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Abstract

A resource may be abused if its users incur little or no
cost. For example, e-mail abuse is rampant because send-
ing an e-mail has negligible cost for the sender. It has
been suggested that such abuse may be discouraged by in-
troducing an artificial cost in the form of a moderately ex-
pensive computation. Thus, the sender of an e-mail might
be required to pay by computing for a few seconds before
the e-mail is accepted. Unfortunately, because of sharp
disparities across computer systems, this approach may
be ineffective against malicious users with high-end sys-
tems, prohibitively slow for legitimate users with low-end
systems, or both. Starting from this observation, we re-
search moderately hard functions that most recent systems
will evaluate at about the same speed. For this purpose,
we rely on memory-bound computations. We describe
and analyze a family of moderately hard, memory-bound
functions, and we explain how to use them for protecting
against abuses.

1. Introduction

With the increase in the number of e-mail users and
the proliferation of junk e-mail (spam), several techniques
for discouraging or filtering spam have been proposed
(e.g., [5]). In particular, Dwork and Naor suggested in
their seminal paper that a way to discourage spam is to
force senders of e-mail to pay by performing a moder-
ately expensive computation [7]. More recently, Back re-
discovered this idea and implemented it in the HashCash
system [3] (see also [4]).

Their basic scheme goes as follows. Assume that sender
S is sending an e-mail

�
to recipient R. If R has previ-

ously agreed to receive e-mail from S, then
�

is sent in
the normal way. Otherwise, they proceed:
� S computes some moderately-hard function ��� ���

and sends � ��� ��� ���	�
to R.

� R verifies that what it receives from S is of the
form � ��� ��� ���	�

. If so, R accepts
�

. If not, R
bounces

�
, possibly indicating in the bounce mes-

sage where S can obtain software for computing ��� � .

The function ��� � is chosen so that the verification by R
is fast, taking a millisecond, say, and so that the compu-
tation by S is fairly slow, taking at least several seconds.
Therefore, S could be (somewhat) discouraged from send-
ing

�
. For a spammer that wishes to send many millions

of messages, the cost of computing ��� � repeatedly can
become prohibitive.

Such schemes, with refinements and extensions, have
a variety of interesting applications. For example, mod-
erately expensive computations also play a role in an-
other scheme for curbing spam, secure classification [10].
Beyond combating spam, requiring moderately expensive
computations can help in protecting against other abuses.
For example, Web indexes could require a computation
each time a user tries to add a URL to the index, thereby
limiting additions; a server could require a computation
each time a client tries to establish a connection, thereby
countering connection-depletion attacks [13]. A paper by
Jakobsson and Juels discusses several other applications
and develops a formalization of the concept of proof of
work [12].

In some cases, it is preferable that S apply a moderately
hard function to a challenge provided by R (rather than to
a particular message or request):

� S contacts R, requesting permission to use some ser-
vice.

� R returns a fresh challenge 
 to S.

� S computes ����
 � and returns it to R.

� R verifies that what it receives is a correct response
to 
 . If so, R allows S to use the service.

This variant enables S to compute ����
 � well before actu-
ally using the service in question.

In previous work in this area, the emphasis is on CPU-
intensive computations. In particular, Dwork and Naor
suggest CPU-intensive candidates for the function ��� �
such as breaking the Fiat-Shamir signature scheme with
a low security parameter. Back’s HashCash scheme relies
on the brute-force search for partial collisions in a hash
function.



The starting point for the present paper is a simple, new
observation about a problematic feature of such moder-
ately hard computations. Fast CPUs run much faster than
slow CPUs—consider a 2.5GHz PC versus a 33MHz Palm
PDA. Moreover, in addition to high clock rates, higher-
end computer systems also have sophisticated pipelines
and other advantageous features. If a computation takes
a few seconds on a new PC, it may take a minute on an
old PC, and several minutes on a PDA. That seems un-
fortunate for users of old PCs, and probably unacceptable
for users of PDAs. While it is conceivable that service
providers may (for a fee) perform computations on be-
half of users of low-end machines, such arrangements are
not ideal. These arrangements would conflict with free e-
mail, and may be unstable: service providers could save
money and trouble by making contracts to pass e-mail be-
tween themselves without actually performing the com-
putations. So moderately hard computations may be most
appropriate when performed by clients. Therefore, we be-
lieve that the disparity in client CPU speed constitutes one
of the significant obstacles to widespread adoption of any
scheme based on a CPU-bound moderately hard function.

In this paper, we are concerned with finding moderately
hard functions that most computer systems will evaluate
at about the same speed. We envision that high-end sys-
tems might evaluate these functions somewhat faster than
low-end systems, perhaps even 2–10 times faster (but not
10–100 faster, as CPU disparities might imply). More-
over, the best achievable price-performance should not be
significantly better than that of a typical legitimate client.
We believe that these ratios are egalitarian enough for the
intended applications: the functions should be effective
in discouraging abuses and should not introduce a pro-
hibitive delay on legitimate interactions, across a wide
range of systems.

Our approach is to rely on memory-bound functions.
The ratios of memory latencies of machines built in the
last five years is typically no greater than two, and almost
always less than four. (Memory throughput tends to be
less uniform, so we focus on latency.) A memory-bound
function should access locations in a large region of mem-
ory in an unpredictable way, in such a way that caches
are ineffective. This strategy can work only if the largest
caches are significantly smaller than the smallest memo-
ries across the machines of interest. Unfortunately, one
can now buy machines with 8MB caches, and some PDAs
have only 8MB of memory or less, so perhaps there is lit-
tle or no room to manœuvre. On the other hand, at the
time of this writing, machines with 8MB caches are still
expensive rarities, while PDAs with 64MB of memory are
fairly common. So we proceed by restricting our attention
to machines with at least 32MB of available memory. In
light of technology commonalities, we expect that PDA

memories may grow as fast as caches over the next few
years.

The next section, section 2, further describes our ap-
proach; it explores a particular class of memory-bound
computations related to inverting functions. Section 3
develops this approach into a complete method. Sec-
tions 4 and 5 present some refinements and variants of
the method. Section 6 then investigates specific instances
of the method. Section 7 gives experimental results. Sec-
tion 8 concludes, mentioning some other related work and
some open questions.

In our presentation, we emphasize the application of
memory-bound functions to discouraging spam. How-
ever, memory-bound functions are immediately appli-
cable in protecting against other abuses (for example,
against abusive additions of URLs to Web indexes and
against connection-depletion attacks). In particular, a fu-
ture release of Microsoft’s Passport system may use our
functions as one of the mechanisms for controlling ac-
count creation. Memory-bound functions are also appli-
cable for strengthening passwords. We explain this appli-
cation, which is less straightforward, in section 5.

2. Memory-bound computations: initial ideas

Our approach is to force the sender S to access an un-
predictable sequence of locations in a large array. The
size of this array is chosen to be significantly larger than
the largest cache available; at present, the size of the array
could be 16MB, say.

One possibility is to prescribe a computation on some
large data structure, for example a large graph, that would
force the desired memory accesses. Unfortunately, with
this strategy, the definition of the function may itself be-
come rather large and hard to communicate, and check-
ing S’s answer may be costly. Nevertheless, this strategy
might be viable.

