
Poster: Protecting Android Apps from Repackaging
by Self-Protection Code

Fumihiro Kanei, Yuta Takata, Mitsuaki Akiyama, Takeshi Yagi and Takeshi Yada
NTT Secure Platform Laboratories

{kanei.fumihiro, takata.yuta, yagi.takeshi, yada.takeshi}@lab.ntt.co.jp, akiyamam@acm.org

Abstract—Android malware and pirated apps created by
repackaging have become a serious problem. To prevent attackers
from repackaging, it is important to harden apps by using
self-protection methods before distributing them. However, these
countermeasures are taken by individual application developers.
Thus, it depends on the developer’s security awareness and
implementation skills. In fact, most apps are not protected, or
attackers can easily defeat an app’s protection scheme. Therefore,
we proposes a self-protection method that is robust against
evasion attacks. The proposed method automatically builds the
capability of repackaging detection into apps. It randomly splits
detection code into several blocks, which are directly inserted
into the bytecode of apps. Evaluation results indicate that the
robustness score, which is calculated based on false positives from
viewpoints of attackers, is 3.5 times higher than that with the
existing method. The proposed method can also easily protect
apps because it only requires their bytecode.

I. INTRODUCTION

Application tampering, called repackaging, is a serious
problem on Android apps. Repackaging is a way to create
Android malware. Attackers usually inject malicious code
into legitimate apps to create malware. This kind of malware
steals privacy information, connects to a command and control
server, and attacks other devices while the apps behave the
same way as original apps from the user’s viewpoint. To
prevent repackaging, it is important to harden apps by using
tamper-proofing techniques. For instance, countermeasures that
prevent repackaged apps from working on user devices by
using self-protection techniques are efficient for increasing
the difficulty of repackaging. Application developers should
proactively take these countermeasures during implementation.
However, most apps are not protected at all. Moreover, the
robustness of protection depends on the developer’s security
awareness and implementation skills. Therefore, we have to
consider automated countermeasures with effective robustness.

II. ATTACK AND DEFENSE MODEL

In the area of self-protection for Android apps, an approach
that verifies the integrity of apps is usually taken. If any
tampering is found by the detection code implemented in apps,

they refuse to provide their functionalities to prevent working
on user devices. However, we assume that an attacker carries
out evasion attacks to bypass or disable the detection code.
To achieve this, an attacker would analyze protected apps by
combining static and dynamic analysis techniques to locate the
implementation of the detection code and disable it. Thus, we
propose a self-protection method that is robust against these
evasion attacks.

III. SELF-PROTECTION METHODS

A. Existing Method

Several self-protection methods for android apps have been
proposed. Luo et al. [5] proposed an method, called Stochastic
Stealthy Network (SSN), that automatically injects detection
code into the source code of apps. As they randomly inject
the detection code, it is difficult to eliminate injected code
by using a static approach. Also, their method makes it
difficult to debug protected apps because detection code works
stochastically. Protsenko et al. [6] proposed an on-demand
code decryption method. They breaks up a Dalvik executable
file into individually encrypted segments. During execution,
the decryption routine implemented in the native code decrypts
each segment on-demand and re-encrypts after execution.

We focus on the following problems with existing methods:
Ease of deployment: A method should be easy to deploy
in any situation. However, some methods require source code
as input. Though a method can use the information removed
during compile by using the source code, it increases the
difficulty of deployment. We address this problem by only
requiring a Android application package (APK) file as input.

Robustness against evasion attacks: There are several ap-
proaches to address evasion attacks. Introducing randomness
when an developer implements protection is efficient way
because an attacker would be forced to analyze an individual
implementation. In this case, high randomness is expected
for increasing the cost of analysis. We discuss improving
randomness in this paper.

Side effects: The functionalities of an app should remain after
being protected, and runtime overhead should be sufficiently
small. Most of exiting methods meet the former requirement,
but the latter remains to be met in practice.

B. Proposed Method

We propose a method for building the capability of self-
protection into apps. The proposed method automatically in-
jects randomized detection code directly into the bytecode of
an app. Figure 1 shows the architecture of proposed method.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’17, 26 February - 1 March 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2017.23xxx



Protected
APKAPK

Step	1
Bytecode	Analysis

Step	2
Detection	Code	
Randomization

Step	3
Code	Insertion

Detection	Code
template

Fig. 1. Architecture of proposed method

Step 1: Bytecode Analysis
First, the proposed method conducts static and dynamic
analysis to determine where to inject the detection code.
It dynamically analyzes an APK file by using the Monkey
tool [4] to extract methods that are not called frequently at
runtime. The proposed method also leverages a debugging API
(startMethodTracing) to trace method calls. Our method
can reduce the runtime overhead to inject code into these
extracted methods. After that, our method statically analyzes
the extracted method in terms of access control (e.g., public
or private) and exception handling (e.g., try-catch
statement). The results of this analysis will enable the pre-
vention of breaking the consistency of the original bytecode.

