
Poster: Securing Appified Autonomous Vehicles Platform With AVGUARD
Yunhan Jack Jia, Ding Zhao, Qi Alfred Chen, Z. Morley Mao

University of Michigan, Ann Arbor

Appified AV Platform
●Appified autonomous vehicle (AV): self-driving
functionalities are developed in a crowd-
sourcing manner and installed as modules

Example: Path-Following
AV App on PolySync

Overview: AVGuard Approach

Step One: Standard App Development Case Study & Discussion
●Dynamic analysis revealing potential risks
of the path-following AV app

●Ongoing Work
● Complete the implementation of AVGuard to be used for
students taking Automated Vehicle Control course in
2017 provided by U-M

● Collete rules and principles to be added to the static app
vetting process using crowd-sourcing.

● Build database for common faults made by developers

●Appified AV architecture:

Step Two: Static App Vetting

●Facilitate app vetting by requiring developers to provide
● Purpose statements

● Matching user expectation with app behavior; Justifying access control decisions
● Required resources

● E.g. exclusive usage of throttle pedals, radar, or required network bandwidth
● Usage constraints

● Required by the DoT standard for autonomous driving functionalities
● E.g., high-way only, sunny day only (with clear camera vision)

Step Three: Dynamic App Vetting
●Accelerated Evaluation Approach

● Based on importance sampling techniques
● Quantifies potential risks of AV apps, and runs off-the-vehicle.
● Reduces the required test mileages for each analysis by a factor of
10,000 to 100,000.

●Current appification status in AV field
● Industry: pioneering companies to open critical
access of vehicles to researchers
● e.g., Ford XC, PolySync

● Academia: U-M to provide OpenAV to researchers;
Udacity courses to targets for developing library of
open source AV functionalities.

●Traditional vehicle architecture:

● Outsourcing
● Hardware suppliers
● Heavy testing work
● Usually takes over 24
months

● Crowd-sourcing
● Software suppliers
● Software testing
● High requirement on
the functionality

	Slide 1