An alternative, which we adopt, is to prescribe a com-
putation that could be done with very little memory but
which is immensely helped by memory accesses. More
specifically, let ��� � be a function whose domain and range
are integers in ����� �����
	�� � , where ��� is the number of en-
tries in the array. Suppose that ��� � ’s inverse ���� � � cannot
be evaluated in less time than a memory access. If we ask
S to compute � �� � � many times, then it becomes worth-
while for S to build a table for � �� � � and to rely on the
table thereafter.

The table can be computed by ��� applications of ��� � .
Building the table also requires memory accesses, for stor-
ing the table entries. However, these memory accesses can
benefit from batching, and their cost (like that of applying
��� � ) is not necessarily uniform across machines. There-
fore, the cost of building the table should not be dominant
in S’s work in responding to R’s challenge. Rather, the



dominant cost should be that of performing many table
lookups.

In order to develop these initial ideas, we first describe
a naive embodiment and list some of its problems (sec-
tion 2.1). Then we make an interesting but imperfect im-
provement (section 2.2). We design and study a complete
method later in this paper.

2.1. A naive embodiment

A naive embodiment of our ideas consists in letting
R challenge S with � values 
�� , . . . , 
��  � , and requir-
ing S to respond with their immediate pre-images, that
is, with values ��� , . . . , ��� �� such that ������� �
	 
�� , . . . ,
����� � ��

��	 
 � �� .
This naive scheme is flawed, in at least four respects:

1. The size of the challenge is ���� . While  will
not be very large, because � � will be smaller than
the memory size, � will need to be quite large so as
to determine a sufficiently difficult problem. The re-
sulting size of the challenge could be on the order of
megabytes. Therefore, the challenge would be hard
to transmit to S.

2. If the values 
 � , . . . , 
 � �� are all presented at once, a
brute-force search can attempt to find pre-images for
all of them at once, by computing � � � forward. This
search will require at most ��� computations of ��� � —
a large number, but probably not large enough. If �
is small enough, 
�� , . . . , 
��  � will be cached rather
than stored in memory, so this brute-force search will
be CPU-bound and it will be faster than the expected
memory-bound computation. If � is large, so 
 � , . . . ,

 � �� are stored in memory, the brute-force search
will require memory accesses, but these can be or-
ganized in such a way that their cost is not uniform
across machines.

On the other hand, if R presents 
�� , . . . , 
�� �� se-
quentially, waiting for S’s response to 
�� before giv-
ing 
���� � , the naive approach requires a prohibitively
large number ( � ) of rounds of communication.

3. If R must present the challenge to S, then S is un-
able to prepare a message to be sent to R without first
contacting R. While this interaction may be accept-
able in some circumstances, we would like to have
the option of avoiding it. One technique for avoid-
ing it, which we exploit in a system currently under
development, consists in letting a trusted third party
present the challenge to S; but, in some settings, a
suitable trusted third party may not be easy to find.

4. The ratio of the work done at S and R is the ratio
in time between a memory access and a computation

of ��� � . This ratio is unlikely to be more than 10,
and cannot be more than 100 or so with present ma-
chines. (Here we ignore the cost of building a table
at S, since it should be dominated by the cost of the
later lookups in the table, as indicated above.)

2.2. An improvement: chains

Chaining the applications of ��� � helps in addressing
shortcomings 1 and 2 of the naive scheme. (We return
to shortcomings 3 and 4 in later sections.) The chaining
may go as follows:

� R picks a value 
�� .
� R computes 
�� by letting, for all ��� � � � ��� 	��

�
,


���� �
	
����
�� �

� R gives 
 � to S and challenges S to find 
 � .
The hope is that, as long as ��� and � are large enough,
the fastest approach for S would be to perform � accesses
into a table to evaluate �  � � � as many times. S should
perform these accesses in sequence, not because of in-
teraction with R but because each access depends on the
previous one. The function ��� � should be such that the
sequence of accesses has poor locality and is hard to pre-
dict, so S should not benefit from caches. Finally, the size
of the challenge 
 � (  bits) is smaller than in the naive
scheme.

This straightforward use of chains is however unsatis-
factory. In particular, if the sequence of values produced
by successive invocations of ��� � contains cycles smaller
than � � , then S might be able to use those cycles as short-
cuts. On the other hand, if ��� � is a permutation with a
single cycle of length ��� , then S may find 
 � from 
 �
with at most ��� � � � � forward computations of ��� � and
hardly using memory:


 := an arbitrary value;
� := � � ��� � ;
while ���	 
 � do ( 
 , � ) := ( ����
 � , ����� � );
return 


In order to defeat this CPU-based solution and to eliminate
cycles, we change the recurrence to depend on the step
number by introducing a permutation. In what follows,
we use:


 ��� �
	 ����
 � � xor �

Even after this correction, the design of a scheme based
on chains requires further elaboration. In particular, when
the function ��� � is not a permutation, there may be many
valid responses to the challenge 
 � : there may be many

��� such that the recurrence 
����� �

	 ����
��� � xor � yields




��� 	 
 � . We should specify which of these 
��� are ac-
ceptable responses.

This difficulty can be addressed by generalizing from
chains to trees, as we do next. The generalization also
allows us to avoid the other shortcomings of the naive
scheme of section 2.1.

3. A complete method: trees

Building on the ideas of the previous section, we design
and study a method that relies on trees.

3.1. The method

In trying to address the shortcomings of chains, we
work with functions that are not permutations, so we need
to specify which are the acceptable responses to a chal-
lenge 
 � . At least two approaches are viable:

� One approach is to accept not only 
 � but all 
 ��
such that the recurrence 
����� �

	 ����
��� � xor � yields

��� 	 
 � . It is still useful to construct 
 � from 
 � ,
rather than completely at random, in order to ensure
that at least one acceptable response exists. This ap-
proach obviously adds to the cost of verifying a re-
sponse.

� Another approach, which we prefer, is to accept only

�� , forcing S to explore a tree of pre-images rather
than a chain of pre-images. The tree has root 
 � and
depth � . The nodes of the tree are (immediate or it-
erated) pre-images of 
 � . One of the leaves at depth
� is 
 � .
This presents a further problem, namely that S does
not know which of the many possible leaves at depth
� is R’s chosen one. S could perhaps send all of these
leaves to R, but this would add considerable commu-
nication cost. (The number of these leaves can be
fairly large.)

A solution is for R to provide S with a cheap check-
sum of the path from 
�� to 
�� . This checksum should
be such that S can tell when it has found 
�� , yet the
checksum should not allow S to prune the space of
possibilities in advance of a search.

In summary, the resulting method is as follows:

� Let � and  be two integers, and let ��� � be a function
whose domain and range are integers in ����� � ��� 	 � � .
We suppose that ��� � ’s inverse � �� � � cannot be eval-
uated in less time than a memory access. We assume
that � ,  , and ��� � are known to both R and S, pos-
sibly because R has chosen them and communicated
them to S.

� R picks an integer 
 � in ����� ��� � 	 �
�

and computes,
for � � ����� ��� 	 �

�
:


�� � �
	
����
�� � xor �

and a checksum of the sequence 
�� , . . . , 
�� . R sends

�� and this checksum to S.

� With this information, S should find 
 � and return it
to R.

� When R receives a response from S, it simply checks
that it is 
 � .

We expect S to proceed as follows in order to find 
�� :
� Construct a table for �  � � � by applying ��� � to all

integers in ����� �����
	��
�
.

