
Poster: Securing Appified Automated Vehicles With AVGUARD

Yunhan Jack Jia, Ding Zhao, Qi Alfred Chen, Z. Morley Mao

Abstract—The advancement in Autonomous Vehicle (AV)
has created an enormous market for the development of self-
driving functionalities, and has raised the question of how it
will transform the traditional vehicle development process. One
adventurous proposal is to open the AV platform to 3rd party
developers, so that AV functionalities can be developed in a crowd-
sourcing way, which is supposed to provide tangible benefits to
both automakers and end users. Some pioneering companies in
the autonomy industry have made the move to open the platform
so that developers are allowed to test their code on the road.

However, such openness brings serious security and safety
issues by allowing untrusted code to run on the vehicle. In this
paper, we introduce the concept of Appified AV platform that
opens the development framework to 3rd party developers. To
further address the safety challenges, we propose an enhanced
appified AV design schema called AVGUARD, that focuses mainly
on mitigating the threats brought by untrusted code, leveraging
theory in the vehicle evaluation field, and also program analysis
techniques in the cybersecurity area. Our study provides guide-
lines and suggested practice for the future design of open AV
platforms.

I. INTRODUCTION

Appified platforms, where software applications (apps) are
developed in a crowd-sourcing manner by 3rd party devel-
opers and distributed through the app market, have achieved
astonishing success in the IT field in the last decade, due to
the benefits brought by its open nature. Recent years have
seen the appification of many other software platforms such
as smart home [7] and even network switches [3]. And the
success that has been achieved through the crowd-sourcing
app development on these platforms has raised concerns in
both industry and academia about whether the autonomous
vehicle (AV) – the next much-anticipated software platform,
will become appified.

Supporting crowd-sourcing app development on AV is
supposed to benefit both automakers and customers. From the
end-user’s perspective, it will bring vast variety of apps into
the market that enriches user’s choices and provides them with
the flexibility to personalize their driving and in-vehicle expe-
rience by only installing/uninstalling apps. For the automakers,
the appification will transform the development of some AV
functionalities from outsourcing to crowd-sourcing, which not
only reduces the cost, but also promotes the improvement of
app quality. The AV app market will also create the ecosystem
where multiple functionalities can be cooperated to provide
more intelligence and convenience. Some organizations have
already started rolling out the autonomous vehicle with open
development support. For example, in the industry, vehicle
middleware platforms that open massive vehicle functionalities
including steering wheel and brake to the developers have been
built (e.g., Ford OpenXC [5], PolySync [6]). While in the
academia, University of Michigan (U-M) starts to offer open-
access to their testing AV equipped with sensors including
lidar, radar, and cameras, so that researchers can rapidly

Fig. 1: The open-access automated vehicle of at the University
of Michigan

test their self-driving or connected-vehicle technologies [8]
(Fig. 1). Although the idea of “AV app store” hasn’t been
discussed by any of these initiators, to better realize the benefit
of crowd-sourcing development, there are reasons to believe
that appified AV platform will become reality in the near
future.

However, every coin has two sides. To identify key chal-
lenges and issues for the appified AV, we compare aspects of
traditional vehicle platform with appified AV platform. From
the adoption of Controller Area Network (CAN) bus in the
1980s, the modern vehicles now have over 70 electronic con-
trol units (ECUs) for various subsystems [9], including critical
control systems and also peripheral infotainment systems all
communicate using the CAN bus. As the automakers usually
outsource the development of those peripheral functionalities
to reduce the development cost, security and safety problems
are raised since these software developed by 3rd party that have
access to CAN bus, can potentially be exploited to tamper the
safety of the vehicle [1], [10]. Appified AV platform provides
software abstraction for the physical CAN bus. Self-driving
functionalities are developed as apps, and their interactions
with the hardware actuators are proxied by a vehicle operating
system that also act as the middleware. Since the appified
platform opens full-fledged self-driving functionalities to the
3rd party developers, it could potentially introduce greater
safety risk. For example, flaws in the proportional control
algorithms of a cruise control app may put the vehicle in a
situation where a collision becomes inevitable. Recent acciden-
tal records [4] of self-driving cars suggested that deficiencies
in the AV software are inevitable due to the complexity of
physical environment, so we believe that the vulnerable apps
will remain a persistent threat to the AV industry. In addition,
apps may also be developed for malicious purpose to tamper
with the user’s safety with embedded malicious logic [2].

Fortunately, the open nature of appified AV platform also
provides us with the opportunities to build and deploy defense
against above threats at the vehicle OS level. Thus sanity
checks can be performed on the control messages from AV
apps to mitigate potential risks raised by apps and guard the



App Vetting Process

App

Source

code

Description

Static App Vetting

 Runtime Guardian System

Dynamic App Vetting

Reject unsafe app

Publish
app

Watchdog Process

Checking with Principles

Traffic Rule

AV Standard

Cybersecurity Policy

…

Trace-driven Simulation

Naturalistic Trace

Worst-case Scenario

…

Accelerated Evaluation

Standard App

Development

…

Allowable 

Circumstances

Emergency

Control

Install app

Emergency?
Yes No

App

Control

AV App Market

Cruise Control App Path Following App…

Fig. 2: System overview

safety of the vehicle. However, due to the extremely high safety
requirement of vehicle platform compared with other appified
platforms, dangerous apps that include fatal flaws or malicious
logic are better to be detected even before they are installed on
the vehicle. And the best practices that have already achieved
success on appified platforms are building market-level app
vetting to prevent problematic apps from entering the market.
We draw lessons from the state-of-the-art security practices in
the IT field, and leverage the open AV platform to propose our
solution to the previously mentioned problem.

