Poster: An IoT Data Communication Framework for
Authenticity and Integrity

Xin Li*, Huazhe Wang*, Ye Yu’, Chen Qian*
Email: {x1i178, hwang137, cqian12} @ucsc.edu , ye.yu@uky.edu
*Department of Computer Engineering, University of California Santa Cruz
TDepartment of Computer Science, University of Kentucky

I. INTRODUCTION

Internet of Things has been widely applied in every-
day life, ranging from transportation, healthcare, to smart
homes. As most IoT devices carry constrained resource and
limited storage capacity, sensing data need to be transmitted
to and stored at resource-rich platforms, such as a cloud. IoT
applications retrieve sensing data from the cloud for analysis
and decision-making purposes. Ensuring the authenticity and
integrity of the sensing data stored in third-party clouds is
essential for the correctness and safety of IoT applications.

In this paper we present the design of an IoT data commu-
nication framework involving the three key entities: sensing
devices, cloud and data applications. We assume only sensing
devices and data applications are trustworthy and any entities
in between are subject to attack. Authenticity and integrity
should be verifiable by data applications. Moreover, different
applications may have different requirements on sending data
granularity. Even if the cloud can store up to 100 records,
some applications only retrieve part of them, e.g., 10 records,
due to bandwidth/memory limit or application requirements. In
addition, these 10 records should have verifiable authenticity,
integrity, and uniformity. We call this feature as partial data
retrieval. We do not address the issue of data confidentiality
or privacy in this poster.

II. SYSTEM DESIGN
A. Existing Signature Schemes

Digital signature is a widely used method to protect data
authenticity and integrity. However, applying digital signature
to every sensing record, called the Sign-each method, is
not practical, because public-key encryption/decryption are
considered slow and expensive, especially for sensing devices
with limited resource. A more efficient method, concatenate,
is to compute the message digest for a large number of records
and sign once. This approach requires each sensing device to
cache all records and has the all-or-nothing feature: if some
applications only require part of the records, the signature
cannot be verified. A well-known method to sign a data stream
is hash chaining [5]. It does not fit the IoT framework either,
because partial data retrieval will break the chain and make
the signature unverifiable.

To address the aforementioned problems when applying
digital signature in the IoT scenario, we propose two signa-
ture schemes. 1) the Dynamic Tree Chaining (DTC) that is
developed based on Merkle tree [6] [7]. DTC serves as the
baseline in this poster. 2) a novel signature scheme specifically

TABLE 1. OVERALL COMPARISON OF DIFFERENT SIGNATURE
SCHEMES.

Signature Computation | Partial data Constant Sampling

Scheme efficiency retrieval space cost | uniformity
Sign-each X v v X
Concatenate v X X X
Hash chaining v X v X
DTC v v X X
GSC v v v v

designed for the IoT data communication framework, called
Geometric Star Chaining (GSC). GSC outperforms DTC in
terms of throughput and memory consumption. GSC provides
verifiable uniformity while DTC does not. The comparison of
different signature schemes is listed in TABLE. 1.

B. Dynamic Tree Chaining (DTC)

We start from the Tree chaining designed by Wong and
Lam [7], one variation of Merkle tree [6]. The digest of each
event report is one leaf node in binary authentication tree.
The value of the internal node is computed as the hashing
of the concatenation of its two children. As a result, the root
summarizes all the leaf nodes. The root node is regarded as
the block digest and is signed by the private key to create
the block signature. The verification process is on a per-event
basis. In order to verify the integrity/authenticity of an event e,
the verifier requires the block signature and the sibling nodes
in the path to the root, which are all appended to event e.

The expensive asymmetric encryption operation is amor-
tized to all events in one authentication tree and thus tree
chaining is computational efficient. More importantly, since
every single event is verifiable, it is fully compatible with
partial data retrieval without resource waste. The most severe
issue that impedes the adoption of the original tree chaining
in IoT environment is that all events should be buffered in
the sensing device before the authentication tree is built,
since each event ought to be appended auxiliary authentication
information from the authentication tree.

We observe that introducing the cloud can greatly reduce
the memory footprint at sensing devices. The sensing device
only maintains the message digest of each event and sends all
events to the cloud directly without caching. The authentication
tree grows in an online fashion and the sensing device transmits
to the cloud internal nodes that are no longer needed for calcu-
lating the remaining authentication tree. The space complexity
in the sensing device to host nodes of authentication tree is
reduced from O(n) to O(logn), where n denotes the number
of events in one epoch.

Once the buffer in the sensing device is full, the root node
in the authentication tree is signed and the remaining nodes
are all flushed to the cloud to spare space for upcoming events.
Therefore, one sensing device may apply digital signature more
than once in one single epoch. As a result, the buffer space
constrains the performance of DTC, which is a particularly
severe problem in IoT environment where most devices possess
little buffer space. More importantly, DTC provides no verifi-
able uniformity for event sampling and partial data retrieval,
because data selection is completely executed in the cloud. If
the cloud selects event samples or the partial data with bias,
data applications are unaware of it.