� Build sequences � � , . . . , � � starting with � � 	 
 �
and such that

� � � �  � ����� � � xor � �

(so that ����� �
	 ������� � xor � ).

� Given such a sequence, return � � if the checksum
matches.

S may build the sequences � � , . . . , � � depth-first (hoping
to find a match early, much before building all sequences);
or S may build them breadth-first (trying to hide some of
the memory latency). In either case, S should perform
many accesses to the table for �  � � � .

Of course, S may instead adopt alternative, CPU-
intensive algorithms. However, when ��� � ,  , and � are
chosen appropriately, we believe that S’s task is memory-
bound. In other words, those CPU-intensive algorithms
will be slower than a memory-bound solution. We do not
unfortunately have a formal proof of this conjecture. Be-
low, we give calculations that support this conjecture fo-
cusing on particular CPU-intensive algorithms.

3.2. Trees and work

The ratio of the work done at S and R is greatly im-
proved when we force S to explore a tree as explained
above. Thus, the use of trees also addresses problem 4 of
section 2.1. In this section we analyze that work ratio. We
also calculate the expected performance of S using alter-
native, CPU-intensive algorithms. We obtain some con-
straints on  , � , and other parameters.

A quadratic factor

In order to characterize the work ratio, it is helpful to be
more specific on the basic function ��� � . An interesting



possibility, which we discuss further in section 6.1, is to
let ��� � be a random function. (Here, and in the rest of this
paper, we say that ��� � is a random function if and only if
����
 � is uniformly distributed over ����� ����� 	 � � , for each 
 ,
and independent of all ����� � for � �	 
 .)

When ��� � is random and � � ��� , the size of the tree
explored by S is quadratic in � , so S is forced to perform
far more work than R even if it takes as long to compute
��� � as �  � � � . Basically, the size of the tree is approx-
imately � ��� � , and S needs to explore half of the tree on
average (with depth-first search), so S needs to evaluate
� �� � � roughly � ����� times on average. In contrast, R ap-
plies ��� � only � times.

More precisely, we have made the following observa-
tion. Suppose that the function ��� � on � � � � ��� 	��

�
is ran-

dom and � � ��� . Let 
�� be a random value and let 
�� be
defined by the recurrence:


 ��� �
	 ����
 � � xor �

Construct a tree with root 
�� and in which, if � is at depth� � � from the root, then � is a child of � if and only if

� 	 ����� � xor � � 	 � 	 � �
The expected number of leaves of this tree at depth � is
approximately � � � . The expected size of this tree is ap-
proximately � � � � � ��� � � � � � . These numbers require that
the tree in question be constructed from some 
 � , rather
than grown from a random 
 � : the expected size of a tree
grown from a random 
�� is considerably smaller.

We have noticed the quadratic size of trees in experi-
ments, letting ��� � be various practical (not exactly ran-
dom) functions. Section 7 discusses these experiments
further. A posteriori, we have sketched a proof of the
quadratic size, there assuming an independent random
function at each tree level. A more sophisticated analy-
sis might be possible using tools from research on ran-
dom functions, a rich field with many theorems (see for
instance [9]).

In light of the quadratic size of trees, it is tempting to
use very deep trees, so as to increase the work ratio be-
tween S and R. There are, however, important limitations
on tree depth. At each level in a tree, S may try to in-
vert all the leaves simultaneously, somehow. When there
are enough leaves, S may benefit from cache behaviour.
Specifically, when several leaves land in the same cache
line, the cost of inverting all of them is essentially the cost
of just one memory access. These issues are particularly
clear when � nears the size of the space, ��� . We must
therefore keep � much smaller than � � (say, below � � �� ).

Some calculations

Next we derive a few simple formulas that (roughly)
characterize the work at R and—using several different

algorithms—at S. We obtain some constraints on  , � , and
other parameters. We indicate some precise values for pa-
rameters in section 6.2.

For simplicity, we assume that R has chosen ��� � and
communicated it to S; section 6.1 says more on the choice
of ��� � . We also rely on the quadratic ratio established
above. We assume that � is “small enough” (in partic-
ular, so that this ratio applies). Finally, we assume that
checksumming is essentially free (partly because we do
not require a strong cryptographic checksum). We write	

for the cost of one application of ��� � , 
 for the cost of
one memory read (with a cache miss), and � for the cost
of one memory write.

� R’s cost in making a challenge will essentially be that
of � applications of ��� � , that is, � � 	 .

� S’s cost for building a table for � �� � � will be that of:

– ��� applications of ��� � ;
– ��� insertions into the table.

Naively, this cost appears to be ��� � � 	 ��� � . How-
ever, for some functions ��� � , the cost of � � applica-
tions of ��� � may be substantially smaller than ��� � 	 .
Similarly, the cost of inserting ��� entries may be sub-
stantially smaller than ��� �� , because the necessary
writes can be batched and completed asynchronously
by the hardware. On the other hand, if the table struc-
ture is similar to that of a hash table, then the inser-
tions will require reads in order to resolve collisions.
These reads may make the cost of building the table
closer to ��� � � 	 ��
 � . In the calculations below, we
assume that the cost is ��� � � 	 ��� � and we often
assume that � 	 
 .

� S’s cost for solving a challenge using a table for
� �� � � and depth-first search will be approximately
that of � ����� memory accesses without significant
help from caches, that is, ��� ����� � ��
 .

� If S prefers not to use a table for �  � � � , it may still
follow the same search strategy by pretending that it
has a table and by inverting ��� � on the fly (by brute
force) whenever necessary. Provided that an inver-
sion of ��� � requires ��� applications of ��� � , the cost
of this CPU-intensive approach will be � � � � � � 	 .
With a little more trouble, a CPU-intensive search
may be done only once for each level in the tree of
pre-images, with total cost � � ��� � 	 .

� If S prefers not to use a table for ���� � � , S may
also guess 
 � and check its guess by applying ��� � .
For each guess, it has to apply ��� � � times, so the
expected cost of this CPU-intensive approach will



be that of ��� �� � � applications of ��� � , that is,
� � � �  � � 	 .

� Along similar lines, S may apply ��� � only � � times
to each of the values in � � � � ��� 	 �

�
; because of colli-

sions, roughly � � � � � � � distinct values will remain
after this, and S may then apply ��� � to them ��� 	 � � �
times (terminating half way through these applica-
tions, on average). The expected cost of this more
sophisticated (but realistic) CPU-intensive approach
will be � � � � ��� � ��� � � � � � � ��� 	 � � � � � � � 	 ,
that is, ������� �
	��

� � � � � 	 .

� S may be able to find other optimizations of the
brute-force, CPU-intensive search for 
 � . In particu-
lar, in order to minimize applications of ��� � , S may
try to notice collisions after each round of applica-
tions of ��� � (rather than only once after � � rounds).
Thus, S would apply ��� � to each of the ��� values
just once, then apply ��� � only once to each of their
images, and so on. S may thus require � ��� � � ��� ap-
plications of ��� � , where � � � � is an affine function of
the logarithm of � . Conceivably, this and other op-
timizations can lead to a cost of �
� ��� � 	 , where� is a small integer (say, below 10). Note however
that this is a coarse bound on ambitious, speculative
ideas, not a measurement of an actual efficient im-
plementation: we do not know how to realize these
ideas without substantial overhead.