In this paper, we propose the first appified AV design
scheme that focuses mainly on addressing the security and
safety concerns raised by the crowd-sourcing app develop-
ment. We identify key principles that need to be enforced
in the context of various self-driving scenarios, and propose
AVGUARD, which is a platform enhancement for open AV
that incorporates both offline app vetting that performs early
detection of unsafe apps, and also runtime safe guardian that
provides baseline safety guarantee. We present the detailed
design of the app vetting process, which adapts the program
analysis techniques from cybersecurity fields to perform static
app analysis, and leverages the recent advancement in the
Accelerated Evaluation field to dynamically estimate the risks
of apps using naturalistic trace. The vetting also enforces
many principles proposed recently in the U.S. Department of
Transportation’s Federal Automated Vehicles Policy [11], such
as requirements for the fall back approach and specification
of allowable circumstances. We also advocate a runtime on-
vehicle watchdog implemented as a privileged process on the
vehicle OS that monitors the surrounding environment to avoid
potential collisions caused by apps. Our study sheds light on
the opportunity of realizing the benefits of crowd-sourcing
development on self-driving vehicles without risking the safety
of the platform, and provides guidelines for future research
along this line.

II. THE AVGUARD APPROACH

In this section, we first describe our problem scope, and
discuss the essential steps to mitigate them. We then introduce
the major components of the AVGUARD approach, and present
a roadmap to the detailed design of each component in
remaining sections.

As mentioned earlier, the major safety issue of appified
AV comes from the untrusted 3rd party app. In this paper, we
mainly focus on two types of untrusted apps: vulnerable app

and malicious app, which have been the persistent pain points
for other appified platforms.

Shown in Figure 2, we advocate the AVGUARD approach,
which consists of four components: (1) A standardized app
development process that specifies the required information
regarding of the properties of the self-driving app (e.g., source
code, allowable circumstances) to be provided by the devel-
oper, in order to make the app functionality expressive and
verifiable; (2) A static app vetting framework that checks app
logic with a set of safety principles based on static program
analysis techniques; (3) A dynamic risk evaluation system that
test app in simulated environment against a set of benchmark
and naturalistic driving traces to quantify the potential risk,
and only apps that pass both static and dynamic vetting will
be allowed to the market. The official app market should be
the only authenticate source for users to download AV apps.
It can be enforced by requiring digital signature for each app
to be installed, and only app binaries that are signed by the
official market are allowed to run on the consumer’s vehicle.
(4) A runtime guardian system that performs access control for
AV apps running on the vehicle based on the environmental
context, and ensures the baseline safety of the vehicle under
various physical scenarios. We will discuss the detail about the
implementation of AVGUARD in our poster

REFERENCES

[1] After Jeep Hack, Chrysler Recalls 1.4M Vehicles for Bug Fix.
https://www.wired.com/2015/07/
jeep-hack-chrysler-recalls-1-4m-vehicles-bug-fix/.

[2] Car hacking: how big is the threat to self-driving cars?
http://fortune.com/2014/10/07/
car-hacking-how-big-is-the-data-threat-to-self-driving-cars/.

[3] HP SDN App Store.
https://www.hpe.com/us/en/networking/applications.html.

[4] Inside the Self-Driving Tesla Fatal Accident. http://www.nytimes.com/
interactive/2016/07/01/business/inside-tesla-accident.html.

[5] OpenXC Platform. http://openxcplatform.com/.
[6] PolySync. https://polysync.io/.
[7] Samsung SmartThings. https://www.smartthings.com/.
[8] U-M Open-access Self-driving Vehicle.

http://ns.umich.edu/new/releases/
24351-u-m-offers-open-access-automated-cars-to-advance-driverless-research.

[9] A. Albert. Comparison of event-triggered and time-triggered concepts
with regard to distributed control systems. Embedded World,
2004:235–252, 2004.

[10] S. Mazloom, M. Rezaeirad, A. Hunter, and D. McCoy. A security
analysis of an in vehicle infotainment and app platform. In 10th
USENIX Workshop on Offensive Technologies (WOOT 16). USENIX
Association.

[11] U. D. of Transportation. Federal automated vehicles policy.
September 2016.

2

https://www.wired.com/2015/07/jeep-hack-chrysler-recalls-1-4m-vehicles-bug-fix/
https://www.wired.com/2015/07/jeep-hack-chrysler-recalls-1-4m-vehicles-bug-fix/
http://fortune.com/2014/10/07/car-hacking-how-big-is-the-data-threat-to-self-driving-cars/
http://fortune.com/2014/10/07/car-hacking-how-big-is-the-data-threat-to-self-driving-cars/
https://www.hpe.com/us/en/networking/applications.html
http://www.nytimes.com/interactive/2016/07/01/business/inside-tesla-accident.html
http://www.nytimes.com/interactive/2016/07/01/business/inside-tesla-accident.html
http://openxcplatform.com/
https://polysync.io/
https://www.smartthings.com/
http://ns.umich.edu/new/releases/24351-u-m-offers-open-access-automated-cars-to-advance-driverless-research
http://ns.umich.edu/new/releases/24351-u-m-offers-open-access-automated-cars-to-advance-driverless-research

	Introduction
	The AVGuard Approach
	References

