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1 Introduction
There is a fast-growing trend to outsource the large-scale

image management systems to cloud today, where abun-
dant computing resources [1] can be leveraged to efficiently
and effectively store, process, and share images among data
owners and users [7]. However, for the image service out-
sourcing to be truly successful, there are still fundamental
challenges yet to overcome. Firstly, because the cloud is a
public environment operated by external third-parties usu-
ally outside the data owner/users trusted domain, the out-
sourcing design has to be privacy-protecting and sometimes
mandatorily provide legal compliance to various privacy
regulations [4]. Secondly, due to the high-dimensionality
and large-scale of the image datasets, it is both necessary
and desirable for the outsourcing design to be as efficient
and less resource-consuming as possible in order to keep
the cloud economically attractive.

To address these fundamental challenges, we investigate
a novel outsourced image recovery service (OIRS) archi-
tecture in this paper, which exploits techniques from differ-
ent domains and takes security, complexity, and efficiency
into consideration from the very beginning of the service
flow. Particularly, OIRS is designed under the compres-
sive sensing framework [3], a recent data sensing/sampling
paradigm known for its simplicity of unifying the traditional
sampling and compression for image acquisition. As shown
in Fig. 1, data owners only need to outsource compressed
image samples to cloud for reduced storage overhead and
simplified local sensing, while data users can leverage the
cloud’s computing resources to securely reconstruct images
without revealing information from the image samples or
the underlying image content. OIRS has the benefit of sav-
ing owner/users’ workloads in the image recovery computa-
tion. In addition, it also incurs comparable amount of stor-
age overhead and computational complexity at cloud as cur-
rent mechanism does without security consideration. Below
we introduce the main idea of OIRS design, covering the
cases of sparse data, non-sparse data, and sampling with
noises. Our preliminary analysis and experiments validate
the security and efficiency of our design.
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Figure 1: The architecture of OIRS

Preliminaries: Compressive sensing exploits the spar-
sity of natural data. Given a sparse data b 2 Rn and an
orthonormal basis V 2 Rn⇥n, then the coefficient x 2 Rn,
satisfying b = Vx, has s ⌧ n nonzero entries. Taking
compressed samples [3] is done by multiplying an m ⇥ n,
s < m ⌧ n, selecting matrix R with full row rank to b

to derive an m⇥ 1 sample vector f = Rb = RVx = Ax,
where A = RV. If A 2 Rm⇥n satisfies Restricted Isome-
try Property (RIP) [3] with m = 2s and �2s <

p
2�1, then

when x is s-sparse, it can be recovered exactly from f by
solving an `1 minimization problem,

min kxk1, s.t. f = Ax. (1)
Here �2s is the 2s-th restricted isometry constant of A [2].
In practice, one can form R or A for RIP by sampling i.i.d.
entries from normal distribution [3].

2 The Proposed OIRS Design
For security, OIRS needs to protect the image samples

before outsourcing. The protected image samples should
support image recovery as needed, while the recovered im-
ages at cloud should still be in an protected form. For
these purposes, we study the secure transformation based
approaches. Note that the `1-min of Prob (1) is essentially
a linear program (LP) [2]:

min 1

T · r, s.t. f = Ax,�r  x  r. (2)
Here r is an n ⇥ 1 vector of variables. Let x+ r = 2s and
x�r = 2t. We denote x = s�t and r = s+t in Prob. (2):

min 1

T · s+ 1

T · t, s.t. f = A(s� t), s � 0, t � 0.
Let y = [sT, tT]T 2 R2n, we rewrite the above LP as

min 1

T · y, s.t. f = ⇤y,y � 0, (3)



where ⇤ is the m ⇥ 2n matrix [A,�A]. Denote this prob-
lem as � = (⇤, f , I,1T). Hereafter, we use x and y as
well as A and ⇤ interchangeably. With this formulation, we
want formally a transformation algorithm Trans that takes
as input the secret key K and the original LP problem � and
outputs the transformed problem �

k

. For efficiency, we are
interested in a secure linear transformation Trans such that
the transformed problem �

k

is still an LP. Hence, �
k

can be
solved by cloud via a standard LP solver, and the OIRS de-
sign can be non-interactive. The security strength relies on
the adversary’s advantage of guessing � given �

k

. As OIRS
works on real number and aims for an efficiency/security
balance, we follow the security definition below.
Definition We say that a transform Trans is secure if

8�0,�1 :

����Pr


K  Gen(1) :
Trans(K,�0) = �

k

�

�Pr


K  Gen(1) :
Trans(K,�1) = �

k

�����  µ(),

where µ(·) is a negligible function.
2.1 The Case of Sparse Data

We now propose a preliminary transformation approach,
which takes into account the public tuple I,1T, in Prob. (3).
Firstly, we obfuscate the inequality constraints using a gen-
eralized permutation matrix D, which is the product of pos-
itive diagonal and permutation matrices.

min 1

T · y, s.t. f = ⇤y,Dy � 0.

