
OPTWALL: A Hierarchical Traffic-Aware Firewall

Subrata Acharyay, Mehmud Ablizy, Bryan Millsy, Taieb F. Znatiy;kyDepartment of Computer Science,kTelecommunications Program
University of Pittsburgh,

Pittsburgh, PA 15260
(sacharya, mehmud, bmills, znati)@cs.pitt.edu

Jia Wangx, Zihui Gex, Albert GreenbergxxAT&T Labs Research,
Florham Park, NJ 07932

(jiawang, gezihui, albert)@research.att.com

Abstract— The overall efficiency, reliability, and availability of a
firewall is crucial in enforcing and administrating security, especially
when the network is under attack. The continuous growth of the
Internet, coupled with the increasing sophistication of the attacks, is
placing stringent demands on firewall performance. These challenges
require new designs, architecture and algorithms to optimize firewalls.
In this paper, we propose OPTWALL, an adaptive hierarchical
firewall optimization framework aimed at reducing operational cost
of firewalls. The main features of the proposed approach are the
hierarchical design, splitting techniques, an online traffic adaptation
mechanism, and a strong reactive scheme to counter malicious attacks
(e.g. Denial-of-Service (DoS) attacks). To the best of our knowledge,
this work is the first of its kind to use traffic characteristics in the
design of an adaptive hierarchical firewall optimization framework.
To study the performance of OPTWALL, a set of experiments are
conducted on Linux ipchains. The performance evaluation study uses
a large set of firewall policies and traffic traces managed by aTier-
1 ISP and provides security access for the ISP network from/to its
business partners. Results show the high potential of OPTWALL to
reduce the operational cost of firewalls. In particular, theresults show
that a performance improvement of nearly 35% can been achieved
in a heavily loaded network environment.

I. Introduction

The constantly changing nature, scale and scope of information
technology environments, coupled with the increasing number
and complexity of security threats, is forcing Tier-1 ISPs to
resort to increasingly complex security policies and mecha-
nisms. Firewalls constitute the cornerstone of most network
defense systems and have proven to be an effective solution
to monitor and regulate traffic. The efficiency of firewalls in
protecting the infrastructure, however, depends not only on
the integrity and coherence of the security policies they are
configured to implement, but equally importantly on the speed
at which these policies are enforced.

With the dynamic change in the network load, topology,
and bandwidth demand, firewalls are becoming a bottleneck.
All these factors create a demand for more efficient, highly
available, and reliable firewalls. Optimizing firewalls, however,
remains a challenge for network designers and administrators.

A typical present day firewall enforces its security policies
via a set of multi-dimensional packet filters (rules). Optimiza-

tion of this multi-dimensional structure has been proven tobe
a NP hard [1], [2] problem. This has motivated the research
community to focus on various approaches to provide reliable
and dependable firewall optimization methods. In-spite of a
strong focus towards an efficient design, the techniques used
thus far are static, and fail to adapt to the dynamic traffic
changes of the network. In particular, current techniques have
failed to include the traffic characteristics in the design and op-
timization of firewalls. Current firewall designs do not support
adaptive mechanism to detect and counter attacks in a network
environment characterized by heavy traffic fluctuations. Hence,
they fail to operate efficiently under adverse conditions.

The main objective of this paper is to address the short-
comings of the current firewalls and increase their ability to
deal with dynamic changes in network load and topology,
particularly when the network is under attack. To achieve this
goal, the paper proposes a hierarchical framework for traffic-
aware firewall optimization. The basic tenet of this framework
is that the design of next generation firewalls must leverage
their packet inspection capabilities with traffic awareness in
order to optimize the operational cost they incur in defending
against intrusions and denial of service attacks.

Traffic-aware firewall optimization is challenging as the
number of security policies a firewall has to enforce for
enterprise networks is large. This is further compounded bythe
limited resources of firewalls relative to the increased ability
of the network to process and forward traffic at extremely high
speed. In this paper, the focus is on optimizing the most widely
used‘list based’ firewalls. To achieve this goal we propose a
hierarchical firewall optimization approach, to create a load-
balanced policy subset. The main challenge in the construction
of these subsets stems from the need to maintain semantic
integrity of the policy set at each level of the hierarchy.

The major contributions of the paper are:� The design of OPTWALL, an adaptive hierarchical fire-
wall optimization framework. In this framework we pro-
pose an optimal solution to construct the hierarchy based
on rule-splitting, while maintaining the integrity of the
original firewall rule set.

� A set of heuristics, based on a trade-off between optimal-
ity, time complexity, and resource requirements to convert
the list based firewall rule sets into integrity preserving
hierarchical rule subsets.� An adaptive, traffic-aware protocol to detect and defend
against traffic anomalies.� An experimental study to assess the performance of the
proposed solutions and measure the impact of dynami-
cally exploiting the traffic characteristics on the perfor-
mance of firewalls.

The rest of the paper is organized as follows: Section II
describes the background on list based firewalls. The rule
cost metric is described in Section III and we introduce
the OPTWALL framework in Section IV. Section V depicts
the OPTWALL splitting design approaches. We present the
evaluation and results in Section VI. Section VII presents the
related work. Finally, we conclude the paper in Section VIII.

II. List Based Firewalls

A security rule is a multi-dimensional structure, where each
dimension is either a set of network fields or an action field.
The rule set defines the security policies which must be
enforced by the firewall.

