
Poster: Fast Object Identification for
Kernel Data Anomaly Detection

Hayoon Yi, Yeongpil Cho, Donghyun Kwon, Yunheung Paek
Dept. of Electrical and Computer Engineering, Seoul National University

hyyi, ypcho, dhkwon, ypaek@sor.snu.ac.kr

Abstract—As recent adversaries turned their eyes to attacking
a system through non-control kernel data, in order to ensure
the integrity of the kernel, the need arose for verifying non-
control kernel data. This complicates typical security measures
relying on integrity specifications set by security administrators,
as it is non-trivial to manually encompass specifications for non-
control kernel data. Foreseeing this, Baliga et al. [1] suggested
a framework leveraging machine learning to generate integrity
specifications with little human involvement. Unfortunately, there
is a problem in the original design of this framework in regards
to its practicality for deployment in real-world systems. In this
paper, we propose a new design in identifying kernel objects
that accelerates the overall introspection process by virtually
eliminating the booting delay that was needed in prior work.

I. INTRODUCTION

In efforts to seek sophisticated techniques to compromise
OSes, adversaries have turned to tampering with non-control
kernel data. Unfortunately, as typical security systems rely on
integrity specifications, which describe the behavior expected
from an uncompromised kernel, set by security administrators,
the need to encompass specifications for non-control data
brings forth a major problem: it is virtually impossible to
provide hand-crafted specifications for all non-control data in
the kernel to verify the kernel integrity. Acknowledging this,
Baliga et al. [1] suggested a framework named Gibraltar that
leverages machine learning to generate specifications with little
human involvement. Unfortunately, despite the advantages of
Gibraltar, there is a major problem in its practicality. Gibraltar
employs externel monitors, which are isolated, physically or
virtually, from the potential influence of contaminated kernels,
performing memory introspection, the act of looking into and
making sense of the raw memory of a different system. The
data objects of the target system are found by their relative
position to public symbols, whose addresses are predetermined
at compile time. These relative positions, however, are subject
to change after a system reboot, and thus any specification
related to an object with an alternate position must incorporate
its new position in order to correctly examine its current
runtime value. Consequently, Gibraltar must track down data

objects and infer their invariant properties at the start of each
and every reboot of the system, which takes up from 20 to 50
minutes even on an up-to-date machine.

In this paper, we propose a new design leveraging informa-
tion available at object allocation events, namely, backtraces
of kernel function calls, to identify objects persistently over
reboots, substantially cutting the time needed at reboots as
well as the time needed to verify specifications at runtime. To
evaluate the effectiveness of our design, we have implemented
a prototype data anomaly detection engine. Preliminary exper-
iments reveal that we need only a delay of 68.49ms with each
reboot and a delay of 912ms for anomaly scanning.

II. MOTIVATION

In memory introspection systems, kernel data objects must
first be identified within raw memory. However, the monitor
initially has little information of the actual kernel data residing
in memory. To overcome this, the monitor typically leverages
known semantic information of data objects and maps out the
data objects within raw kernel memory. During this process,
each object is given a name to distinguish them from one
another. For the generation of integrity specifications, the
invariant properties of the mapped data objects are inferred
from their found data values, be it by hand or machine
learning, and associated with their corresponding data objects.
The association of object name and invariant property would
be reflected in integrity specifications. Then, during runtime,
these specifications are checked for data anomaly detection. In
such a system, there exists a complication, namely, transient
integrity specifications, which are specifications that hold true
during the runtime they were inferred but may not hold true
across system reboots. There are mainly two reasons for these
specifications: the object naming used for specifications being
transient or the inferred invariant property being transient. In
this paper, we focus on the former. As mentioned before,
Gibraltar identified kernel objects by recursively following
member pointer fields of data structures and there is no guar-
antee that these relative positions would persist over system
reboots. This is because one or more objects on a pointer
traversal path may be of a container type of data structure, say
a linked-list, and in this case, the path is subject to change
after every system reboot, as the contents of the container
cannot be decided until runtime. This renders many generated
specifications to be transient. The authors of Gibraltar argued
that persistent specifications alone were sufficient enough to
detect all of the attacks from their test suite. However, we
discovered that there are attacks that cannot be covered by
their set of persistent specifications. For example, VFS (Virtual

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’17, February 26 - March 1 2017, San Diego, CA, USA
Copyright 2017 Internet Society, ISBN 1-891562-41-X
http://dx.doi.org/10.14722/ndss.2017.23xxx