We arrive at the following constraints:

1. As indicated in section 2, the cost of building the ta-
ble for �  � � � should not be dominant in the table-
based solution. Suppose that S amortizes a table over� problems. Then we should have

� � ��� � ��� � ��
�� � � � � 	 � � �
that is,

��� ��� �
	 ��� � � �� �
� � �� � 	 ��� � � 


This lower bound can be reduced when, as suggested
above, the cost of ��� applications of ��� � and ���
stores is smaller than ��� � � 	 ��� � .

2. We would like the table-based solution to be faster
than the CPU-intensive solutions. With the sim-
pler CPU-intensive solutions, this condition means
roughly that

��� � � � � � � 	 � 
 �
With the more sophisticated CPU-intensive solution
described above, however, we should have that

��� � � � ��� � � 	 � 
 �	� � 	 �

Finally, fearing that one could eventually implement
a CPU-intensive solution with cost � � ��� � 	 , we
would want

��� � � �
	 ��� � � �� 	 � 
 � � �
(Here we simply ignore the cost of building a table
for � �� � � , since it will be dominated by other costs.)

3. We would also like that setting a challenge is much
cheaper than solving it. In other words, � � ����� � � 

should be much larger than � � 	 , so � should be
much larger than

� � � 	 � 
 � . This constraint is easily
satisfied when � is large.

4. Another constraint follows from our requirement that
� �� � � cannot be evaluated in less time than a mem-
ory access. Obviously, � �� � � can be evaluated
with ��� applications of ��� � , so we must have that	 � 


�
� � , but 


�
��� will be tiny. A more sophisti-

cated construction permits evaluating �  � � � with a
much smaller number of applications of ��� � , as fol-
lows [11, 8].

For
� 	 ����� � , S would precompute � pairs ��
 ������ ��
 �	�

where
� � ��
 � 	�� � � ����
 � � and each

� � � � is an aux-
iliary function. The integers � and � should be
such that � � ��� is around ��� and such that �����
pairs ��
 ������ ��
 �	� can be cached. Therefore, � will be
at least 2; we can force it to be larger (at least 3,
perhaps 6) by increasing the size ratio between the
smallest memory and the largest cache under consid-
eration. In order to find one immediate pre-image
of � , S would apply each function

� � � � to � up to �
times, hoping to hit some precomputed

���� ��
 � , then S
would reach an immediate pre-image of � by work-
ing forward from the associated 
 . This process can
be repeated to find all immediate pre-images of � ,
with some probability [16]. Making the conservative
assumption that the applications of the functions

� �	� �
are free and that there is no other overhead, S may
evaluate � �� � � in time � � � 	 . If S has a huge cache,
then � could conceivably be 2, so S could evaluate
� �� � � in time

� � 	 . On the other hand, naively, S
may keep half of a table for �  � � � in a cache of the
same size, and thus S may evaluate � �� � � in time


�
� on average. Under these assumptions, we should

require that
� � 	 � 
 � � , that is,

	 � 
 ��� .

Although these assumptions may appear fairly ex-
treme, we believe that it is safer to keep

	 � 

� �

,
and we may have to raise this bound in the future.
Fortunately, this bound is not particularly problem-
atic, as we demonstrate below.

5. On the other hand,
	

cannot be very large (or else
some of the CPU-intensive solutions can be sped up).



If applying ��� � naively is slower than a memory
read, then S may build a table for ��� � . Many of the
accesses to the table might be organized in big linear
scans and might therefore be relatively cheap. More-
over, part of the table might be cached, even across
problems that use the same or related ��� � ’s, thus fur-
ther reducing the effective cost of calculating ��� � .
Therefore, we consider

	 � 
 .
In the lower bound on � (constraint 1), the value of

	

should correspond to a slow machine; in the upper bound
(constraint 2) and in the other constraints, to a fast ma-
chine. (We assume, pessimistically, that attackers have
fast machines; we can also assume that the challenges are
set at fast servers.) In order to avoid ambiguities, let us
call the values of

	
on slow and fast machines

	 � and
	
� ,

respectively.
There exists a satisfactory value of � provided that:

� � �
	 ��� � � �
�
�� �

� � 	 � � � �

 � � � � 	 ��� � � �

� 	
�

 � � �

In other words, we should have:

� � � � � � � � 	 � ��� � � 
 � � � 	 �
�

 � � �

that is, � � � 	 � � � � � � 	 � � � �
For instance, when � 	 � , � 	 	

� , and
	 � 	 � ����� 	 � ,

we require roughly � � ��� . With these values, 
 	 � , and
 	 ��� (for a realistic memory size), we may let � be � � � .
The corresponding cost is that of �

���
memory accesses for

each of � problems. Section 6.2 says more on the setting
of parameters and their consequences.

The constraints



��� � 	 � � 


are easy to satisfy. In particular, as CPU speeds increase,
we can modify or replace ��� � in order to slow it down
and to preserve 


� � � 	
� . If slow machines are never

upgraded, this change will result in a larger
	 � , so it may

affect both the setting and the solving of challenges on
those machines, though in tolerable ways:

� Because of the quadratic factor in the work ratio,
setting challenges will remain efficient even on a
fairly slow machine. Moreover, it seems reasonable
to assume, as we do above, that setting challenges
will normally be done at fast machines such as mail
servers.

� The modified function ��� � may compute the images
of a variable number of inputs at the same time, as
we describe in section 6.1. In this case, the building

of a table for �  � � � need not be penalized by the
modification: it can be as fast as with the original,
faster function.

Even without this technique, we can easily accom-
modate large disparities between the speeds at which
clients may build the table. The example settings
in which

	 � 	 � ��� � 	 � show that we can support
clients that are much slower than those accepted by
most users and current applications.

4. Refinements

Several refinements of our tree-based method are attrac-
tive. We describe five in this section. The first three are
clearly important; the remaining two are more speculative.

Forgetting the challenge

Relying on a standard technique, we can save R from re-
membering 
 � after it sends it to S. Specifically, R can
produce a keyed hash � ��� � 
 � � of 
 � , using a crypto-
graphically strong keyed hash function � [15] and a key� known only to R, and give � ��� � 
 � � to S along with
the challenge. S should return both 
�� and � ��� � 
�� � , so
R can check that S’s response is correct by recomputing� ��� � 
�� � from � and 
�� .
Varying the function ��� �
We expect that the function ��� � will vary from time
to time, and even from challenge to challenge. It may
be freshly generated for each challenge, at random from
some family.

The variation may simply consist in xoring a different
quantity for each challenge. Thus, given a master function�
	 � � and an integer

� � ����� ����� 	 � � , R may define a new
function ��� � simply by:

����
 � 	���	 ��
 � xor
�

The integer
�

may be a challenge index (a counter) or may
be generated at random. In either case, if R and S know the
master function

�
	 � � in advance, then R needs to trans-
mit only

�
to S in order to convey ��� � . Moreover, as long

as
�
	 � � remains fixed, S may use a table for

��	  � � �
instead of a table for each derived function �  � � � , thus
amortizing the cost of building the table for

��	  � � � . The
master function itself should change from time to time—
we may not trust any one function for long.

Of course, there are many other ways of defining suit-
able families of functions. We return to this matter in Sec-
tion 6.1.

Using multiple functions requires conventions for de-
scribing them, for example so that R can tell S about a new



function. If ��� � is derived from a master function and an
integer parameter (as in ����
 � 	 �
	 ��
 � xor

�
), then the

description of ��� � might be a description of the master
function plus the parameter. The description of the master
function might simply be a short name, if it is well known,
or it might be code or a table for the function. The integer
parameter can be omitted when it is clear from context,
for instance when it is a counter.