In an Internet environment, a rule is defined by a set
of source ip addresses, a set ofdestination ip addresses, a
set of service typesand an action field. The service type
typically includes both the underlyingprotocol typeand a
port number. An action field can be eitheraccept, deny, or
forward. An accept action allows the packet access into the
protected domain. A deny action causes a packet, in violation
of the security policy, to be rejected. Finally, a forward action
leads to further inspection of the packet. Formally, a ruleR
can be represented as:R = [�1;�2; � � � ;�k; �℄, where�j
represents network fields and� is an action field. An instance
of a typical rule in an Internet environment can be of the
following structure:< sr
 = fs1; s2; � � � ; sng; dst = fd1; d2; � � � ; dmg;srv = f�1; �2; � � � ; �lg;a
tion = fdropja

eptjforwardg >
wheresi represents a source IP address,di a destination IP
address, and�i a service type.

In list-based firewalls, rules describing the network security
policies form a “priority” list. The priority of a rule, also
referred to as therule rank, is based upon its position within
the list. Earlier occurring rules have higher rank than later
ones. A rule-set can be converted to a tuple-set by creating
all possible permutations of the fields in a rule. A formal
representation of a tuple is:< sr
 = si; dst = di; srv = �i;a
tion = fdropja

eptjforwardg

wheresi represents a source IP address,di a destination IP
address, and�i a service type.

List-based firewalls work by examining the tuples in
sequential order. For each packet, the first matching tuple
determines the action taken by the firewall. List based
firewalls preform well if the list size is small. As the list size
scales up to millions of tuples, managing and optimizing the
firewall policies is a challenge. Moreover highly dynamic
traffic changes introduces the challenge of dynamic rule
optimization.

III. Rule Cost Metric

The main factor that affects the performance of a firewall is
the processing overhead due to packet inspection. The metric
calculation is done for a rule and can easily be applied to
tuples within a rule.

To capture the overhead cost incurred by a firewall to
process a rule and enforce the security policy, two metrics
are defined. The first metric, denoted asrule size(), measures
the size of a given rule in terms of the number of bits
necessary to determine unambiguously a match between
the rule definition and the corresponding fields of a packet
under inspection. The assumption underlying therule size()
metric stems from the fact that the complexity of a matching
operation is proportional to the size of the rule. Formally,
given a ruler, rule size(r) can be defined as:rule size(r) = 8><>: PSp;Dpf�1 � kspk+ �2 � kdpkg+� �Ns � (kPrrk+ kPork);
where, �1; �2, and � are weight parameters,Sp and Dp
are respectively the set of source and destination prefixes
which occur within the definition of the rule,sp and dp are
the bit representation of the source and destination prefixes,
respectively,Ns is the number of services defined within the
rule, andPrr andPor are the bit representation of the protocol
and port identifiers, respectively.

The second metric used in our experimentation is the cost
of operating on a given rule set. This cost depends on the
rule’s rank and size, and on how often the rule is invoked by
the firewall. Formally, given a set of rulesr1; r2; : : : ; rk , the
cost of a given rule,ri,
ost(ri), is defined as follows:
ost(ri) = hit
ount(ri) � P8rk2Pri krkk
where,Pri is the set ofri’s predecessors in the list-based set
of rules.

Using the above metrics, the aim of optimization is to reduce
the rule set size and consequently the processing time of the
rule set. This in turn reduces the overall firewall operational

cost. The resources that affect are the CPU utilization and the
memory usage of the firewall machine.1

IV. OPTWALL

Contrary to a list-based structure, a hierarchical design leads
to efficient organization of rule sets, thereby increasing sig-
nificantly the performance of the firewall. OPTWALL uses
a hierarchical approach to partition the original ruleset into
mutually exclusive subsets of rules to reduce the overhead of
packet filtering.

In OPTWALL, the processing of a packet at a firewall starts
at the root of the hierarchical structure. The packet is subse-
quently forwarded to the remaining levels of the hierarchy for
further processing. Packet processing completes if a match
between the attributes of the packet, as defined by the firewall
security policy, occurs. In this case, theaction, defined by
the corresponding firewall rule, is enforced. Alternatively, on
a non-match, a default action is invoked. The default action
can either beaccept, in which case the packet is forwarded
to destination, orreject, in which case the packet is dropped.
In the following, a formal specification of the objective and
basic operation of OPTWALL are discussed.

A. OPTWALL Design Goals

Given a large rule set, the objective of OPTWALL is to
partition this set into‘K’ mutually exclusive subsets. Each
subset is associated with a unique filter which represents a
superset of the associated policy subset.

The hierarchical approach of the OPTWALL architecture is
driven by three main design goals:

1) Reduce the cost of processing the firewall rule set,
defined at the average processing time a packet incurs
before an action is enforced by the firewall,

2) Preserve the semantics of the original rule set, and
3) Maintain the optimality of the rule set as traffic patterns

and rule sets change.
It is to be noted that in its general form the‘K-partition’

problem is NP hard, as it can be reduced to the‘Clustering’ [4]
or the ‘K-median’ problem [5]. Figure 1 depicts the process
of partitioning N rules into K subsets.

To address the complexity of the partitioning problem,
OPTWALL uses an iterative approach to partition the original
set of rules and produce a multi-level hierarchy of mutually
exclusive, cost-balanced rule subsets. Initially, the rule set is
divided into two subsets and filters, which covers the rules
contained in each subset, are developed. The resulting subsets,
along with their corresponding filters, form the first level of the
hierarchy. This iterative process continues until furtherdivision
of the subsets at the current level of the hierarchy is no longer
cost effective. Note that this cost also includes the cost of
determining the filters. The OPTWALL partitioning process is
described in Figure 2.

In the following sections we will present the processes used
to achieve each of OPTWALL design goals. We first describe

1The metric used in this paper follow the same guideline as in [3].

 . .
 . .
 . .
 . .
 . .

 Filter i ∩ Filter j = φ, N >>> K

List Based Firewall Rule Set K-Partition Rule Subsets
 (N Rules)

Rule 1

Rule 2

Rule 3

.

.

.

.

.

