domains can quickly notify registrars about
fraudulent domains. Second, an ISP can use such a black-
list to protect its clients from FFSNs by blackholing DNS
requests for fast-flux domains. Third, the domain blacklist
can be used for spam filtering: If an e-mail contains a fast-
flux domain, it is most likely a spam mail. This technique
could be used at the client- or server-side if slight delay is
tolerable. Tracking of FFSNs by periodically performing
DNS lookups for fast-flux domains can be used to build a
list of IPs which most likely are compromised, which could
be used in a similar way as the domain blacklist.

Similar to an anonymity system, a FFSN has one layer
of redirection: A client can not directly observe the location
of the control node, which hosts the actual content, but only
the flux-agent. Ideas from this area can be adopted to iden-
tify the actual location of the control node: An ISP has the
capability to monitor “from above” both the incoming and
outgoing flows for a given machine and thus can monitor
flows belonging to a flux-agent. If a flux-agent is located
within the network of an ISP, the idea is to inject requests
which are proxied from the agent to the control node (step
2 in Fig. 5). Together with the response to such requests,

the location of the control node can be identified and this
content-serving central host can then be taken down [28].

As FFSNs might be only the first step towards high
available scams, we should also think of more general ap-
proaches on combating this kind of distributed, malicious
infrastructure. One possibility would be to block certain
incoming connection requests directed to dial-up ranges,
e.g., to TCP port 80 or UDP port 53. The majority of
dial-up users does not need to host servers, and such an
approach would block many possibilities to abuse compro-
mised clients. ISPs could change their policy to not allow
any network services within mainly dynamic IP ranges by
default. Still certain ports could be enabled by whitelisting
if there is a need for network services for specific users.

6 Conclusion and Future Work

In this paper, we presented the first empirical study of
FFSNs. For this study, we developed a metric that exploits
the principles of FFSNs to derive an effective mechanisms
for detecting new fast-flux domains in an automated way.
Beside being straightforward to compute, we also showed
that the method is accurate, i.e., we had very low false pos-
itive and false negative rates. As we are aware of the dy-
namics within fast-flux, we expect the need of further re-
finements in our method. Based on our empirical observa-
tions, we found other information, e.g., whois lookups and
MX records, as promising features for an extended version
of our flux-score.

Beside analyzing FFSN features in terms of detection
and mitigation, we plan to work on statistical methods to
estimate how many IP addresses are in a certain pool of
one fast-flux domain. Adopting capture-recapture methods,
which are applied in biology for measuring the number of
members of a certain population [22], could be one way to
obtain such an estimation. Similar methods were success-
fully applied by Weaver and Collins to measure the extent
of phishing activity on the Internet [30] and we plan to study
whether or not this can also be adopted for the area of fast-
flux service networks.

Availability. To foster research in this area, the data
collected during our study is available for research pur-
poses. Interested readers are referred to http://pi1.
informatik.uni-mannheim.de/fast-flux for
information on how to obtain the data.

Acknowledgments. We would like to thank the anony-
mous reviewers for their helpful comments and our shep-
herd Fabian Monrose for his careful advice.

References

[1] Akamai Technologies. Akamai Content Distribution Net-
work. http://www.akamai.com.

[2] Alexa, the Web Information Company. Global Top 500
Sites, September 2007. http://alexa.com/site/
ds/top_sites?ts_mode=global.

[3] D. S. Anderson, C. Fleizach, S. Savage, and G. M. Voelker.
Spamscatter: Characterizing internet scam hosting infras-
tructure. In Proceedings of the 16th USENIX Security Sym-
posium, 2007.

[4] D. Barr. RFC 1912: Common DNS operational and configu-
ration errors, February 1996. http://www.ietf.org/
rfc/rfc1912.txt.

[5] A. Birolini. Reliability Engineering: Theory and Practice.
Springer Verlag, 2004.

[6] P. Bradley and O. Mangasarian. Massive data discrimination
via linear support vector machines. Optimization Methods
and Software, 13:1–10, 2000.

[7] T. P. Brisco. RFC 1794: DNS support for load bal-
ancing, April 1995. http://www.ietf.org/rfc/
rfc1794.txt.

[8] V. Cardellini, M. Colajanni, and P. S. Yu. Dynamic load
balancing on web-server systems. IEEE Internet Computing,
3(3):28–39, 1999.