EXVBDGGBGULYHU��
đ
DOORFDWRU��

GULYHUBUHJLVWHU��

đ

BBKLGBUHJLVWHUBGULYHU��

đ

SOBGULYHUBLQLW��

đ

GRBRQHBLQLWFDOO��

đ

NHUQHOBLQLWBIUHHDEOH��

đ

NHUQHOBLQLW��

đ

UHWBIURPBIRUN��

đ

#�DCEMVTCEG�PCOG�
EXVBDGGBGULYHU�GULYHUBUHJLVWHU�BBKLGBUHJLVWHUBGULYHU�SOBGULYHUBLQLW�GRBRQHBLQLWFDOO�NHU
QHOBLQLWBIUHHDEOH�NHUQHOBLQLW��UHWBIURPBIRUN

Fig. 1. An example backtrace-name with its corrsponding function call trace

File System) [2] rootkits are a well-known class of rootkits
hijacking control flows during file management. They attempt
to manipulate member function pointers of file objects which
designate the functions to be called when file operations such
as read and write are carried out. In order to detect this class of
rootkits, the value of the f op variable inside file objects must
match a value in a list of legitimate f op values. The path-name
for file objects, however, are subject to change over reboots,
therefore only with transient specifications (of Gibraltar) can
a VFS rootkit be detected.

III. APPROACH

We propose Backtrace-naming, which is naming objects
with their allocation backtrace, a backward list of active
function calls that starts with the last function call at the time
of allocation. In other words, whenever an allocation occurs in
a function, the object is named with the backtrace of that func-
tion, which would represent the context of the object’s creation.
For instance, Figure 1 depicts a backtrace of the kernel func-
tions calling bus add driver and the corresponding backtrace-
name for the object allocated by the allocator function. This
name would hold true for the object under any circumstance,
barring a change in kernel code. Consequently, backtrace-
names would persist over reboots, allowing us to reuse integrity
specifications generated during a one-time offline inference.
The basis for the use of backtrace-naming for kernel integrity
monitoring is the following two observations: O1. Kernel
objects are allocated through only a couple of fundamental
object allocators, O2. The kernel context when a kernel object
is created reflects the object’s characteristic during runtime.
Whenever an object allocation event occurs, we gather relevant
information through the virtual machine manager (VMM).
Although there are various types of object allocators in the
kernel, according to our examination, most are nothing but
wrapper functions that ultimately call fundamental object al-
locators, as in O1. For example, the alloc task struct node
function, which allocates task struct objects, internally calls
the kmem cache alloc node function; in other words, it wraps
the other function. Likewise, kmalloc is a wrapper function
of the kmem cache alloc function. Therefore, we can gather
most object allocation information of kernel objects by only
tracking a couple of fundamental allocators.

Unfortunately, backtrace naming cannot give every indi-
vidual object their own unique name and a few objects are
bound to share the same name, and thus the same integrity
specifications. Our observation O2, however, gives insight
that objects created in a similar kernel context would have
similar characteristics at runtime, and thus their sharing of
specifications is not necessarily a bad thing in this case. For
instance, inodes are kernel objects used in various kernel
functionalities, such as file systems, sockets or device drivers.

The number of allocations 186,132
The number of live objects 29,765
Avr. CPU cycles per trap 321
Avr. CPU cycles per backtrace-naming 140
Total spent CPU cycles of traps 116,440,503
Total spent time(ms) of traps at 1.7GHz 68.49

TABLE I. OVERHEAD FOR OBJECT IDENTIFICATION AND NAMING
DURING KERNEL BOOT

They are allocated by the function alloc inode which is a
wrapper function for kmem cache alloc, which we have found
that could be called through 259 distinct backtraces. The
reason for this is that, instead of generating and distributing
inodes from a central component, each kernel component
generates their own inode in accordance to their distinct kernel
context. As a result, inodes sharing the same backtrace-name
show similar characteristics, and thus the specifications shared
among them reflect the properties based on these similarities.

IV. PRELIMINARY RESULTS

We implemented a prototype system leveraging backtrace
naming on an Arndale board, with an ARM Cortex-A15 1.7
GHz dual-core processor and 2 GB RAM, supporting hardware
virtualization extension. The prototype is integrated to a KVM
with Linux and is based on Gibraltar with the exception
of employing backtrace-naming for object naming. Backtrace
naming is enabled by hypervisor traps. Table I reports informa-
tion on a normal kernel boot. Anomaly scanning after bootup
requires an average of 912ms which is a huge decrease from
that needed in the original Gibraltar design as well.