.
Rule N

Filter K

Filter 2

Filter 1

Rule Subset1

Rule Subset2

Rule SubsetK

Fig. 1: N rules into K partition problem

 . .
 .

 .
 . .
 .

 Fi ∩ Fj = φ, N >>> K (F = Filter)

List Based Firewall Rule Set OPTWALL
 (N Rules) Hierarchical K-Partition Rule Subsets

Rule 1

Rule 2

Rule 3

.

.

.

.

.

.
Rule N

F12

F11

FL1

Rule
SubsetL1

F21

F22

F24

F23

FLK

Rule
SubsetLK

FL2

Rule
SubsetL2

Fig. 2: Basic operation of OPTWALL

the multi-level data structure composed of rule subsets and
their corresponding filters. We then discuss the procedure used
to build the OPTWALL hierarchical structure and the actions
required to maintain this structure.

B. Data Structure

In order to process the rules, OPTWALL uses a hierarchical
data structure in which the deepest level of the hierarchy
contains the rule subsets and the intermediate levels contain
filters which cover the rules included in those subsets.

The design of the data structure must ensure that the
operational cost is reduced. The design must also ensure that
the semantic integrity of the original rule set is preserved.
It is to be noted that the operational cost is determined by
the deepest rule subset. Balancing the hierarchical structure
in order to reduce the length of the deepest rule subset

is, therefore, vital if the desire is to achieve the maximum
reduction in processing cost. Furthermore, the data structure
must be designed in such a way that the re-balancing process,
in response to traffic changes, can be achieved with minimal
overhead.

Semantic integrity of the original rule set can be achieved,
during the rule set partitioning process, by computing filters
that represent accurately and completely the rule subsets.Fur-
thermore, packet processing must follow the same semantics
specified by the filters resulting from the partitioning process.
If the rules are split and re-ordered, in order to optimize
operational cost, the process of re-enforcing the originalrule
semantics must be achieved with reduced overheard.

C. Hierarchical Structure Building

The process of building the hierarchical structure described
previously is accomplished using three basic stages:pre-
processing, ordering, and splitting. In the following, we dis-
cuss the basic operations carried out at each of these design
stages.

The pre-processing stage takes as its input the original
list based rule set and produces an optimized rule set. This
optimized rule set consists of fully disjoint and concise rules,
where all rule redundancies and dependencies are removed
[3]. The fact that the rules in the rule set are mutually
disjoint provides OPTWALL with full flexibility to re-order
the rules and divide them into rule subsets, without violating
the semantics of the original rule set.

In the pre-ordering stage, rules are re-ordered such that the
highest cost rules are moved to the top of the rule set. As
stated previously, the cost of a rule is based upon the size of
the rule and the amount of traffic processed by that rule, as
indicated by its hit count. By re-ordering rules the overallcost
of processing traffic is reduced.

The goal of the splitting stage is to produce a partition of the
original rule set into a set of mutually disjoint rule subsets.
This process involves taking the pre-processed rule set and
dividing it into rule subsets, each of which is defined by a
filter. Each filter is a series of disjoint tuples that fully cover
its corresponding rule subset.

To partition the original rule set, OPTWALL uses a multi-
step process, whereby it initially splits the original ruleset
into two subsets. It then recursively runs this splitting process
on the subsets produced by the previous stage to generate the
next level of the hierarchical structure. This splitting process
continues until the overall processing cost overshadows the
benefit gained by further splitting the current subsets. When
this occurs, the splitting process terminates and the previous
level is selected as the feasible optimal depth of the hierarchi-
cal structure.

The efficiency of the partitioning process strongly depends
on the way the rule subsets are produced at different levels
of the hierarchy. Several strategies to produce feasible rule
set splitting can be used. These strategies are discussed in
SectionV.

The produced hierarchical structure is then converted to a

series of IP-table rule subsets. It is to be noted that most list
based firewalls, such asLinux ipchains, support the ability to
forward packets from one list to another for further processing.
Consequently, the OPTWALL hierarchical structure can be
used to augment the filtering capabilities of list based firewalls.

D. Hierarchical Structure Maintenance

The hierarchical structure is built to reflect the current traffic
pattern and rule sets. As the traffic pattern and rule sets change,
the hierarchical structure must be updated to maintain its
balance. To detect changes, OPTWALL monitors the traffic
logs in real-time and adjusts the hit counts. OPTWALL asserts
that changes have occurred if the difference between the old
and updated hit counts of any rule exceeds a predetermined
threshold. This threshold, a tunable parameter, is determined
based on the traffic characteristics and the policy set under
consideration.

If the need to balance the hierarchical structure rises,
OPTWALL uses the existing traffic logs to update the cost
of rules in the rule subsets, including rules which have been
added to reflect a new security policy. OPTWALL then uses
re-ordering, re-splitting, and promoting to re-establish the
balance of a hierarchical structure.

Re-ordering consists of re-prioritizing the rule subsets at
the deepest level of the hierarchical structure. This process
is necessary to take into consideration the impact of traffic
variations on the hit count of rules in a given rule set. Re-
ordering is triggered when a the different between the current
and previous hit counts of a given rule exceeds the threshold.

Re-splitting is invoked when a sub-hierarchical structure
becomes out of balance, due to traffic variations. A sub-
hierarchical structure is considered to be out-of-balanceif the
average packet processing cost exceeds a predefined threshold.
This process can occur at any level, including the root of the
hierarchical structure. When sub-hierarchical structureis out
of balance, splitting is applied to the original rule subsetthat
generated this sub-hierarchical structure. In some cases,it is
not possible to produce a more balanced hierarchical structure,
in which case the level is marked as currently optimal and the
threshold for the intermediate levels are increased.

