Protecting Android Apps from Repackaging by Self-Protection Code
Fumihiro Kanei, Yuta Takata, Mitsuaki Akiyama, Takeshi Yagi and Takeshi Yada

NTT Secure Platform Laboratories
E-mail: {kanei.fumihiro, takata.yuta, yagi.takeshi, yada.takeshi}@Ilab.ntt.co.jp, akiyamam@acm.org

1. Introduction 3. Proposed Method

* Repackaging is a severe problem on Android * Automatically build the capability of repackaging detection into the bytecode A SteP1 | | Step3 orotected
- 80 % of malware families are create by repackaging Randomize the implementation of the detection code for improving robustness | ** ?::f;,_f | Code Insertion APK

A
Step 2
Detection Code| , pataction Code
template Randomization

- Financial loss caused by pirated apps

v An attacker would be forced to analyze individual implementation i

e Countermeasures

1. Detecting repackaged apps on the market
- Code-similarity approach

2. Hardening apps by using tamper-proofing techniques
- Obfuscation, anti-debug, integrity-checking

Step 3: Code Insertion :
v’ Insert respective parts of detection |
code into extracted method —— |

v’ Fix partial code so as not to break — :
I

I

I

I

I

The execution order of
detection code is retained

v' Determine where to inject detection code
- Extract and analyze methods that are called few times

* Find all dominator

@ nodes of a randomly

: selected basic block

e Construct control flow
graph(CFG)

e Count the number of :
method calls by a debugging:
APl, startMethodTracing() |

* Input user event by Monkey !
tool |

| Dynamic Analysis ! Static Analysis

original functionalities | -
v' Add virtual registers |
v' Add Exception handling code

* Developers should proactively protect their apps before
distributing them, but:
- The robustness of protection depends on developer’s
security awareness and implementation skills

An example of code insertion

Some instructions are not separable

[. ...
e Step 2: Detection Code Randomization
. . . . invoke and -resul
v Randomly split the predefined detection code template A C;"ﬁzsepopnzsir?g Easic blocks
into several parts \
v’ The size of smallest unit of separation is one instruction

of Dalvik bytecode
» Fine-grained randomization
compared with existing

2. Attack and Defense Model

e Self-protection for Android apps
- Verifying integrity of an app
- Repackaged apps refuse to provide their functionalities to
prevent working on user devices

invoke-virtual {p0}, ... getPackageManager() ...
move-result-object v2

invoke-virtual {p0}, ... getPackageName() ...
move-result-object v1

| const/4 v0, 0x0 |

|
|
|
|
|
|
const/16 v5, 0x40 I
|
|
|
|
|
|
|

invoke-virtual {p0}, ... getPackageManager() ...
move-result-object v2

invoke-virtual {p0}, ... getPackageName() ...
move-result-object v1

const/4 v0, 0x0

const/16 v5, 0x40
invoke-virtual {v2, v1, v5}, ... getPackagelnfo(...) ...
move-result-object vO

iget-object v5, vO, ... signatures:| ...
const/4 v6, 0x0

// Get certificate information

PackageManager pm = context.getPackageManager();
String pname = context.getPackageName();
PackageInfo pi = pm.getPackageInfo(pname,

invoke-virtual {v2, v1, v5}, ... getPackagelnfo(...) ... move-result-
object vO

iget-object v5, vO, ... signatures:| ...
const/4 v6, 0x0

PackageManager.GET_SIGNATURES);
Signature signature = pi.signatures[0];

e Evasion attacks against self-protection mechanism

. . . . methOd [1] /./ Calculate hash value of certification ﬁ]gve;;(%t?\j/?ﬁ[h\;?:{\\//g}, v6 —— | ?get‘Obj?‘Ct v3, v5, v6 |
- An attacker uses static and dynamic analysis techniques 1 et o ST, e 2o invokevirtual {v3), . nvoke-virtual (3, . hashCode()
] . if (sieHash 1= const v5, -Ox10e4al4f e e e e
to Iocate and dlsable the detECthn COde }1c (deﬂCtZd();zsulsgsg) | :];I\?gkveéf:s}[/a?[’iC:C?}nd_odetected() if-eq£/4,5§5?:i§}n?j—t:f d()
-cond 0 return-voi invoke-static {}, ... detected() ...
- Static signature matching, dynamic APl monitoring , etc An example of predefined detection code CO; 1 detection code cond_0 return-void | |
L (Simplified for the sake of readability) P An example of split detection code B

5. Conclusions and Future work
 Conclusions

4. Evaluation

Experiment 2. Robustness against static analysis
Evaluating robustness against static signature matching in terms _
of false positives from viewpoint of attackers
» l|dea: If original bytecode contains sequence of instructions

 Experimental Setup .
- Data Set: 27 apps from GooglePlay and F-Droid -
- Device: Nexus 5X (physical Device), Android 6.0

Improve robustness against static signature matching
- Reducing runtime overhead still remaining

 Experiment 1. Feasibility and Side effects
- Dynamically analyze following apps: (1) original, (2)
protected, (3) repackaged after protection
v No functional difference between original and protected apps

v All repackaged apps could not run successfully on the device
v' 0.1 — 17 % of runtime overhead occurred

)- Runtime overhead is NOT
simply proportional to the
amount of inserted detection
code

N

Overhead (%)

.. L/ e0
s &8¢
0 100

0000000

of Inserted detection code

similar to detection code, an attacker will meet false
positives when they try to find detection code

: new-instance ..

: invoke-virtual ..

: iget-object ..

: invoke-static ..
6 : invoke-virtual ..
7 : move-result ..
8 : invoke-static ..

9 : if-neq .. : if-neq ..

19: invoke-static ..

Randomized by

: new-instance ..
: invoke-virtual ..
: iget-object ..

: invoke-static ..

: invoke-static ..

Randomized b
proposed method existing method{l]

* Future work
- Introducing multiple integrity-checking methods

Bytecode sequence

contained in each separated
part are used for signature

- An attacker would dynamically monitor specific API calls,
such as getPackageInfo(), to extract detection code

Signature
matching

—/

Original

Bytecode of
protected apps

Proposed method

Existing method[1]

False-positive score
(Average number of exact matches)

15.66

4.392

- Considering more sophisticated code injection strategy
- We have to compete with advanced analysis techniques
such as dataflow analysis and program slicing

- Considering other evaluation methodologies
- How to evaluate “difficulty of repackaging” quantitatively?

References

[1] Lannan Luo, Yu Fu, Dinghao Wu, Sencun Zhu and Peng Liu “Repackage-proofing Android
Apps,” in Proceedings of the International Conference on Dependable Systems and Networks
(DSN), 2016.

	スライド番号 1