For our choice of D, Dy � 0 is equivalent to y � 0. Next,
we use affine mapping y = Mz� r to protect y, where M

is 2n⇥2n invertible matrix and r is a 2n⇥1 random vector:

min 1

T · (Mz� r), s.t. ⇤Mz = f +⇤r,DMz � Dr.

Thirdly, we randomly mix the equality and inequality con-
straints together by first multiplying a random 2n⇥m ma-
trix � to both sides of equality constraints and then adding
them up to both sides of the inequality constraints:

min 1

T · (Mz� r),

s.t. ⇤Mz = f +⇤r, (DM� �⇤M)z � Dr� �(f +⇤r).
Finally, we multiply a random m⇥m invertible matrix Q to
equality constraints and ignore 1T · r in objective function:

min c

0T · z s.t. ⇤

0 = f

0, D

0
z � r

0,

where c

0 = 1

T
M,⇤0 = Q⇤M, f 0 = Q · (f +⇤r),D0 =

DM� �⇤M, r0 = Dr� � · (f +⇤r). We can further let
c

0T = 1

T and r

0 = 0 to make the randomly transformed
LP share the same public structure as � in Eq. (3):

�
k

= (⇤0, f 0,D0, r0 = 0, c0T = 1

T), (4)

Keeping the same structure results in the secret transforma-
tion key as K = (Q,M, r,D,�), where the 2n⇥2n matrix
M contains (2n�1)⇥2n random elements, and the 2n⇥m
matrix � contains 2n⇥ (m� 1) random elements.

Based on the transformation, OIRS can be instantiated as
follows: Data owner randomly generates K and a random
sampling matrix R. After sampling f = RVx = Ax, data
owner picks (Q, r) from K to encrypt f and outsources f

0

to cloud. Whenever data user sends an image recovery re-
quest, data owner calls Trans(K,�) to output �

K

to cloud.
Cloud solves �

k

and outputs z to data user. Data user then
decrypts the original y via y = Mz� r. Note that all the
matrices and vectors to be used in the sampling and secret
transformation can be generated by using a keyed pseudo-
random function with random seeds. Thus, the sharing of
K can be easy by sharing small size seeds. We can use
different K and sampling matrices R for different images.
2.2 The Case of General Data

Many physical image sources are not exactly sparse. To
broaden the application spectrum of OIRS, a natural ques-
tion would be: how to extend the application to those non-
sparse data? We answer the challenge question by explor-
ing the idea of using sparse data representation to approxi-
mate the general data, aiming to achieve a tuneable balance
between efficiency and accuracy. This is possible due to
the result in [3]. Specifically, if the general data is nearly
sparse, the securely recovered image will provide good ap-
proximations. Otherwise, OIRS will still recover the image,
by reconstruction from the data’s s largest coefficients [3].
2.3 The Case of Compressive Sensing with Noise

To make OIRS more powerful and robust, we further in-
vestigate the case of compressive sensing corrupted with
noise, like the errors in transmission channel, the noise
brought by the imperfect measuring, etc. Specifically, given
corrupted sample f = Ax+ e, where e is the unknown er-
rors, how to securely leverage the cloud to recover x? Fol-
lowing the work [2, 5] in plaintext compressive sensing, we
consider the error e is a sparse vector. In this case, over-
sampling, i.e., m > n, becomes a must to compensate the
errors, and the key to recover x is to get e first. Inspired
by [2, 5], we propose the following approach: When gen-
erating the m ⇥ n sampling matrix A, the data owner also
constructs an n⇥m matrix G, satisfying G ·A = 0. Note
that G · f = G · (Ax+ e) = G · e. Now e is the un-
known m⇥ 1 sparse vector, and G · f is the n⇥ 1 measure-
ment vector with n < m. Thus, by `1-min optimization:
min kek1, s.t. G · f = Ge, one can directly solve e accu-
rately. Thus, it is still possible to apply our previous random
transformation to securely outsource the recovery of sparse
error vector e to cloud. With e, the data user can further
solve x from the overdetermined equation f � e = Ax.
2.4 Security Analysis and Empirical Evaluation

Security Strength: Following our security definition,
our preliminary analysis shows that given �0,�1, the
transformed problems are computationally indistinguish-
able. We assume using finite precision floating numbers and