Promoting aims at reducing the overhead of packet pro-
cessing at different levels of the hierarchy. The need for rule
promotion occurs when a single rule hit count increases dra-
matically and exceeds its predefined threshold. This scenario
is likely to occur during anomalous traffic behavior, typically
observed during Denial-of-Service (DoS) attacks. To mitigate
the impact of DoS attacks and drastically reduce the cost
of processing traffic generated by these attacks, the rule is
promoted to a level above the filters. Depending on the rule’s
priority, promotion may continue recursively until it reaches
its appropriate priority level. In the extreme case, the rule
may be moved all the way up to the root of the hierarchical
structure. This promotion is temporary and the rule, as it
never removed from the rule subsets. The reason behind the
temporary promotion stems from the transitory nature of DoS
attacks. Once the traffic has returned to its normal levels, the

Original Ruleset

Remove Duplicate

Compress

Rules and

Create Disjoint

Rule Set

Re−order Rules

Based Upon Cost

Function

Split Capital Rules

Into Two Sets And

Produce Two Filters

That Describe Each

Subset

Install Rule Set On

Two Children And

Install Filters On

Parent

Trigger

Re−Split

Monitor Cost

At Children

Trigger

Rule Promotion

(DoS)

Feed Cost

Data Back
Monitor Cost

Re−order Rule

Locally

Child Process

Central Authority

S
ys

lo
g

M
on

ito
rin

g

S
S

H
 S

ys
te

m

C
al

l

Install Rule Set

Fig. 3: OPTWALL: Architecture

promoted rule can be removed from the higher levels.
The automatized interaction between the levels (parent-child

modules) of OPTWALL is illustrated in Figure 3. Each level,
starting from the root, acts as a central authority to a lower
level in the hierarchy.

V. OPTWALL Splitting Design Approaches

The efficiency of the splitting process, in terms of packet
processing overhead, strongly impacts the performance of the
firewall. In this section, we first describe the splitting process
and discuss various solutions proposed for splitting the rule
set. In this paper we describe a rule with single attribute value
as a tuple. We will use the tuple set as the input to our splitting
process.

The output of the splitting operation are two filters and their
corresponding tuple subsets. The filters and tuple subsets are
semantically similar to that of a single list based tuple set. The
process of splitting relies upon three basic functionsMATCH(),

DISTANCE(), andWIDEN(). All three function are available
on the filter object and all accept a single argument of a tuple.

The MATCH() function checks to see if a tuple is covered
by the filter. The source and destination IP addresses are
compared to the range specified in the filter. Similarly the
port number is compared to the port range specified in the
filter. The protocol type is matched to a list of protocol types
the filter evaluates upon. This function returns true if the tuple
matches the tuple and false otherwise.

The DISTANCE() function calculates the distance between
a given tuple and the filter. If the filter matches the tuple
then the value returned by this function is 0. Otherwise, this
function returns a positive number between 0 and 1, not
inclusive. The distance is based on the entire tuple.

To calculate the distance between two IP addresses we look
at the numerical distance between them is considered. If the
IP addresses represent ranges, the distance function basedon
the distance between the two furthest points within the ranges
is calculated. A similar procedure is used to calculate the
distance between ports or port ranges. The protocol distance is
set to 0 if the protocol already exists in the protocol list for the
filter. Otherwise the distance is set to 1. All the distances are
then normalized to the maximum values of their respective
fields. The summation of this normalized values are then
weighted and re-normalized to produce a value between 0 or
1.

The WIDEN() function is used to expand a filter such that
it matches the given tuple. This is achieved by expanding the
IP range, port range, and protocols. A function calculates the
cost of the tuple based on traffic characteristics and other tuple
properties.

The driver of the splitting process is the search for a set
of filters, which covers the the hierarchical structure without
violating the semantic integrity of the original ruleset, in order
to improve the operational cost of the firewall. Ideally, optimal
splitting ensures that, at the end of the partitioning process, all
subsets has equal cost. Consequently, when an optimal splitis
achieved, the average processing cost of each packet is reduced
by half of its original cost. An optimal strategy for performing
a cost-balanced split of the original set of rules is to use two
sub-lists and alternatively place the rules in each list, starting
with the highest cost rule, until the set of rules is exhausted.
While this strategy is optimal, it is not always feasible. This
due to the fact fact that each rule subset produced at each stage
of the splitting process must have a mutually disjoint set of
filters. Computing such filters may not be always achievable.

The next subsection focuses on the issues related to the
design of splitting the tuple set into hierarchical tuple subsets.
First, an optimal solution is presented and its applicability in a
real firewall setting is discussed. A variety of heuristics,which
achieve near optimal solutions with reduced overhead, are then
presented.

A. Optimal Approach

The optimal splitting approach is based on anA* search
strategy. Achieving an optimal partition is possible sincethe

cost can be calculated cumulatively for any partition as it is
fixed and does not vary with the tuple priority. The basic steps
of the Optimal Solution are depicted in Algorithm 1.

The functiong(n) determines the cost of the configuration
in the current state. The functionh(n), on the other hand,
computes the optimal cost of the remaining unassigned tuples
if placed in either of the subsets. The functionhmax(n)
calculates the maximum cost of the remaining tuples. This
can be used as a guideline to terminate the computation of the
filters if the cost benefit resulting from this new filters does
not improve on the gains of the previous configuration.

Another mechanism, which is used to reduce the overhead
incurred by the search of the feasible optimal solution, is to
prune the search space. This is triggered when the difference
betweenhmax(n) andhmin(n) is lower than a specified error
percentage. This enables the search to converge to filters ofa
nearly optimal solution at a much faster rate.

Even though a feasible optimal solution can be obtained, the
worst case time complexity is of the order of2N , where N is
the number of tuples. As the number of tuples becomes large
searching for such a solution leads to a firewall bottleneck.
Another shortcoming of the optimal solution is that the mem-
ory requirement can also become prohibitive as the number
of tuples becomes very large. To address these drawbacks a
set of heuristics are proposed. These heuristics converge to a
nearly optimal solution, while maintaining a time complexity
linear in the number of tuples.