Using several problems as a challenge

R may ask S to solve several problems of the sort de-
scribed above, so that S has more work to do, without
increasing the expected difficulty of each problem. In ad-
dition to requiring more work, the use of several problems
also gives some valuable protection against variability in
problem hardness.

We may be concerned that S could amortize some work
across several problems and solve them all in parallel with
a CPU-intensive approach. Indeed, some flawed variants
of our method allow such dangerous amortizations. Two
twists thwart such amortization:

� As described above, the function ��� � may vary from
problem to problem. All the problems in a group may
share a master function. For instance, with functions
of the form ����
 � 	 �
	 ��
 � xor

�
, the problems in

a group may all share
��	 � � but each may have a

different
�
.

� Each problem’s challenge and function description
(except the first) may be presented encrypted under a
key derived from the path to the solution of the im-
mediately preceding problem.

Omitting bits from problems

One can often make problems harder by omitting some
bits from them. In particular, R could omit some bits of
the challenge 
�� , of the description of the function ��� � , or
both, and S would need to guess or reconstruct the missing
bits in finding 
�� . For instance, R could present the full

�� and a checksum of the path from 
 � to 
�� , and R could
tell S that ��� � has a definition of the form

����
 ��	 �
	 ��
 � xor
�

where S knows
��	 � � but not the integer

�
; then S may

need to try many possible values of
�

in order to find 
�� .
Omitting bits slows down S’s memory-bound search.

On the other hand, omitting bits does not always slow
down CPU-intensive alternatives. For example, CPU-
intensive forward searches are not affected when R omits
bits from 
 � but not ��� � . Therefore, such variants should
be used with caution.

Mixing functions

Another way to make problems harder is to interleave ap-
plications of multiple functions � � � � , . . . , � � � � . When R
constructs the challenge 
 � from 
 � , at each step, it may
apply any of those functions. Thus, for all ��� � � � ��� 	��

�
,

we have 
���� �
	

� � ��
�� � xor � for some
� � ����� � . S

knows � � � � , . . . , � � � � , but not in which sequence R ap-
plies them, or not entirely. For instance, S may know that
R always applies � � � � except that every 10 steps R ap-
plies either � � � � or � � �

�
. Therefore, S basically has to

guess (part of) the sequence of function choices when it
tries to find 
 � .

This technique seems viable. It helps in thwarting cer-
tain CPU-intensive attacks and it may yield an improve-
ment in work ratios, at the cost of some complexity.

5. Variants

The tree-based method can also be adapted to scenarios
in which interaction between S and R is somehow con-
strained. Next we describe two variants of the tree-based
method that address such constraints.

5.1. A non-interactive variant

We return to problem 3 of section 2.1, that is, we show
how to avoid requiring R to interact with S before S can
send its message

�
.

If R (or a trusted third party) cannot present a challenge
to S, then the challenge can be defined by the message

�
,

as follows.

� S is required to apply a checksum to
�

(or certain
parts of

�
).

� Using the result as the seed to a cryptographic ran-
dom number generator, S then generates a function
��� � and a start position 
�� for its tree search.

(If R or a trusted third party can provide a small, par-
tial challenge to S, then S should use it in the choice
of ��� � and 
�� .)

� S computes 
�� by evaluating ��� � � times, with the
recurrence:


 � � �
	 ����
 � � xor �

� S must supply a value 
��� other than 
�� such that

����� �

	 ����
��� � xor � yields 
��� 	 
�� , and that some
other property holds.

An example of such a property might be that the
checksum of the path from 
 � to 
 �� be 0 mod � �

for some � . When � �

is smaller than � , it is likely
that such an 
��� exists. When no such 
��� exists, S can
pick a new 
 � and ��� � and try again.



If R verifies that the 
��� presented by S has the prop-
erty, and that S did not discard too many functions,
then R can be reasonably certain that S had to search
a substantial fraction of the tree rooted at 
 � .

We may choose a property that is quite hard to satisfy,
so as to increase the work that S has to do in finding a
suitable 
��� . Despite S’s additional effort, its response can
remain small.

Alternatively, should S need to do more work than that
represented by solving a single problem, S may solve sev-
eral problems. The problems may all be independently
derived from

�
(each with its own function ��� � and its

own 
 � and 
��� ), or they can be linked together (so the an-
swer 
 �� for one problem may be used in computing the
function ��� � and the start position 
 � for the next prob-
lem). In either case, S should supply all the values 
 �� .
5.2. Strengthening passwords

Interestingly, some of the same ideas can be used for
strengthening passwords. In this application, S and R in-
teract before S does its work, but S need not respond to R.

In outline, a method for strengthening passwords goes
as follows [14, 1]. Suppose that two parties, S and R, ini-
tially share a password

�
(possibly a weak password). In

order to supplement
�

, R picks an  -bit password exten-
sion � , where  is an integer parameter. Then R poses a
problem with solution � to S. The problem should be such
that S can solve it, with moderate effort, by using

�
, but

such that � is hard to find without
�

. Afterwards, S and
R share not only

�
but also � . In particular, S may use

�
and � without further interaction with R, for instance in
order to decrypt files that R has previously encrypted. For
password extensions longer than  bits, each  -bit frag-
ment may be communicated separately, with

�
as base

password, or sequentially, with
�

and previous fragments
as base password; the latter choice limits parallel attacks,
so it seems preferable.

The previous instances of this method require a CPU-
intensive computation from S. Unfortunately, this compu-
tation may need to be long in order for

�
and � to be

secure against attackers with faster CPUs.
Next we describe an alternative instance of the method

in which S performs a memory-bound computation in-
stead.

� R derives a function ��� � from the password
�

(and
possibly a salt and some other, public data), chooses
an  -bit password extension � , and lets 
 � be � .

� R computes 
 � by evaluating ��� � � times, with the
recurrence:


 ��� �
	 ����
 � � xor �

R also finds some 
��� other than 
 � that also maps to

 � in this way.

� R then gives to S a checksum of the path from 
 � to

 � (but neither 
 � nor 
 � ), and 
 �� .

� Using
�

, S derives ��� � , builds a table for �  � � � ,
uses 
��� and ��� � to compute 
�� , then uses 
�� and the
table to find 
�� , that is, � .

An attacker that tries to find � by guessing possible val-
ues of

�
will have to do a memory-bound computation

for each such value. Had ��� � been independent of
�

, this
property would of course not hold. Had R transmitted 
 �
rather than 
��� , this property would probably not hold ei-
ther: an attacker with a wrong guess of

�
would use a

wrong ��� � in constructing a tree of pre-images for 
 � ,
and would probably get stuck rather quickly. That is why
R should provide 
��� . Although finding 
��� is a non-trivial
burden, R may explore only a fraction of the tree of pre-
images of 
�� for this purpose. Alternatively, R may be
able to guess 
��� and verify that it maps to 
 � ; if the tree
that contains 
�� has � leaves at depth � , then R will suc-
ceed after approximately ���

� � guesses.
An attacker that guesses

�
incorrectly may detect that

this guess is incorrect, with some probability, when it fails
to find a path with the expected checksum. This possi-
bility may be undesirable, although the attacker may have
other, cheaper ways of detecting that its guess is incor-
rect. So it is attractive to use only weak checksums, so that
paths with the expected checksums will always be found,
or to drop checksums entirely as in the following alterna-
tive protocol:

� S and R derive a function ��� � from the password
�

(and possibly a salt and some other, public data), and
both build a table for � �� � � .