Table 1: Preliminary efficiency results
Benchmark Original OIRS Speedup

image block size t

original

t

owner

t

user

t

original

t

owner

+t

user

32 ⇥ 32 1.88 s 0.44 s 0.01 s 4.2 ⇥
48 ⇥ 48 15.37 s 4.36 s 0.024 s 3.5 ⇥

each entry y
i

of the original y should be in range (�L,L),
where L = poly() and  is the security parameter. Let
the system input n = ✓(). Denote uniform distribution
from [�2, 2] with fixed precision as U(�2, 2). First
we show the transformed z does not reveal y. Recall that
z = M

�1(y + r). We can uniformly pick each entry r
i

of
r from [�2, 2] with fixed precision. If we pick a random
vector ⌘ with its each entry sampled from U(�2, 2), then
the distribution of y + r is statistically close to ⌘. This is
because for each (y

i

+ r
i

, ⌘
i

), i 2 {1, . . . , 2n}, the best
distinguishing strategy is to output 0 if the input is from
[�2 � L,�2) and (2, 2 + L], and a random guess
b {0, 1} otherwise. The distinguishing probability is

p =
1

2
+ Pr[y

i

+ r
i

2 [�2 � L,�2)]

+Pr[y
i

+ r
i

2 (2, 2 + L]]  1

2
+

2L

2
=

1

2
+ µ0(),

where µ0 is a negligible function. By union bound,
the distinguishing probability for (y + r,⌘) is  µ()
where µ() = 2n ⇤ µ0(). Thus, the cloud’s view of
z = M

�1(y + r) and z

⇤ = M

�1⌘ is statistically indistin-
guishable. Then z does not reveal y. Similarly, f

0 =
Q(f+⇤r) = Q⇤(y+r) statistically hides f . Because each
entry of r is sampled from U(�2, 2), by previous argu-
ment, we can replace y + r with r. The cloud’s views of f 0
and f

⇤ = Q⇤r are indistinguishable. Hence, for all f0, f1,
the distinguishing probability for f 00, f 01 is at most µ().

Recall that ⇤ = [RV,�RV], where R is ran-
domly sampled for each problem. As the cloud’s
views of f

0 and f

⇤ are indistinguishable, given fb, we
only need to show the distribution of f

⇤
b = Qb⇤brb,

⇤

0
b = Qb⇤bMb and D

0
b = (Db � �b⇤b)Mb are indis-

tinguishable for b 2 {0, 1}. Indeed, since all the com-
ponents Qb, rb,⇤b,Mb,Db,�b used to generate f

⇤
b,⇤

0
b

and D

0
b are randomly sampled for each problem, the distri-

bution of f⇤b,⇤
0
b and D

0
b is indistinguishable for different

fb. Finally, we show that given f

⇤
b,⇤

0
b and D

0
b, it is infeasi-

ble to solve the key components Qb, rb,⇤b,Mb,Db,�b.
Indeed, it is well known that solving the system of non-
linear equation is NP hard. As the problem size O(n) =
✓(), solving this underdetermined system of non-linear
equation takes at least exp() time. Hence, polynomial run-
ning time adversary has negligible chance to succeed [6].

Empirical Evaluation: Some preliminary experiment
results for the case of sparse and general data are reported
in Fig. 2 and Table 1. For sparse data, Fig. 2-(a1) and (c1)
denote the original and correctly recovered image. Fig. 2-
(b1) containing random noise denotes the recovered image

A
(a1) The original sparse

data.
(b1) The reconstruction via

encrypted data.
(c1) The reconstruction via

decrypted data.

(a2) The original general
data.

(b2) The reconstruction via
encrypted data.

(c2) The reconstruction via
decrypted data.

Figure 2: Preliminary effectiveness results.

via random vector z. It thus shows that the proposed tech-
niques support secure yet correct image recovery without
revealing the underlying image content. For general data,
Fig. 2-(a2), (b2), and (c2) show the correctness and privacy-
assurance. For ease of experiment, we decompose the orig-
inal image into multiple image blocks with size 32⇥32 or
48 ⇥ 48. Each image block’s sampling and recovering is
done independently and is later re-assembled together. All
experiments are done on the same work station for fair com-
parison. In Table 1, t

original

, t
owner

, t
user

denotes the orig-
inal image recovery time, the transformation time by data
owner, and the decryption time by data user, respectively.
The speedup captures the efficiency gain via secure image
recovery outsourcing. Table 1 shows more than 3⇥ compu-
tation savings can be achieved for the experimental setting.

3 Conclusion and Further Remarks
We have summarised OIRS’s support on sparse data,

general data, and sensing with noise, and presented prelim-
inary security analysis and experiments. We will continue
to work on OIRS for its compatibility with other important
image services, such as content based image retrieval, while
providing extensible service interfaces and possible perfor-
mance speedup via hardware built-in design.
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