B. Heuristic Solution

The heuristic solutions proposed are local greedy search
solutions aimed at determining a set of filters and splitting
the list based tuple set into two tuple subsets. Each tuple
of the list based set is disjoint from the other. This aids
the performance and effectiveness of the approach to split
the tuples into smaller tuple subsets. As mentioned in [6]
application of greedy scheme works best when the tuples
are all disjoint from one another. In other words, making
tuples disjoint from each other enables full flexibility fortuple
splitting and re-ordering based on traffic characteristics.

Depending on the choice of the initial filters, five different
variations of the Greedy Heuristic are proposed. The first
variation of the Greed Heuristic is to deterministically assign
the highest priority tuples as the initial filters. This heuristic is
referred to asHit count-Hit count Heuristic . The idea behind
choosing the highest ranked tuples as the initial filters is to
assign the highest costing tuples into different tuple subsets in
order to arrive at a cost balanced solution. The main steps of
the algorithm is described in Algorithm 2.

The next variation of the Greedy Heuristic is to assign one
initial filter as the highest costing tuple and the next initial
filter as one amongst the rest of the tuples which is at a
maximum distance from the highest cost tuple. The distance is
calculated using theDISTANCEfunction as stated previously.
This variation of the Greedy Heuristic is referred to as theHit
count-Max distance Heuristic.

The third variant of the Greedy Heuristic uses a randomly

Algorithm 1 Optimal Solutiong(i; n) = cost of lista and listb after adding tuple n to
list ih(n) = current cost of optimally placing the remaining
tuples
ost(i; n) = g(i; n) + h(n)filtera, lista = filter and tuples for list Afilterb, listb = filter and tuples for list Bsta
k = stack ordered with least cost on top
INPUT:tuples[℄ - List of tuples sorted by cost
ALGORITHM
ounter = 0, lista = ;, listb = ;
urrentTuple = tuples[
ounter℄
while
ounter < tuples:size() do

if
ost(A;
urrentTuple) <
ost(B;
urrentTuple)
then

if filtera \ filterb.widen(
urrentTuple) 6=< any; any; any; any > thensta
k:add(< lista,listb [
urrentTuple,filtera,filterb:widen(
urrentTuple),
ounter >)
end iffiltera.widen(currentTuple),lista.add(currentTuple)
if filtera \ filterb = < any; any; any; any >
then< lista; listb; filtera; filterb;
ounter > =

stack.pop()
end if

else
if filtera.widen(
urrentTuple) \ filterb 6=< any; any; any; any > thensta
k:add(< lista [
urrentTuple,listb,filtera:widen(
urrentTuple),filterb,
ounter >)
end iffilterb.widen(currentTuple),listb.add(currentTuple)
if filtera \ filterb = < any; any; any; any >
then< lista; listb; filtera; filterb;
ounter > =

stack.pop()
end if

end if
ounter ++
urrentTuple = tuples[
ounter℄
end while
OUTPUT:< filtera; lista; filterb; listb >

Algorithm 2 Hit count-Hit count Heuristic
INPUT:

tuples[] - List of tuples sorted by costfiltera = tuples[0℄filterb = tuples[1℄
for i = 2 to tuples.length()do

if filtera:mat
hes(tuples[i℄) then
add tuple[i℄ to lista

else if filterb:mat
hes(tuples[i℄) then
add tuple[i℄ to listb

elsedistan
ea = filtera:distan
e(tuples[i℄)distan
eb = filterb:distan
e(tuples[i℄)
if distan
ea < distan
eb thenfiltera:widen(tuples[i℄)

add tuple[i℄ to lista
elsefilterb:widen(tuples[i℄)

add tuple[i℄ to listb
end if

end if
end for
OUTPUT:filtera - filter tuple for list Afilterb - filter tuple for list Blista - list of tuples for child Alistb - list of tuples for child B

selected initial filter assignment. This heuristic is referred to
as Random-Random Heuristic. A randomized algorithm is
used to determine initial filters from a set of possible filters.
The selected set is then used to build the hierarchical structure.

The fourth variant of the Greedy Heuristic is to consider the
distance between all possible pairs of filters. The pair which
contains the filters with maximum distance from each other is
selected. This strategy has potential to split the tuples into well
balanced sets. This heuristic is referred to theMax distance-
Max distance Heuristic. The complexity for all the above
approaches is proportional to the number of tuples in the initial
tuple set.

The fifth variant of the Greedy Heuristic is theAll Pair
Heuristic. This variant considers all possible pairs of tuples
as initial filters. Using the method depicted in Algorithm 2 we
determine a split for each possible pair and then pick the split
with the least cost.

The results for All Pair Heuristic are not included as the
heuristic never converged to a solution due to the excessive
overhead required to obtain the most cost efficient configura-
tion among all possible pairs of tuples. The time complexity
of this heuristic is of the order ofN3, whereN is the number
of tuples. For large values ofN , the computational cost of the
heuristic becomes prohibitive.

: rule (
: src (: srv (

: 10.10.10.2 : ospf
: 10.10.10.3 : traceroute
: 10.10.10.4 : echo-requests
: 10.10.10.5 : ping-replies
))

: dst (: action(
: 10.20.10.1 : accept
: 10.20.10.4)
: 10.20.10.5)
)

Fig. 4: Rule Structure

num;date;time;orig;type;action;alert;i/f_name;i/f_dir;
product;src;dst;s_port;service;proto;……………… ..