C. Geometric Star Chaining (GSC)

We present a more efficient and secure data communication
framework in this poster, called Geometric Star Chaining
(GSC). The basic idea of GSC is inspired by the observation
that any arbitrary fraction value can be represented or closely
approximated by a few number of binary digits. For instance,
5/8 =(0.101),. Thus, partial data with sample rate p, where
p =Y. 27% is equivalent to the union of multiple data blocks
each corresponds to one set bit in the binary representation.
One data block is called a sample block in this poster. For
instance, to retrieve a sampled data from all sensing data
from a device within an epoch with sampling rate 5/8, the
cloud can send the data application two blocks containing
(approximately) 1/2 and 1/8 of the events respectively.

The number of events included in the sample blocks
follows geometric distribution. Each sample block should draw
events uniformly from the IoT data stream. In order to ease
the presentation of how sample blocks form, we define a set
of successive numerical intervals {S;} where S; = {x € R :
27171 < x <277 i € N}. On receiving a new event e, the sensing
device computes which numeric interval in {S;} that /(e) falls
in and event e is inserted into the corresponding sample block,
where h(-) is a non-cryptographic uniform hashing function
and Vx: 0 < h(x) < 1.

Events within a same data block are either completely
retrieved or not retrieved at all. Thus we can view each data
block as an atomic “giant event”. GSC computes one message
digest for every block and concatenates these digests to a single
digest for digital signature. The digest of each sample block is
computed in an online fashion. One variable D; is allocated to
each sample block to capture the newest value of the message
digest. Suppose a new event e is observed at the device which
belongs to the ith sample block. The message digest D; is
updated as D; = h(h(e)||D;). This online updating proceeds
until the end of the epoch. In the end, the concatenate approach
is applied to all the message digests {D;}. Since the output
of any hashing function is one finite-length bit sequence, the
number of sample blocks is bounded and thus space cost for
this signature scheme at the sensing device is constant.

III. IMPLEMENTATION AND EVALUATION

We implement GSC as well as another two alternative
signature schemes, sign-each approach and DTC for compar-
ison. We utilize OpenSSL [3] to implement the widely used
asymmetric encryption algorithm DSA [2]. MDS5 is leveraged
as the message digest function. Particularly for GSC, the non-
cryptographic 64-bit hash function xxHash [4] classifies events

6
1
3x 0‘ ‘ ‘ ‘ ‘
o ool _ __0__9—-()--9--0--9
2.5-
el
5§ 2
o
(]
12}
g 1.5¢
g2
c
L% 1t —%— GSC sign
-© -GSC verify
05t DTC sign
DTC verify
0!

1 2 3 4 5 6 7 8 9 10 11 12
Space available at the device

Fig. 1. Signing/verifying throughput comparison.

into sample blocks. The prototype emulation is conducted on a
quadcore@3.40G Linux desktop with 32GB memory but only
one core is used.

We evaluate the performance by feeding the signer/verifier
a set of public IoT data traces [1]. The 7 data sources each
divided into 90 epochs are the input to the singing phase
of the signature scheme, whose output feeds the verifying
phase afterwards. Only one encryption operation is required
in a single epoch for each data source. The space cost at
both the signer and the verifier to host the events themselves
is orthogonal to the choice of signature scheme. In order to
simplify the presentation, we refer one unit of space cost as
the memory space used for storing one message digest.

We measure the performance of two signature schemes
with given space limit in the signer. To focus on the impact
of the space issues at the signer side, we allocate enough free
space to the verification process. For DTC, once the buffer in
the signer is full, the root node in the authentication tree is
signed and the remaining nodes are flushed to the cloud to
make room for upcoming events. Thus, lacking space in the
signer may lead to multiple expensive encryption operations
in one epoch. Furthermore, the same number of decryption
operations are also needed at the verifier side. Fig. 1 illustrates
the signing/verifying performance comparison between GSC
and DTC under varied space available. Both signing and ver-
ifying performance of DTC are capped by available memory
at the signer, whereas GSC runs at full speed all the time.
The performance of sign-each approach is not shown in Fig.
1 because it is more than 50X slower than the other two.

REFERENCES

[1] http://traces.cs.umass.edu/index.php/Smart/Smart.

[2] Dsa. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.
[3] Openssl. https://www.openssl.org/.

[4] xxhash. http://www.xxhash.com/.

[5] R. Gennaro and P. Rohatgi. How to sign digital streams. In Crypto,
1997.

[6] R. C. Merkle. A digital signature based on a conventional encryption
function. In Proc. of CRYPTO, 1987.

[71 C. K. Wong and S. S. Lam. Digital signatures for flows and multicasts.
In Proc. of IEEE ICNP, 1998.