� S and R choose random values 
�� and 
�� , respec-
tively, exchange them, and let 
 � 	 ��
�� xor 
�� � .

� S and R compute 
 � by evaluating ��� � � times, again
with the recurrence:


 � � �
	 ����
 � � xor �

They then find all 
��� that map to 
 � in this way. The
password extension � is a function of all these 
 ��
(for example, a hash of all of them except 
 � ).

Here, both S and R perform the same (expensive) steps to
compute a password extension. Undoubtedly, other proto-
cols of this form are viable.

As usual, the cost of building tables can be amortized
over multiple searches. The multiple searches might be
unrelated to one another; or they might all be part of the



same search for an  -bit password extension (for instance,
if some bits are omitted from problems); or each search
might serve to find an  -bit fragment of a longer password
extension.

6. Instantiating the method

In this section, we describe a concrete instantiation of
our method of section 3.1. We discuss the choice of a
basic function ��� � . We also discuss settings for other pa-
rameters, and their motivations and effects.

6.1. Choosing the function ��� �
We would like a function ��� � that can be evaluated ef-

ficiently, but which nevertheless cannot be inverted in less
time than a memory cache miss. These two constraints
are not too hard to satisfy; next we explore some particu-
lar choices of ��� � and their features.

Random functions

We would like ��� � to approximate a random function, in
order to defeat caches and to obtain reasonable work ra-
tios. An appealing possibility is to let ��� � be a random
function. In this case, we envision that ��� � could simply
be given by a table (without much attention to the random
process that generated the table).

The use of a random function ��� � gives rise to perfor-
mance issues. Specifically, evaluating a random function
may not always be cheap enough. In general, each com-
putation of ��� � may require a memory access, just like
each computation of � �� � � . The ratio between the work
done at S and R will still be quadratic in � , but without the
constant factor that represents the difference between the
respective costs of evaluating ��� � and � �� � � . Although
the tree search performed by S forces S to perform sub-
stantially more work than R, we may want to increase this
difference by our choice of the function ��� � . On the other
hand, we may also increase this difference by raising � :
the upper bound on � in section 3.2 is greater when ��� � is
slower.

The use of a random function ��� � also gives rise to a
storage problem. In general, R will need to have a table
for ��� � . This requirement may be inconvenient.

Finally, the use of a random function ��� � gives rise to a
communication problem. If the choice of function should
change from time to time, then it is helpful for the function
to have a succinct description, so that it can be communi-
cated efficiently. True random functions do not in general
have such succinct descriptions. Therefore, we may not
generate and transmit a brand new, random ��� � for each
challenge. Instead, we may derive a challenge-specific
function ��� � from a random master function

�
	 � � , with

a definition like

����
 � 	���	 ��
 � xor
�

(as discussed in section 4). In this case, assuming that�
	 � � is known in advance, only
�

needs to be transmitted.

Approximations

More generally, we may define:

����
 ��	 ����� � 
 �
where ��� � is a suitable master function (random, or ran-
dom enough), and � is a parameter. For such functions,
describing ��� � amounts to giving the corresponding � if
��� � is known in advance. In addition, evaluating ��� � and
therefore ��� � may well be cheap. These functions ��� �
may share many of the advantages of true random func-
tions. However, they complicate analysis.

We have investigated several candidate functions ��� �
of this form. Some are based on functions ��� � from the
cryptography literature: one-way hash functions such as
MD5 and SHA, or variants of fast encryption algorithms
such as TEA [15]. For instance, given a value 
 , we may
apply SHA to a key and to 
 , then extract ����
 � from the
result.

Since our intended applications do not actually require
much cryptographic strength, we have also investigated
some faster functions ��� � of the same form. One is as
follows:

� Assuming that  is even, let � � and � � be two tables
of ���
	 � random 32-bit numbers. Together, � � and � �
play the role of � above.

� Let the bitstring representing 
 be formed from the
concatenation of the bitstrings � � and � � , each of
length  � � bits.

� Then let ����
 � be the middle bits of the 64-bit product
of the two 32-bit numbers indexed by � � and � � in
tables � � and � � :

����
 � 	 middle-bits ��� ��� � ���	� � � � � � �
�

The tables � � and � � have only ���
	 � entries, so they will
fit in the cache on most machines. Thus, the evaluation of
��� � will take only a few cycles. In fact, this function is
so fast that it conflicts with the condition

	 � 
 ��� of sec-
tion 3.2; it is easy to define slower variants of this function
that satisfy the condition.

In an early version of our work, the two tables � � and
� � were identical. That saves space for R, but enables S
to use a smaller table for �  � � � because ����� ��
 � �

� 	
����� � 
 � �

�
. (Here, we write � �
 � � for the concatenation



of � � and � � .) So letting � � and � � be identical is not at-
tractive. In that early version of our work, we also used
tables of 32-bit primes, rather than tables of arbitrary 32-
bit numbers. Primes seem to yield a somewhat better ��� � ,
but the tables are a little harder to compute. These and
other variations may be worth exploring further.

Assuming that we define ��� � by letting ����
 � 	
����� � 
 � for some function ��� � (either by letting ����� � 

� �
��	

middle-bits ��� � � � � � � � � � � � �
�

or in some other way),
we may still use a trivial definition such as � � ��
 � 	
����
 � xor

�
to generate other functions, or we may gener-

ate other functions by varying � .
The definition ����
 ��	 ����� � 
 � can be generalized in

useful ways. If ��� � yields  � �
�

bits, where
�

is a small
integer, we may apply ��� � to a parameter � and to the  	 �

high-order bits of 
 , then extract ����
 � from the result, as
well as ����
�� � for every 
�� that differs from 
 only in the

�

low-order bits. Interestingly, this definition makes the cost
of applying ��� � to all values in � � � � ���
	 � � be the cost of
� � single applications divided by �

�
; this cost reduction

helps in building a table for � �� � � .
6.2. Setting parameters

In order to instantiate our method, we need to pick val-
ues for various parameters (  , � ,

	
, � , . . . ). These choices

are constrained by the available technology, and they are
informed by several preferences and goals. Next we dis-
cuss some settings for these parameters and their conse-
quences; many other similar settings are possible. All
these settings are viable with current machines, and they
all lead to seconds or minutes of memory-bound work
for S, as intended.

Suppose that we want the table for �  � � � to fit in 32MB
memories, but not in 8MB caches. These constraints de-
termine the possible values of  to be 22 or 23. One might
imagine that each entry in the table will take only 3 bytes,
but such a compact encoding may be impractical. It is
more realistic to allocate 4 or 6 bytes per entry to allow
for collisions. With  	 ��� , a table for �  � � � will occupy
around 16MB (with 4 bytes per entry) or 24MB (more
comfortably, with 6 bytes per entry). With  	 ��� , a
table for � �� � � will occupy around 32MB (with 4 bytes
per entry) or 48MB (more comfortably, with 6 bytes per
entry), so  	 ��� may not be viable. In what follows,
we proceed with  	 ��� because that appears to be the
appropriate value for current machines. We recommend
increasing  as soon as cache sizes require it.