1;27Jul2005;23:59:04;10.10.10.1;log;accept;;qfe1;
inbound;X;10.30.10.1;10.20.10.1;53480;161;udp ;;;

Fig. 5: Traffic Log Instance

VI. Performance Evaluation

In this section we describe the experiments and evaluationsto
validate the proposed OPTWALL scheme. First, we briefly
described the synthetic data used in this evaluation study.
The experimental set up, traffic generation and the evaluation
results are discussed.

A. Experimental Data

The data set used in the experimental study emulates, in terms
of size and number of rules, the data of of a typical list
based firewall managed by large ISPs supporting a variety of
customers. In this performance evaluation study, it is assumed
that the ISP provides secure access to and from a group
of customers and business partners. The data set consists of
firewall rule sets and traffic logs.

Each rule set consists of several thousand rules. Each rule
is a multi-dimensional structure of tuples. A rule set contains
on average one million tuples. Figure 4 shows an instance of
a rule structure. The dimensions of the rule include the source
address,sr
, the destination address,dst, the service types,srv, and the action. Each dimension contains multiple values.
An instance of a tuple of this rule is< sr
 : 10:10:10:2; dst :10:20:10:1; srv : ospf ; a
tion : a

ept >. Figure 5 depicts
an entry of the firewall traffic log. The firewall logs one entry
per session.

B. Experimental Setup

The experimental set up for the evaluation of the proposed
OPTWALL approach consists of a machine acting as a fire-
wall and another generating traffic and collecting logs. The
machines used for our evaluation areAMDAthlontm 64 bit
Processors 3000+ runningUbuntu Linux operating system.
The machines are isolated for testing to ensure that there are

Packet
Generator

Log Processor

Firewall

Original rule

set

Rule

subset
A

Rule

subset
B

Splitter

Fig. 6: Experimental Setup

no other variants. Figure 6 shows the block diagram of the
experimental setup.

C. Traffic Generation

There were two types of traffic characterizations used to eval-
uate OPTWALL, the worst case and emulated case behavior.
In worst case scenario, traffic is composed of a single packet
type that does not match any of the tuples. This assures that
the packet will be caught only by the default action tuple.
The emulated traffic is generated by creating packets that
match each tuple and proportionally sending them to a traffic
trace similar to a large ISP’s firewall operation. The worst
case traces were used to study the worst case performance
of OPTWALL in comparison to the baseline case, a list
based firewall. Performance at worst case was determined
by using constant traffic rates and measuring the overall
CPU utilization. Traffic rates were determined by loading the
firewall from 25% to 100% utilization with the installed list
based rule set. A similar approach was used to determine the
load for the emulated traffic evaluations.

D. Evaluation results

The following subsection discusses the various results high-
lighting the potential of the proposed OPTWALL approach.

1) Hierarchical model evaluation: This study was per-
formed to evaluate the potential of the hierarchical designand
its effect on efficient firewall optimizationw.r.t. a list based
design. The extent of the hierarchy depends on the tuple set
size, the traffic characteristics and the variability in traffic.
For our evaluation we fixed the tuple size, load applied and
the splitting approach used to determine the benefit from the
proposed hierarchical design. The experiments were conducted
on a heavily loaded system and using the best performing
heuristic amongst all the solutions proposed earlier in the
paper. We use a tuple set of nearly 5,000 tuples, load of 1,440
packets/sec and the Max Distance-Max Distance Heuristic for
our evaluations. Results as in Figure 7 shows the potential
of the proposed OPTWALL framework. It is to be noted that
after a point re-splits cause more harm than good. The results

Hierarchical vs. List-Based
1440 packets/sec, Max-Distance-Max-Distance Heurist ic

0

10

20

30

40

50

60

70

80

List Based Hierarchical -
Level 1

Hierarchical -
Level 2

Hierarchical -
Level 3

Hierarchical -
Level 4

Levels of hierarchy

O
ve

ra
ll

C
P

U
 U

til
iz

at
io

n

Fig. 7: Hierarchical vs. List-Based

Performance Evaluation - Worst Case

0

20

40

60

80

100

120

2028 1907 1605 1443 1052 961 833

Load in Packets/second

C
P

U
 U

til
iz

at
io

n

Hit count-Hit count

Hit count-Max distance

Random-Random

Max distance- Max distance

Optimal

List Based

Fig. 8: Performance Evaluation (Worst-Case - 60,000 tuples)

depict a way to arrive at a sweet spot between the number of
re-splits and the gain to due the hierarchical design.

2) Worst case performance evaluation: The next
study performed is to determine the worst case packet process-
ing cost of the firewall. A worst case packet processing occurs
when very packet entering the system requires processing of
the entire tuple subset. This helps to determine the maximum
packet rate for worst case traffic processed by the firewall.
Various tuple sizes are used for the evaluations. The results
are for a typical large tuple set, consisting of 60,000 tuples.
From Figure 8 it can be concluded that the Optimal Approach
and Max distance-Max distance Heuristic perform the best in
comparison to the baseline list based approach. It is to be
noted that filters determined by the Optimal Approach shows
better traffic filtering than the heuristics approaches.

3) Emulated traffic performance evaluation: The next
study is to determine the CPU consumption of the firewall
when the traffic applied follows the normal traffic trace.
Results as in Figure 9 show the benefit of the proposed scheme.

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000 7000 8000

O
ve

ra
ll

C
P

U
 U

til
iz

at
io

n

Load in Packets/sec

Worst case - List based
Worst Case - Max distance - Max distance

Emulated - List based
Emulated - Max distance - Max distance

Fig. 9: Emulated Traffic Performance Evaluation

The CPU improvement in the worst case is about 35% and in
the emulated case is about 14%. Since, the CPU consumption
is additive, any gain on the emulated case can be translated as
a capacity for dealing with more anomalous traffic that can be
handled by the firewall. In other words, OPTWALL can deal
with a larger predicted traffic volume and also a much larger
anomalous traffic.