V. ON-GOING WORK

We plan to optimize the runtime monitoring phase by
shortening the scanning time by reducing the amount of kernel
data checked each time. We are also planning to analyze
the automatically generated specifications and find a way
to automatically refine the specification set by eliminating
redundant or unnecessary specifications.

ACKNOWLEDGEMENT

This work was partly supported by the National Research
Foundation of Korea(NRF) grant funded by the Korea gov-
ernment(MSIP) (No. 2014R1A2A1A10051792), Institute for
Information & communications Technology Promotion(IITP)
grant funded by the Korea government(MSIP) (No. R0190-
16-2010, Development on the SW/HW modules of Processor
Monitor for System Intrusion Detection)and Institute for
Information & communications Technology Promotion(IITP)
grant funded by the Korea government(MSIP) (No. R-
20160222-002755, Cloud based Security Intelligence
Technology Development for the Customized Security Service
Provisioning).

REFERENCES

[1] A. Baliga, V. Ganapathy, and L. Iftode. Automatic inference and
enforcement of kernel data structure invariants. In Computer Security
Applications Conference, 2008. ACSAC 2008. Annual, pages 77–86.
IEEE, 2008.

[2] D. P. Bovet and M. Cesati. Understanding the linux kernel, 2 ed. In
Advances in Cryptology–EUROCRYPT 2014. OReilly and Associates,
Dec, 2002.

2



&ĂƐƚ�KďũĞĐƚ�EĂŵŝŶŐ�ĨŽƌ
<ĞƌŶĞů��ĂƚĂ��ŶŽŵĂůǇ��ĞƚĞĐƚŝŽŶ

,ĂǇŽŽŶ zŝΎ͕�zĞŽŶŐƉŝů �ŚŽΎ͕��ŽŶŐŚǇƵŶ <ǁŽŶΎ͕�zƵŶŚĞƵŶŐ WĂĞŬΎ
Ύ^ĞŽƵů�EĂƚŝŽŶĂů�hŶŝǀĞƌƐŝƚǇ

� DĞŵŽƌǇ�/ŶƚƌŽƐƉĞĐƚŝŽŶ

� �ĐŬŶŽǁůĞĚŐĞŵĞŶƚƐ

dŚĞ�ŶƵŵďĞƌ ŽĨ�ĂůůŽĐĂƚŝŽŶƐ ϭϴϲ͕ϭϯϮ
dŚĞ�ŶƵŵďĞƌ�ŽĨ�ĚĞĂůůŽĐĂƚŝŽŶƐ ϭϱϲ͕ϯϲϳ
dŚĞ�ŶƵŵďĞƌ ŽĨ�ůŝǀĞ�ŽďũĞĐƚƐ Ϯϵ͕ϳϲϱ
�ǀƌ͘ ��Wh�ĐǇĐůĞƐ�ƉĞƌ�ƚƌĂƉ ϯϮϭ
�ǀƌ͘ ��Wh�ĐǇĐůĞƐ�ƉĞƌ�ďĂĐŬƚƌĂĐĞͲŶĂŵŝŶŐ ϭϰϬ
dŽƚĂů�ƐƉĞŶƚ��Wh�ĐǇĐůĞƐ�ŽĨ�ƚƌĂƉƐ ϭϭϲ͕ϰϰϬ͕ϱϬϯ
dŽƚĂů�ƐƉĞŶƚ�ƚŝŵĞ�;ŵƐͿ�ŽĨ�ƚƌĂƉƐ�Ăƚ�ϭ͘ϳ',ǌ ϲϴ͘ϰϵ

� WƌŽƚŽƚǇƉĞ�KǀĞƌǀŝĞǁ� �ĂĐŬƚƌĂĐĞ EĂŵŝŶŐ

� EĂŵŝŶŐ�'ƌĂŶƵůĂƌŝƚǇ

� <ĞǇ�KďƐĞƌǀĂƚŝŽŶƐ

� WƌĞůŝŵŝŶĂƌǇ��ǆƉĞƌŝŵĞŶƚƐ

� �ĂĐŬƚƌĂĐĞ ĞǆƚƌĂĐƚŝŽŶ�Ăƚ�ĂŶ�ĂůůŽĐĂƚŝŽŶ�ĞǀĞŶƚ

� DŽƚŝǀĂƚŝŽŶ

� �ĞƉůŽǇĞĚ�ƐĞĐƵƌŝƚǇ�ƐǇƐƚĞŵƐ�ƵƐƵĂůůǇ�ƌĞůǇ�ŽŶ�ŝŶƚĞŐƌŝƚǇ�ƐƉĞĐŝĨŝĐĂƚŝŽŶƐ͕�ǁŚŝĐŚ�ĂƌĞ�
ƚǇƉŝĐĂůůǇ�ƐĞƚ�ďǇ�Ă�ƐĞĐƵƌŝƚǇ�ĂĚŵŝŶŝƐƚƌĂƚŽƌ

