
• Repackaging is a severe problem on Android
- 80 % of malware families are create by repackaging
- Financial loss caused by pirated apps

• Countermeasures
1. Detecting repackaged apps on the market 

- Code-similarity approach
2. Hardening apps by using tamper-proofing techniques

- Obfuscation, anti-debug, integrity-checking

• Developers should proactively protect their apps before 
distributing them, but:
- The robustness of protection depends on developer’s 

security awareness and implementation skills

Protecting Android Apps from Repackaging by Self-Protection Code
Fumihiro Kanei, Yuta Takata, Mitsuaki Akiyama, Takeshi Yagi and Takeshi Yada

NTT Secure Platform Laboratories
E-mail: {kanei.fumihiro, takata.yuta, yagi.takeshi, yada.takeshi}@lab.ntt.co.jp, akiyamam@acm.org

1. Introduction

References
[1] Lannan Luo, Yu Fu, Dinghao Wu, Sencun Zhu and Peng Liu “Repackage-proofing Android 
Apps,” in Proceedings of the International Conference on Dependable Systems and Networks 
(DSN), 2016.

• Self-protection for Android apps 
- Verifying integrity of an app

- Repackaged apps refuse to provide their functionalities to 
prevent working on user devices

• Evasion attacks against self-protection mechanism
- An attacker uses static and dynamic analysis techniques 

to locate and disable the detection code 
- Static signature matching, dynamic API monitoring , etc

2. Attack and Defense Model

3. Proposed Method

• Experimental Setup
- Data Set: 27 apps from GooglePlay and F-Droid
- Device:  Nexus 5X (physical Device), Android 6.0

• Experiment 1. Feasibility and Side effects
- Dynamically analyze following apps: (1) original, (2) 

protected, (3) repackaged after protection
 No functional difference between original and protected apps
 All repackaged apps could not run successfully on the device
 0.1 – 17 % of runtime overhead occurred

4. Evaluation 5. Conclusions and Future work
• Conclusions

- Improve robustness against static signature matching
- Reducing runtime overhead still remaining

• Future work
- Introducing multiple integrity-checking methods

- An attacker would dynamically monitor specific API calls, 
such as getPackageInfo(), to extract detection code 

- Considering more sophisticated code injection strategy
- We have to compete with advanced analysis techniques 

such as dataflow analysis and program slicing
- Considering other evaluation methodologies

- How to evaluate “difficulty of repackaging” quantitatively?

• Automatically build the capability of repackaging detection into the bytecode
• Randomize the implementation of the detection code for improving robustness
 An attacker would be forced to analyze individual implementation

• Step 2: Detection Code Randomization
 Randomly split the predefined detection code template

into several parts
 The size of smallest unit of separation is one instruction 

of Dalvik bytecode
 Fine-grained randomization

compared with existing 
method[1]

• Experiment 2. Robustness against static analysis
- Evaluating robustness against static signature matching in terms 

of false positives from viewpoint of attackers
 Idea: If original bytecode contains  sequence of instructions 

similar to detection code, an attacker will meet false 
positives when they try to find detection code

invoke-virtual {p0}, ... getPackageManager() ...
move-result-object v2
invoke-virtual {p0}, ... getPackageName() ...
move-result-object v1
const/4 v0, 0x0
const/16 v5, 0x40
invoke-virtual {v2, v1, v5}, ... getPackageInfo(...) ...
move-result-object v0
iget-object v5, v0, ... signatures:[ ...
const/4 v6, 0x0
aget-object v3, v5, v6
invoke-virtual {v3}, ... hashCode() ...
move-result v4
const v5, -0x10e4a14f
if-eq v4, v5, :cond_0
invoke-static {}, ... detected() ...
:cond_0 return-void

Compiled detection code An example of split detection code

invoke-virtual {p0}, ... getPackageManager() ...
move-result-object v2
invoke-virtual {p0}, ... getPackageName() ...
move-result-object v1
const/4 v0, 0x0
const/16 v5, 0x40
invoke-virtual {v2, v1, v5}, ... getPackageInfo(...) ... move-result-
object v0
iget-object v5, v0, ... signatures:[ ...
const/4 v6, 0x0
aget-object v3, v5, v6
invoke-virtual {v3}, ... hashCode() ...
move-result v4
const v5, -0x10e4a14f
if-eq v4, v5, :cond_0
invoke-static {}, ... detected() ...
:cond_0 return-void

• Step 1: Bytecode Analysis
 Determine where to inject detection code 

- Extract and analyze methods that are called few times

• Step 3: Code Insertion
 Insert respective parts of detection 

code into extracted method 
 Fix partial code so as not to break 

original functionalities
 Add virtual registers
 Add Exception handling code

Some instructions are not separable
• invoke and move-result
• if-XX and corresponding basic blocks

Proposed method Existing method[1]
False-positive score
(Average number of exact matches ) 15.66 4.392

An example of code insertion

The execution order of 
detection code is retained

// Get certificate information
PackageManager pm = context.getPackageManager();
String pname = context.getPackageName();
PackageInfo pi = pm.getPackageInfo(pname,     

PackageManager.GET_SIGNATURES);
Signature signature = pi.signatures[0];
// Calculate hash value of certification
int sigHash = signature.hashCode();
// Compare with hard-coded value
if (sigHash != 283418959) { 

detected();
}

An example of predefined detection code
(Simplified for the sake of readability)

Protected
APKAPK

Step 1
Bytecode 
Analysis

Step 2
Detection Code 
Randomization

Step 3
Code Insertion

Detection Code
template

0

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500 600 700 800 900 1000

O
ve

rh
ea

d 
(%

)

# of Inserted detection code

• Runtime overhead is NOT 
simply proportional to the 
amount of inserted detection 
code 

• Count the number of 
method calls by a debugging 
API, startMethodTracing()

• Input user event by Monkey 
tool

Dynamic Analysis Static Analysis

• Construct control flow 
graph(CFG)

• Find all dominator 
nodes of a randomly 
selected basic block

- Result

5 : sget-object …
6 : invoke-virtual …
7 : move-result …

1 : new-instance …
2 : invoke-virtual …
3 : iget-object …
4 : invoke-static …

1 : new-instance …
2 : invoke-virtual …
3 : iget-object …
4 : invoke-static …
5 : sget-object …
6 : invoke-virtual …
7 : move-result …
8 : invoke-static …
9 : if-neq …
10: invoke-static …

Randomized by
proposed method

8 : invoke-static …
9 : if-neq …
10: invoke-static …

Original 
Bytecode of 

protected apps
Signature
matching

split detection code

Randomized by
existing method[1]

Bytecode sequence  
contained in each separated 
part are used for signature


	スライド番号 1