4) Handling attacks evaluation: The aim of this study
is to test the strength of OPTWALL in handling attacks
and traffic fluctuations. Since the hit counts for default
action tuples are large and unpredictable, it can cause a
huge bottleneck to the entire firewall operation. Figure 10
illustrates an instance of a large hit count for a default action
tuple. To test the performance of OPTWALL in handling such
attacks we emulated the attack and increasing the hit count
of a certain default action tuple from0 � 100; 000. Figure 11
shows the competence of OPTWALL in countering dynamic
traffic changes and hence aiding the steady maintenance of
firewall operation.

5) Sensitivity analysis evaluation: The final study is
aimed at sensitivity analysis of the proposed OPTWALL ap-
proaches. The analysis was performed for tuple sizes varying
from 0 � 1000 tuples. Figure 12 details a comparative study
between the baseline list based, the best heuristic and the
optimal solution. Results depicted are for a heavily loaded
firewall operation. From the results it can be inferred that the
heuristic solutions are best suited for a hierarchical firewall
optimization framework.

VII. Related Work

Due to the enormous impact of firewalls on network security,
there has been a significant amount of research work on how
to optimize firewalls. Much of this work, however, has been
in the area of firewall policy modeling and optimization [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16].

3 37 40 41 61 64 93 109 115 407 1000 1013 1097 1868

Rule rank

H
it

co
un

t i
n

a
gi

ve
n

ho
ur

 i
n

0th
1st
2nd
3rd
4th
5th
6th
7th
8th
9th
10th
11th
12th
13th
14th
15th
16th
17th
18th
19th
20th
21th
22th
23th

High default deny rule hit

3 37 40 41 61 64 93 109 115 407 1000 1013 1097 1868

Rule rank

H
it

co
un

t i
n

a
gi

ve
n

ho
ur

 i
n

0th
1st
2nd
3rd
4th
5th
6th
7th
8th
9th
10th
11th
12th
13th
14th
15th
16th
17th
18th
19th
20th
21th
22th
23th

High default deny rule hit

Fig. 10: Default Deny Hit Count for a typical day

Handling Denial of Service Attack

0

5

10

15

20

25

30

0 500 1000 10000 100000 1000000

Hit count for a default deny rule

C
os

t/R
ul

e

w ithout OPTWALL

w ith OPTWALL

Fig. 11: Countering DoS Attacks

Sensitivity Analysis

0

5

10

15

20

25

30

35

200 400 600 800 1000

Number of Tuples

O
ve

ra
ll

C
P

U
 U

til
iz

at
io

n

Optimal

Max distance-Max distance

List based

Fig. 12: Sensitivity Analysis

Very few attempts have been made to achieve multi-
dimensional firewall optimization. In [17], a tool to model
firewall policies and detect conflicts is described. In this
work, the authors focus mainly on single attribute rules.
Similarly, in [13] a constraint logic programming (CLP)
framework to analyze rule sets is discussed. These research
work offer a good insight in how to model and analyze rule
sets. Neither of these works, however, consider optimizing
a multi-dimensional rule set. The approach proposed in [7]
optimizes the firewall rule set using Directed Acyclic Graphs
(DAGs) to describe rule dependencies. However, it does
not provide a methodology to build the DAG. Furthermore,
for complex graphs this scheme is ineffective. In [18], a
framework to analyze and optimize rule sets is described.
However, the authors do not provide specific details on
how optimization can be achieved within the proposed
framework. Furthermore, this work does not consider the
traffic characteristics in its optimization approach.

Recently there has been great attention to address traffic-
aware firewall optimization. Some efforts in rule reordering
using traffic specifications as in [6] have been proposed. But
they consider a very small firewall policy set (� 200) and there
is absence of complete rule reordering due to dependencies
in the policy set. Furthermore, all traffic characterizations are
not considered for firewall optimization. [3] presents a tool
geared towards adaptive optimization of list based firewalls.
However, the work falls short of addressing non-linear policy
optimization. In other words, it does not consider any traffic-
aware design improvements in the firewall structure. The
work presented in this paper builds on [3] and achieves
complete non-linear policy reordering by removal of all rule
dependencies. The proposed firewall optimization approach,
’OPTWALL’ is a novel adaptive hierarchical design geared
towards very large policy optimization.

VIII. Conclusions and Future Work

A firewall is a combination of hardware and software used
to implement a security policy governing the flow of network
traffic between two or more networks. In its simplest form, a
firewall acts as a security barrier to control traffic and manage
connections between internal and external network hosts.

Firewalls have proven to be useful in dealing with a large
number of threats that originate from outside a network. They
are becoming ubiquitous and indispensable to the operationof
the network. The continuous growth of the Internet, coupled
with the increasing sophistication of attacks, however, is
placing further demands and complexity on firewalls design
and management.

This paper focuses on the problem of firewall optimization.
To this end, the paper proposes a hierarchical framework,
OPTWALL, for traffic-aware firewall optimization. The basic
tenet of this framework is that the design of next generation
firewalls must leverage their packet inspection capabilities with
traffic awareness in order to optimize the operational cost they

incur in defending against intrusions and denial of service
attacks. To the best of our knowledge this is the first effort
towards using firewall traffic log information and hierarchy
to design and optimize firewalls. The performance of the
OPTWALL approach both for worst case and normal operation
of the firewall is studied. The results show that OPTWALL
leads to reduced operational cost of firewalls.

OPTWALL presents a novel method to use hierarchy in
optimizing list based firewalls. It helps to achieve the maxi-
mum benefitvia various splitting processes to arrive at feasible
optimal and near optimal solutions. We are presently working
on extending the hierarchical design concept onto physically
distributed firewalls. This would imply that the rule subsets
could be run on different machines or in parallel on the same
machine.

