
February 1997 1

 Misplaced Trust: Kerberos
Version 4 Session Keys

Bryn Dole, Sun Microsystems

Steve Lodin, Delco Electronics

Gene Spafford, Purdue University



February 1997 2

Kerberos Version 4 Vulnerability

• An implementation problem

• Random keys had only 20 bits of entropy.

• Keys could be guessed in seconds.

• Pre-computing the keys allowed “guessing”
in microseconds.

• Result: The security of Kerberos Version 4
was compromised.



February 1997 3

What Went Wrong?

• Underestimated the challenges of RNGs

• The repaired RNG never got called.

• Code review failed to detect that the old
RNG was still in use.



February 1997 4

Software Engineering Breakdown

• Breakdown in process
– Owner of code was ineffective in getting code

reviewed.

– Fix occurred during migration to Version 5.

– Multiple code trees compounded the problem.

– No regression testing



February 1997 5

Trusting Software

• What types of systems do we trust?
– Open systems, with public source code

– Older, mature systems

– Systems based on secure protocols and
standards

– Designed by smart people

• Kerberos had them all.



February 1997 6

Why Trust Open System Design?

• Security through obscurity does not work.
– Anything can be reverse engineered.

• Openness provides the means for public
scrutiny.

• If you want to make sure software works as
advertised, check it out yourself.



February 1997 7

Faults of Open System Design

• Open design is no guarantee of security.
– There is no assurance that experts will examine

the code.

– No structured code reviews.

– How much time would you spend looking at
someone else’s spaghetti code, if you weren’t
getting paid for it?



February 1997 8

Mature Software

• Software engineering experience tells us
that older software does not guarantee the
absence of serious bugs.
– new features add new bugs

– bug fixes add new bugs

– maintaining legacy code is difficult

– newer releases may halt work on older versions



February 1997 9

Trusting Secure Protocols

• Have to be implemented correctly.

• The Needham-Schroeder exchange used by
Kerberos is provably secure.

• Must use protocols for what they were
designed.
– Example: SSL for authentication



February 1997 10

Secure Algorithms

• Algorithms such as DES, IDEA, MD5,
SHA, etc.
– All benefit from being open standards

– Increases trust

• They must be used correctly to ensure
security.



February 1997 11

Conclusions

• The importance of Random Numbers
should not be underestimated.
– They are an essential building block that all

security protocols depend on.

• Need secure RNGs built into operating
systems and hardware.



February 1997 12

Conclusions

• Open design is an valuable mechanism for
discovering bugs and security flaws, but…

• Publicly available code is no substitute for:
– Structured code reviews

– Good software engineering practices

– Quality testing