� EŽŶͲĐŽŶƚƌŽů�ĚĂƚĂ�ĂƚƚĂĐŬƐ�ŝŶ�ŬĞƌŶĞů
ÎEĞĞĚ�ĨŽƌ�ŬĞƌŶĞů�ĚĂƚĂ�ŝŶƚĞŐƌŝƚǇ
� hŶĨŽƌƚƵŶĂƚĞůǇ͕ �ŝƚ�ŝƐ�ŶŽŶƚƌŝǀŝĂů�ƚŽ�ŵĂŶƵĂůůǇ�ƐĞƚ�ƐƉĞĐŝĨŝĐĂƚŝŽŶƐ�ĨŽƌ�Ăůů�ŬĞƌŶĞů�ĚĂƚĂ
Î �ƵƚŽŵĂƚĞĚ�ƐƉĞĐŝĨŝĐĂƚŝŽŶ�ŐĞŶĞƌĂƚŝŽŶ�ǁŝƚŚ�ŵĂĐŚŝŶĞ�ůĞĂƌŶŝŶŐ
� WƌŝŽƌ�ǁŽƌŬ�ǁĂƐ�ĚŽŶĞ�ŝŶ�ƚŚŝƐ�ĂƌĞĂ

� �͘�ĂůŝŐĂ͕�s͘'ĂŶĂƉĂƚŚǇ͕ �ĂŶĚ�>͘/ĨƚŽĚĞ͘��ƵƚŽŵĂƚŝĐ�ŝŶĨĞƌĞŶĐĞ�ĂŶĚ�ĞŶĨŽƌĐĞŵĞŶƚ�ŽĨ�ŬĞƌŶĞů�ĚĂƚĂ�ƐƚƌƵĐƚƵƌĞ�ŝŶǀĂƌŝĂŶƚƐ͘���^���ϮϬϬϴ

� ,ĂƐ�ĂŶ�ŝƐƐƵĞ�ƚŚĂƚ�Ă�ůĂƌŐĞ�ƉŽƌƚŝŽŶ�ŽĨ�ŐĞŶĞƌĂƚĞĚ�ƐƉĞĐŝĨŝĐĂƚŝŽŶƐ�ŶŽƚ�ďĞŝŶŐ�
ĂƉƉůŝĐĂďůĞ�ĂĨƚĞƌ�Ă�ƐǇƐƚĞŵ�ƌĞďŽŽƚ

ÎEĞĞĚƐ�ƚŽ�ƌĞͲŐĞŶĞƌĂƚĞ�ƐƉĞĐŝĨŝĐĂƚŝŽŶƐ�ĂĨƚĞƌ�ĞĂĐŚ�ƌĞďŽŽƚ͕�ǁŚŝĐŚ�ƚĂŬĞƐ�
ϮϬΕϱϬŵŝŶƵƚĞƐ�ĞǀĞŶ�ŽŶ�ĂŶ�ƵƉͲƚŽͲĚĂƚĞ�ŵĂĐŚŝŶĞ

�ĂĐŬƚƌĂĐĞ͗�Ă�ďĂĐŬǁĂƌĚ�ůŝƐƚ�ŽĨ�ĂĐƚŝǀĞ�ĨƵŶĐƚŝŽŶ�ĐĂůůƐ�ƚŚĂƚ�ƐƚĂƌƚƐ�ǁŝƚŚ�ƚŚĞ�ůĂƐƚ�ĨƵŶĐƚŝŽŶ�ĐĂůů
EĂŵŝŶŐ͗�'ŝǀŝŶŐ�ĂŶ�ŝĚĞŶƚŝƚǇ�ƚŽ�Ă�ĚĂƚĂ�ŽďũĞĐƚ�ƚŽ�ĚŝƐƚŝŶŐƵŝƐŚ�ŝƚ�ĨƌŽŵ�ŽƚŚĞƌ�ŽďũĞĐƚƐ�ǁŝƚŚ�
ĚŝĨĨĞƌĞŶƚ�ŶĂŵĞƐ