[9] F. Freiling, T. Holz, and G. Wicherski. Botnet tracking:
Exploring a root-cause methodology to prevent distributed
denial-of-service attacks. In Proceedings of 10th Euro-
pean Symposium On Research In Computer Security (ES-
ORICS’05), 2005.

[10] S. Gadde, J. S. Chase, and M. Rabinovich. Web caching
and content distribution: a view from the interior. Computer
Communications, 24(2):222–231, 2001.

[11] J. B. Grizzard, V. Sharma, C. Nunnery, B. B. Kang, and
D. Dagon. Peer-to-peer botnets: Overview and case study.
In Proceedings of 1st USENIX Workshop on Hot Topics in
Understanding Botnets, 2007.

[12] Hewlett Packard Inc. NonStop home page: HP
Integrity NonStop computing. Online: http:
//h20223.www2.hp.com/nonstopcomputing/
cache/76385-0-0-225-121.aspx, Sept. 2007.

[13] Internet Software Consortium. dig: domain information
groper, September 2007. http://www.isc.org/sw/
bind/.

[14] E. D. Katz, M. Butler, and R. McGrath. A scalable HTTP
server: the NCSA prototype. In Selected papers of the first
Conference on World-Wide Web, pages 155–164. Elsevier
Science Publishers B. V., 1994.

[15] B. Krishnamurthy, C. Wills, and Y. Zhang. On the use and
performance of content distribution networks. In Proceed-
ings of the 1st ACM SIGCOMM Workshop on Internet Mea-
surement, pages 169–182, 2001.

[16] C. Leslie, E. Eskin, and W. Noble. The spectrum kernel: A
string kernel for SVM protein classification. In Proc. Pacific
Symp. Biocomputing, pages 564–575, 2002.

[17] J. Mirkovic and P. Reiher. A taxonomy of DDoS attack and
DDoS defense mechanisms. SIGCOMM Comput. Commun.
Rev., 34(2):39–53, 2004.

[18] T. Moore and R. Clayton. An empirical analysis of the cur-
rent state of phishing attack and defence. In Proceedings of
the Sixth Workshop on the Economics of Information Secu-
rity, 2007.

[19] Netscape Communications Corporation. ODP – open direc-
tory project. Online: http://dmoz.org, 2007.

[20] D. A. Patterson. A simple way to estimate the cost of down-
time. In Proceedings of the 16th USENIX System Adminis-
tration Conference (LISA’02), 2002.

[21] D. A. Patterson, G. Gibson, and R. H. Katz. A case for
redundant arrays of inexpensive disks (RAID). ACM Press,
New York, NY, USA, 1988.

[22] K. H. Pollock, J. D. Nichols, C. Brownie, and J. E.
Hines. Statistical Inference for Capture-recapture Experi-
ments. Wildlife Society, 1990.

[23] K. Rieck, P. Laskov, and K.-R. Müller. Efficient algorithms
for similarity measures over sequential data: A look beyond
kernels. In Pattern Recognition, Proc. of 28th DAGM Sym-
posium, LNCS, pages 374–383, Sept. 2006.

[24] S. Saroiu, P. K. Gummadi, R. J. Dunn, S. D. Gribble, and
H. M. Levy. An analysis of internet content delivery sys-
tems. In Proceedings of 5th Symposium on Operating Sys-
tem Design and Implementation (OSDI), 2002.

[25] A. Shaikh, R. Tewari, and M. Agrawal. On the effectiveness
of DNS-based server selection. In Proceedings of IEEE IN-
FOCOM 2001, 2001.

[26] J. Shawe-Taylor and N. Cristianini. Kernel methods for pat-
tern analysis. Cambridge University Press, 2004.

[27] S. Sonnenburg, G. Rätsch, and K. Rieck. Large scale learn-
ing with string kernels. In L. Bottou, O. Chapelle, D. De-
Coste, and J. Weston, editors, Large Scale Kernel Machines,
pages 73–103. MIT Press, 2007.

[28] The Honeynet Project. Know Your Enemy: Fast-Flux Ser-
vice Networks, July 2007. http://www.honeynet.
org/papers/ff/.

[29] V. Vapnik. Statistical Learning Theory. John Wiley & Sons,
1998.

[30] R. Weaver and M. Collins. Fishing for phishes: Applying
capture-recapture methods to estimate phishing populations.
In Proceedings of 2nd APWG eCrime Researchers Summit,
2007.