We have some choice in the cost
	

of applying ��� � ,
within the constraints of section 3.2. A larger value will
result in more work for R if it sets problems or checks
solutions by applying ��� � . A larger value should also re-
sult in more work for S if it adopts a CPU-intensive algo-
rithm, so a larger value leaves room for a more expensive

memory-bound solution (through a larger � ). However,
these effects cease when

	
reaches the cost 
 of a mem-

ory read on a fast machine, because S could replace many
applications of ��� � with lookups at that point. Thus S
will pay at most 
 for applying ��� � on average, perhaps
much less with caching and other optimizations. In what
follows, we consider three possible values for

	
on a fast

machine:
	 	 
 , 	 	 
 � � , and

	 	 
 ��� .
In light of constraints 1 and 2 of section 3.2, we should

set the number � of iterations around � �
�
. We have some

freedom in the setting of � . A larger � will lead to more
work per problem, for both parties S and R, but with a
better (larger) ratio between the work of S and the work
of R. Conversely, a smaller � will result in less work per
problem, with a smaller work ratio. Therefore, we tend
to prefer larger values for � . When � is too large, CPU-
intensive solutions become competitive with the table-
based approach, and their cost is not uniform across ma-
chines. When � is too small, the cost of building a table
for �  � � � becomes dominant in the table-based approach,
and this cost is not necessarily uniform across machines.
In what follows, we proceed with � 	 � � � if

	 	 
 , with
� 	 � �

�
if
	 	 
 � � , and with � 	 � � � if

	 	 
 � � .
Finally, we have some choice in the number � of prob-

lems over which a table for � �� � � should be amortized.
Generally, a larger � is better, primarily because it gives
us more freedom in setting other parameters. The num-
ber � could be huge if we used a fixed function (or a fixed
master function) forever. However, we believe that it is
prudent to use a different function for each problem, and
also to change master functions at least from time to time.
An obvious possibility is to group problems and to adopt
a new master function for each group (see section 4). We
can usually describe the master function concisely, by a
short name plus the seed to a random number generator
or a cryptographic key, in approximately 20 bytes. We
can usually describe each derived function in 0–2 bytes.
We can present each problem in 6 bytes (including the
required checksum), and each solution in 3 bytes. For� 	 � �

�
, each group of problems occupies up to 1KB,

giving rise to a visible but reasonable communication cost.
The communication cost can be drastically reduced with
the non-interactive variant of section 5, if we so wish. For
the sake of definiteness, we proceed with � 	

� � . Each
group of 32 problems occupies only 192 bytes without
function descriptions, and a little more with them.

We expect that a machine can do roughly �
� � reads per

second from memory (within a small factor). On the ba-
sis of this data, we can calculate the cost of setting and
solving problems:

� With
	 	 
 and � 	 � � � , we intend that S perform

�
���

reads per problem, so S should take 2 seconds
per problem.
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Figure 1. Mean numbers of leaves and nodes in trees of depth � .

The setting of a problem will require � � � applications
of ��� � , which will take one millisecond on a fast ma-
chine.

� With
	 	 
 � � and � 	 � �

�
, we intend that S perform

�
� �

reads per problem, so S should take .5 seconds
per problem.

The setting of a problem will require � �
�

applications
of ��� � , which will take .25 milliseconds on a fast
machine.

� With
	 	 
 � � and � 	 � � � , we intend that S perform

�
� � reads per problem, so S should take .125 seconds

per problem.

The setting of a problem will require � � � applications
of ��� � , which will take 32 microseconds on a fast
machine.

When we multiply these costs by the number of prob-
lems (32), we obtain costs for solving groups of prob-
lems: 64, 16, and 4 seconds, respectively. We now check
that these costs dominate the cost of building a table for
� �� � � . The cost of building a table is roughly that of
�
� �

applications of ��� � and writes. On a fast machine,
the writes account for a substantial part of the cost; the
cost should be under one second, in any case. On a slow
machine, the applications of ��� � account for most of the
cost; the cost may go up considerably, but no higher than
the cost of solving a group of problems. Even if each
application of ��� � were to cost as much as ��� � 
 on a
slow machine, building a table would take under 10 sec-
onds. Thus, the total cost for building a table and solving
a group of problems remains within a small factor across
machines.

These costs compare favourably to those of solving
problems with a CPU-intensive algorithm. Suppose that
some CPU-intensive algorithm could solve each problem
with just

� � ��� applications of ��� � , that is, with just �
� �

applications of ��� � (letting � 	 �
, in the notation of sec-

tion 3.2). Depending on whether
	 	 
 , 	 	 


�
� , or

	 	 
 � � , those applications will cost as much as �
���

, �
� � ,

or �
�
� reads, respectively. In comparison, the memory-

bound approach requires �
� �

, �
� �

, and �
� � reads, respec-

tively.
Relying on an 8MB cache and a compact encoding, S

might be able to evaluate �  � � � with only 4 applications
of ��� � [11, 8] (see section 3.2). Thus, S might replace
each read with 4 applications of ��� � and otherwise per-
form the same search as in the memory-bound approach.
When

	 	 
 or
	 	 


�
� , this strategy does not beat a

CPU-intensive algorithm that could solve each problem
with �

���
applications of ��� � , and a fortiori it does not beat

the memory-bound algorithm. When
	 	 


���
, this strat-

egy may produce a solution at the same cost as � �87 reads,
so it might appear to be faster than the memory-bound
algorithm. However, the memory-bound algorithm will
have that same cost if S has an 8MB cache and holds there
half of a table for � �� � � with a compact encoding.

7. Experiments

In this section we report on several experiments related
to our method. First, we give evidence for the claims
about tree sizes made in section 3.2. Then we show that
memory latencies vary far less than CPU speeds. Finally
we show that the speed of our memory-bound functions
varies significantly less across machines than the speed of
CPU-bound functions proposed for similar purposes.

Tree sizes

For two functions on 22-bit integers, we found the mean
number of leaves and nodes in trees formed using the
procedure given in section 3.2. One of the functions
was derived by calling the system (UNIX) random num-
ber generator �

� �
times. The other was the function

����� � 
 � �
��	

middle-bits ��� ��� � ��� � � � � � � �
�

discussed in
section 6.1, where the elements of � � and � � were obtained
from the system random number generator.



machine model processor type

server Dell PowerEdge 2650 Intel Pentium 4
desktop Compaq DeskPro EN Intel Pentium 3
laptop Sony PCG-C1VN Transmeta Crusoe
settop GCT-AllWell Nat. Semi.

STB3036N Geode GX1
PDA Sharp SL-5500 Intel SA-1110

Table 1. The machines used in our experiments.

machine CPU clock memory read approximate
frequency time price (US$)

server 2.4GHz 0.19 � s $3000
desktop 1GHz 0.14 � s $600
laptop 600MHz 0.25 � s $1000
settop 233MHz 0.23 � s $300
PDA 206MHz 0.59 � s $500

Table 2. Machine characteristics.

The results are indistinguishable for the two functions.
We expect similar results for other pseudo-random func-
tions.

We averaged over all possible starting points 
 � , and
varied the depth � of the trees. Figure 1 shows that the
mean number of leaves in such trees closely matches ����� ,
and that the mean number of nodes in such trees closely
matches � � � � � ��� � � � � � .