,Žǁ�ǁŽƵůĚ�ĚŝĨĨĞƌĞŶƚ�ŶĂŵŝŶŐ�ƐĐŚĞŵĞƐ�ĞĨĨĞĐƚ�ƚŚĞ�ŐƌĂŶƵůĂƌŝƚǇ�ŽĨ�ǁŚŝĐŚ�ĚĂƚĂ�ŽďũĞĐƚƐ�ǁŽƵůĚ�ďĞ�
ĚŝƐƚŝŶŐƵŝƐŚĂďůĞ

� WĂƚŚͲŶĂŵĞ
� dǇƉĞͲŶĂŵĞ
� �ĂĐŬƚƌĂĐĞͲŶĂŵĞ

ϭ͘ <ĞƌŶĞů�ŽďũĞĐƚƐ�ĂƌĞ�ĂůůŽĐĂƚĞĚ�ƚŚƌŽƵŐŚ�ŽŶůǇ�Ă�ĐŽƵƉůĞ�ŽĨ�ĨƵŶĚĂŵĞŶƚĂů�ŽďũĞĐƚ�ĂůůŽĐĂƚŽƌƐ͘
Ϯ͘dŚĞ�ŬĞƌŶĞů�ĐŽŶƚĞǆƚ�ǁŚĞŶ�Ă�ŬĞƌŶĞů�ŽďũĞĐƚ�ŝƐ�ĐƌĞĂƚĞĚ�ƌĞĨůĞĐƚƐ�ƚŚĞ�ŽďũĞĐƚΖƐ�ĐŚĂƌĂĐƚĞƌŝƐƚŝĐ�ĚƵƌŝŶŐ�
ƌƵŶƚŝŵĞ͘

dŚŝƐ�ǁŽƌŬ�ǁĂƐ�ƉĂƌƚůǇ�ƐƵƉƉŽƌƚĞĚ�ďǇ�ƚŚĞ�EĂƚŝŽŶĂů�ZĞƐĞĂƌĐŚ�&ŽƵŶĚĂƚŝŽŶ�ŽĨ�<ŽƌĞĂ;EZ&Ϳ�ŐƌĂŶƚ�
ĨƵŶĚĞĚ�ďǇ�ƚŚĞ�<ŽƌĞĂ�ŐŽǀĞƌŶŵĞŶƚ;D^/WͿ�;EŽ͘�ϮϬϭϰZϭ�Ϯ�ϭ�ϭϬϬϱϭϳϵϮͿ͕�/ŶƐƚŝƚƵƚĞ�ĨŽƌ�
/ŶĨŽƌŵĂƚŝŽŶ�Θ�ĐŽŵŵƵŶŝĐĂƚŝŽŶƐ�dĞĐŚŶŽůŽŐǇ�WƌŽŵŽƚŝŽŶ;//dWͿ�ŐƌĂŶƚ�ĨƵŶĚĞĚ�ďǇ�ƚŚĞ�<ŽƌĞĂ�
ŐŽǀĞƌŶŵĞŶƚ;D^/WͿ�;EŽ͘�ZϬϭϵϬͲϭϲͲϮϬϭϬ͕��ĞǀĞůŽƉŵĞŶƚ�ŽŶ�ƚŚĞ�^tͬ,t�ŵŽĚƵůĞƐ�ŽĨ�
WƌŽĐĞƐƐŽƌ�DŽŶŝƚŽƌ�ĨŽƌ�^ǇƐƚĞŵ�/ŶƚƌƵƐŝŽŶ��ĞƚĞĐƚŝŽŶͿĂŶĚ�/ŶƐƚŝƚƵƚĞ�ĨŽƌ�/ŶĨŽƌŵĂƚŝŽŶ�Θ�
ĐŽŵŵƵŶŝĐĂƚŝŽŶƐ�dĞĐŚŶŽůŽŐǇ�WƌŽŵŽƚŝŽŶ;//dWͿ�ŐƌĂŶƚ�ĨƵŶĚĞĚ�ďǇ�ƚŚĞ�<ŽƌĞĂ�ŐŽǀĞƌŶŵĞŶƚ;D^/WͿ�
;EŽ͘�ZͲϮϬϭϲϬϮϮϮͲϬϬϮϳϱϱ͕��ůŽƵĚ�ďĂƐĞĚ�^ĞĐƵƌŝƚǇ�/ŶƚĞůůŝŐĞŶĐĞ�dĞĐŚŶŽůŽŐǇ��ĞǀĞůŽƉŵĞŶƚ�ĨŽƌ�
ƚŚĞ��ƵƐƚŽŵŝǌĞĚ�^ĞĐƵƌŝƚǇ�^ĞƌǀŝĐĞ�WƌŽǀŝƐŝŽŶŝŶŐͿ͘