Step 2: Detection Code Randomization
Next, the proposed method randomly splits the predefined
detection code template into several parts. We introduce a
similar strategy with SSN [5] on this randomization step. The
main difference between the proposed method and SSN is the
size of the smallest unit of separation. Our method splits the
detection code per instruction of the Dalvik bytecode, while
SSN splits it per line of source code. Because of this fine-
grained randomization, our method has better robustness on
the bytecode, and makes it difficult to find injected detection
code.

Step 3: Code Insertion
Finally, the proposed method randomly inserts randomized
detection code into the methods extracted in step 1. It properly
adds virtual registers and exception handling so that injected
code will not break the original functionality.

IV. EVALUATION

To evaluate our method, we developed a prototype system
and conducted experiments. Our prototype was built upon the
Soot Framework [7]. We evaluated our prototype from the
viewpoint of ease of deployment, robustness against evasion
attacks and side effects. We randomly collected 27 apps from
GooglePlay [2] and F-Droid [1] for our dataset. We used Nexus
5X physical device with Android 6.0 as our dynamic analysis
environment.

Ease of Deployment: To confirm ease of deployment, we
applied our method to a dataset of apps. We then repackaged
the protected apps by replacing their certification. After that,
we installed these repackaged apps on our device and launched
them. We confirmed all the repackaged apps did not work
properly on the device. This means that our method properly
protect apps from repackaging without requiring source code.

Robustness against evasion attacks: We compared the robust-
ness of the detection code injected using our method and SSN
[5]. This time, we evaluated robustness against static analysis

in terms of false positives from the viewpoint of attackers.
In other words, we calculated the false-positive scores that
will occur when an attacker tries to find the detection code
by using known parts of the detection code as a signature.
First, we prepared a detection code template, and split it using
both method. We then obtained the sequence of bytecode
instructions contained in the separated code blocks. After that,
we searched the same bytecode sequence from sample apps,
and calculated the average number of exact matches. The false-
positive score with our method was 3.5 times higher than that
with SSN. This means that our method has better robustness
against evasion attacks.

Side Effects: We evaluated the side effects from the following
viewpoints; violations of original functionalities and runtime
overhead. First, we manually compared the functionalities of
original and protected apps by running both apps on the device.
We confirmed that there was no functional difference. Next, we
measured the runtime overhead by leveraging Traceview [3].
We calculated the runtime overhead based on the execution
time of each method and the number of method calls. In
summary, we observed 0.1% – 17% runtime overhead caused
by using our method. We also observed that runtime overhead
is not simply proportional to the amount of inserted detection
code.

V. CONCLUSION AND FUTURE WORK

We proposed a method for injecting randomized detection
code into the bytecode of apps. The injected code detects
repackaging and prevents apps from working properly on
a device. The evaluation results indicate that the proposed
method improves the robustness against static analysis. The
proposed method can also easily protect apps because it only
requires APK file as input. For future work, we will extend our
method by (1) introducing multiple integrity-checking methods
to prevent attackers from extracting specific API calls, such
as getPackageInfo(), by using the dynamic monitoring
approach, (2) considering a more sophisticated code-injection
algorithm, for example, injecting one detection procedure into
multiple methods. An attacker would leverage more advanced
analysis techniques, such as dataflow analysis and program
slicing for distinguishing detection code; therefore, we have
to compete with these techniques.

REFERENCES

[1] F-Droid. https://f-droid.org/.
[2] Google Play. https://play.google.com/store.
[3] Profiling with Traceview and dmtracedump — Android Studio. https:

//developer.android.com/studio/profile/traceview.html.
[4] UI/Application Exerciser Monkey — Android Studio. https://developer.

android.com/studio/test/monkey.html.
[5] LANNAN LUO, YU FU, D. W. S. Z., AND LIU, P. Repackage-proofing

Android Apps. In Proceedings of the 46th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN) (2016).

[6] MYKOLA PROTSENKO, SEBASTIEN KREUTER, T. M. Dynamic Self-
Protection and Tamperproofing for Android Apps using Native Code.
In Proceedings of the 10th International Conference on Availability,
Reliability and Security (ARES) (2015).

[7] VALLÉE-RAI, R., CO, P., GAGNON, E., HENDREN, L., LAM, P., AND
SUNDARESAN, V. Soot-a java bytecode optimization framework. In
Proceedings of the 1999 conference of the Centre for Advanced Studies
on Collaborative research (CASCON) (1999).

2