Timings

Next we give experimental results for five modern ma-
chines that were bought in the last two years, and which
cover a range of performance characteristics. All of these
machines are sometimes used to send e-mail—even the
settop box, which is employed as a quiet machine in a
home. Table 1 lists the machines; Table 2 gives their CPU
clock frequencies, memory read times, and approximate
prices.

We obtained the memory read times by measuring the
time taken to follow a long linked list; the list entries were
scattered widely through memory, and positioned so as to
ensure that each access missed in the cache. Thus, these
times include TLB miss overhead. This overhead is sub-
stantial on our PDA and it explains the high latency on that
machine, where there seems to be an additional memory
reference for most reads from the list. None of the ma-
chines have huge caches—the largest was on the server
machine, which has a 512KB cache. Although the clock
speeds of the machines vary by a factor of 12, the mem-
ory read times vary by a factor of only 4.2. This mea-
surement confirms our premise that memory read laten-
cies vary much less than CPU speeds.

machine CPU-bound memory-bound
(HashCash) (trees)

seconds ratio seconds ratio
server=1 desktop=1

server 110 1.0 24 1.1
desktop 140 1.3 22 1.0
laptop 330 3.0 42 1.9
settop 1430 13.0 91 4.1
PDA 1920 17.5 100 4.5

Table 3. The performance of HashCash and of our
tree searches on the machines listed in Table 1. The
absolute times are of less interest than the range of
times for a given function.

machine table build time
seconds

server 0.9
desktop 1.1
laptop 3.2
settop 6.1
PDA 5.6

Table 4. Times to build the inverse table used in the
memory-bound functions.

Although the settop box might appear to have an attrac-
tive performance for its price, it is actually slower than its
clock speed and memory access time might suggest, partly
because it has a fairly simple pipeline. At the high end, the
server has lower performance than one might expect, be-
cause of a complex pipeline that penalizes branching code.
In general, higher clock speeds correlate with higher per-
formance, but the correlation is far from perfect.

Table 3 shows the performance of a CPU-bound task
(HashCash [3]) and of our memory-bound computations
on the machines listed in Table 1. The times are rounded
to two significant figures. The HashCash times are for
minting 100 20-bit HashCash tokens—that is, finding
100 independent 20-bit partial collisions in SHA-1. The
memory-bound times are the means over 10 runs, each
consisting of 128 depth-first tree searches, using the pa-
rameters  	 ��� and � 	 � � � . These results do not in-
clude the time taken to build the table for � �� � � , which
we consider next.

Table 4 shows the time taken to build the table for
�  � � � . We used a straightforward implementation in
which each insertion of an entry into the table requires
at least one read for resolving collisions, followed by
a write to store the entry. We let ����� � 
 � �

� 	
middle-bits ��� � � � � � � � � � � � �

�
. Evaluating ��� � is cheap

compared to a memory access; thus, most of the cost of



building the table is due to the memory accesses needed
for insertions into the table. For this function, the cost	

is under 

� �

, but increasing it to 

� �

does not substan-
tially affect these results. On each machine, the time taken
to build the table is insignificant when compared with
the corresponding number in Table 3. The latter number
corresponds to 128 problems. If instead each table were
amortized over just 32 problems, building the table would
contribute no more than 25% of the total time of solving a
group of problems. In any case, the ratio across machines
remains under 5.

The same executables were used on the desktop, lap-
top, and settop machines. The code was compiled with
the Intel C compiler. The executables for the server ma-
chine were compiled with optimization for the Pentium 4;
performance without this specialized optimization was
poor. The executables for the PDA were compiled with
gcc. We used less memory (20MB) for the inverse table
on the PDA, in order to make it fit in the limited space
available—the Sharp SL-5500 provides only 32MB of its
memory to applications and the operating system. On the
other machines, we used 24MB.

These experiments demonstrate several points. First,
the effective performance of the machines varies more
than clock speed alone might indicate. This variation is
the result of the faster, more expensive processors having
more elaborate pipelines. Second, the desktop machine
is the most cost-effective one for both CPU-bound and
memory-bound computations; memory-bound computa-
tions do not appear to allow attackers to benefit from the
lower-cost machines. Finally, the memory-bound func-
tions succeed in maintaining a performance ratio between
the slowest and fastest machines that is not much greater
than the ratio of memory read times.

The experiments also provide validation of the approx-
imate calculations of section 6.2 in which we discuss
settings for our parameters. In that section, we assume
a machine with a memory read time of � 

� � seconds,
while these real machines have somewhat slower memo-
ries. Once this difference is taken into account, the experi-
mental results are largely consistent with the calculations.

8. Conclusions and open issues

This paper is concerned with finding moderately hard
functions that most recent computer systems will evalu-
ate at about the same speed. Such functions can help in
protecting against a variety of abuses. The uniformity of
their cost across systems means that they need not incon-
venience low-end, legitimate users in order to deter high-
end attackers. We define and study a family of moderately
hard functions whose computation can benefit crucially
from accesses to a large table in memory. Our experimen-
tal results indicate that these memory-bound functions are

much more egalitarian across machine types than CPU-
bound functions.

It is possible that technology changes will result in more
diverse memory systems in the future, and then memory-
bound functions may no longer provide an egalitarian pro-
tection against abuses. However, we have identified sev-
eral parameters (  , � ,

	
, � , . . . ) that can be tuned as tech-

nology evolves. We have also found a number of ideas
and tricks that should help in adapting our approach to
different circumstances and applications.

The literature contains many papers that treat the space
requirements of particular algorithms, cache-miss rates,
and tradeoffs between time and space. Some of that work
has been a source of inspiration for us in seeking memory-
bound functions. In particular, we remembered the clas-
sic meet-in-the-middle attacks on double DES; using large
tables, these attacks are much faster than naive CPU-
intensive algorithms [15]. However, these attacks can be
implemented with multiple passes over the key space and
smaller tables, so they are not necessarily limited by mem-
ory latency. We have not come across any previous results
that we could directly exploit for our purposes, though we
may still find some. More generally, it is desirable to in-
vestigate alternative memory-bound computations; some
are being considered [6].

The literature also contains some models of memory
hierarchies (e.g., [2]). An interesting subject for further
work is to use such models in order to develop a founda-
tion for memory-bound computations, if possible proving
that particular computations (such as ours) are inherently
memory-bound.

Many considerations may affect the acceptance of mod-
erately hard functions, and of memory-bound functions in
particular. The problems of large-scale deployment, such
as software distribution and handling legacy systems, may
be the most challenging. In addition, as the price of com-
puter time falls, one must prescribe longer computations
in order to impose a given cost. For example, in order to
impose a cost of one cent (well under the current cost of
physical bulk mail in the US), a computation of at least
several minutes is required today; half an hour may be
needed in the not-too-distant future. In addition, memory-
bound functions can interfere with concurrently running
applications in a multitasking environment, both because
they consume memory and because they can displace the
applications’ code and data from caches. For these rea-
sons, users may not tolerate moderately hard functions,
not even egalitarian ones. On the other hand, even costs
below one cent might be effective against some abuses,
such as spam. Cache interference can be reduced by ar-
ranging that the inverse table map to a subset of the cache
lines, and it can be avoided by accessing memory with in-
structions that bypass the caches. Futhermore, users may



tolerate, and perhaps not even notice, long computations
done asynchronously when their machines are otherwise
idle. We rely on such asynchronous computations in an
ongoing project.
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