IX. Acknowledgments

We would like to thank Alexandre P. Ferreira for his valuable
insights and feedback.

APPENDIX

The following segment describes the intuition behind the
proposed research. First the optimal solution for a list based
firewall policy set is presented and then the solution for K-
partitions is discussed.

A. Optimal solution - List based

A list based firewall is a sequence of tuples that are composed
of filter fields and an action to be executed for packets that
match the filter profile. Each tuple has a counter that counts
every time the tuple has been fired and has a rank that
determines its position in the list based sequence.

Each test of a filter for a tuple consumes certain CPU
processing time. Assuming that the cost of testing is the most
expensive operation, the total CPU cost of a sequence of tuples
is the sum of the costs of the number of times the tuple is
tested. For a tuplei the number of times it is tested is a
summation of the tuple’s hit count plus the hit count of all
tuples that succeeds it.C = NXi=1 NXj=i Hj) C = NXi=1 i �Hi (1)

where,C represents the total cost of the list based tuple
processing, andHi represents the hit count of tuplei.

With this result we can define the weighted cost of the tuplei �Hi.
The lowest cost of the sequence is achieved by keeping the

list in an inverse sorted order by hit count. The proof is by
switching tuplek with tuple l in the formula above and since
the only terms that change arek * Hk is changed tol * Hk
and l * Hl is changed tok * Hl

Hence,�C = k�(Hk�Hl)�l�(Hk�Hl) = (k�l)�(Hk�Hl) (2)

If k < l, this implies that the cost will decrease,
stated differently, (�C > 0) only if Hk�Hl < 0) Hk < Hl:
Hence, the lowest cost is achieved when the tuples are ordered
using their hit counts with the highest count as the first tuple.

B. Optimal solution - K partitions

Assuming a distribution of the tuples such that all tuples can
appear only in one list and there is a function f(i) and g(i)
that maps a tuple with ranki in list A or list B to the rank it
occupied in the single list. In this case the following equation
holds: 8i; j; f(i) 6= g(i) (3)8i9j; i = f(j) _ i = g(j) (4)

Implies that, no tuples are duplicated and all tuples appear
in the new configuration.C = NXi=1Hi+N=KXi=l i�Hf(i)+N=MXi=l i�Hg(i); N = K+M (5)

Cost of the new tuple plus the cost of each partition.
Each partition has to be sorted similar to the reorder

discussion above. The tuples in the original sequence are to
be as low as possible in the new partitions to reduce the cost.
Exchanging tuples in the same row between lists does not alter
the final cost of the firewall. Hence, the optimal solutions are
as follows:f(i) = 2i or 2i + 1 andg(i) = 2i or 2i + 1.

REFERENCES

[1] T. V. Lakshman and D. Stidialis, “High speed policy-based packet
forwarding using efficient multi-dimensional range matching,” in In
Proceedings of SIGCOMM. ACM Press, 1998.

[2] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification using tuple
space search,” inIn Proceedings of SIGCOMM. ACM Press, 1999.

[3] S. Acharya, J. Wang, Z. Ge, T. Znati, and A. Greenberg, “Traffic-aware
firewall optimization strategies,” inIEEE International Conference on
Communications, Istanbul, Turkey, June 2006.

[4] P. Brucker, “On the complexity of clustering problems,”in in Optimiza-
tion and Operations Research. Springer-Verlag, pp. 45-54, 1977, 1997.

[5] S. Singh, F. Baboesu, G. Varghese, and J. Wang, “Packet classification
using multidimensional cutting,” inSIGCOMM, 2003.

[6] H. Hamed and E. Al-Shaer, “Dynamic rule-ordering optimization for
high-speed firewall filtering,” inASIACCS, 2006.

[7] E. W. Fulp, “Optimization of network firewalls policies using directed
acyclic graphs,” inProceedings of the IEEE Internet Management
Conference, 2005.

[8] ——, “Parallel firewall designs for high-speed networks,” in INFOCOM,
2006.

[9] L. Qiu, G. Varghese, and S. Suri, “Fast firewall implementations for
software-based and hardware-based routers,” inSIGMETRICS ’01: Pro-
ceedings of the 2001 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems. New York, NY, USA:
ACM Press, 2001, pp. 344–345.

[10] P. Gupta and N. McKeown, “Packet classification using hierarchical
intelligent cuttings,” inin Proceedings of Hot Interconnects, 1999.

[11] S. Singh, F. Baboesu, G. Varghese, and J. Wang, “Packet classification
on multiple fields,” inSIGCOMM, 1999.

[12] ——, “Packet classification using multidimensional cutting,” in SIG-
COMM, 2003.

[13] P. Eronen and J. Zitting, “An expert system for analyzing firewall
rules,” in Proceedings of the 6th Nordic Workshop on Secure IT Systems
(NordSec 2001), Copenhagen, Denmark, Nov. 2001, pp. 100–107.

[14] S. Hinrichs, “Integrating changes to a hierarchical policy model,” in
Proceedings of 9th IFIP/IEEE International Symposium on Integrated
Network Management. Nice, France: IEEE, 2005.

[15] E. Al-Shaer and H. Hamed, “Modeling and management of firewall
policies,” IEEE Trans. Network and Service Management, vol. 1, no. 1,
Apr 2004.

[16] S. J. Tarsa and E. W. Fulp, “Trie-based policy representations for
network firewalls,” inProceedings of the IEEE International Symposium
on Computer Communications, 2006.

[17] E. Al-Shaer and H. Hamed, “Modeling and management of firewall
policies,” IEEE Trans. Network and Service Management, vol. 1, no. 1,
Apr 2004.

[18] J. Qian, S. Hinrichs, and K. Nahrstedt, “ACLA: A framework for access
control list (acl) analysis and optimization,” inCommunications and
Multimedia Security, 2001.

