OPTWALL: A Hierarchical Traffic-Aware Firewall

Subrata Acharyia Mehmud AbliZ, Bryan Millst, Taieb F. Znafi!
fDepartment of Computer Science,
ITelecommunications Program
University of Pittsburgh,
Pittsburgh, PA 15260
(sacharya, mehmud, bmills, znati)@cs.pitt.edu

Jia Wang, Zihui G€&, Albert Greenbery
§AT&T Labs Research,
Florham Park, NJ 07932
(jiawang, gezihui, albert)@research.att.com

Abstract— The overall efficiency, reliability, and availability of a tion of this multi-dimensional structure has been provebeo
firewall is crucial in enforcing and administrating secytiespecially g NP hard [1], [2] problem. This has motivated the research
when the network is under attack. The continuous growth ef thommynity to focus on various approaches to provide regiabl
Internet, coupled with the increasing sophistication af #ttacks, is . S .
placing stringent demands on firewall performance. Thesdlamges and dependable firewall Op_t"_”mzat'on. methods. ln'.Sp'te of a
require new designs, architecture and algorithms to optnfirewalls.  Strong focus towards an efficient design, the techniqued use
In this paper, we propose OPTWALL, an adaptive hierarchicdhus far are static, and fail to adapt to the dynamic traffic
firewall optimization framework aimed at reducing operabcost changes of the network. In particular, current techniqueeh

of firewalls. The main features of the proposed approach Bee tgyieq to include the traffic characteristics in the desigd ap-
hierarchical design, splitting techniques, an online fi@adaptation

mechanism, and a strong reactive scheme to counter madicitiacks timiza_tion of ﬁrewalls' Current firewall designs do “F’t sopp
(e.g. Denial-of-Service (DoS) attacks). To the best of oamitedge, adaptive mechanism to detect and counter attacks in a rietwor
this work is the first of its kind to use traffic characteristim the environment characterized by heavy traffic fluctuationsidée
design of an adaptive hierarchical firewall optimizatiorarfmework. they fail to operate efficiently under adverse conditions.

To study the performance of OPTWALL, a set of experiments arerne main objective of this paper is to address the short-

conducted on Linux ipchains. The performance evaluatiodystises . f th t fi I di their ability t
a large set of firewall policies and traffic traces managed bYiex- comings of the current firewalls and Increase their abitty

1 ISP and provides security access for the ISP network fooitgt deal with dynamic changes in network load and topology,
business partners. Results show the high potential of ORTWA particularly when the network is under attack. To achieve th
reduce the operational cost of firewalls. In particular, tlesults show goal, the paper proposes a hierarchical framework for ¢raffi
that a performance improvement of nearly 35% can been aetlievayare firewall optimization. The basic tenet of this framewo
in a heavily loaded network environment. . . . -
is that the design of next generation firewalls must leverage
l. Introduction their packet_ inspection capz_;\bilities with tra_lffic ayvaremin; _
order to optimize the operational cost they incur in defagdi
The constantly changing nature, scale and scope of infawmatagainst intrusions and denial of service attacks.
technology environments, coupled with the increasing nemb  Traffic-aware firewall optimization is challenging as the
and complexity of security threats, is forcing Tier-1 1SBs tnumber of security policies a firewall has to enforce for
resort to increasingly complex security policies and mechanterprise networks is large. This is further compoundetthby
nisms. Firewalls constitute the cornerstone of most ndtwoimited resources of firewalls relative to the increaseditsbi
defense systems and have proven to be an effective solutidrihe network to process and forward traffic at extremehhhig
to monitor and regulate traffic. The efficiency of firewalls irspeed. In this paper, the focus is on optimizing the most lyide
protecting the infrastructure, however, depends not omly oised'list based’ firewalls. To achieve this goal we propose a
the integrity and coherence of the security policies they ahierarchical firewall optimization approach, to create adlo
configured to implement, but equally importantly on the shbedalanced policy subset. The main challenge in the congbruct
at which these policies are enforced. of these subsets stems from the need to maintain semantic
With the dynamic change in the network load, topologyntegrity of the policy set at each level of the hierarchy.
and bandwidth demand, firewalls are becoming a bottleneck The major contributions of the paper are:
All these factors create a demand for more efficient, highly « The design of OPTWALL, an adaptive hierarchical fire-
available, and reliable firewalls. Optimizing firewalls wever, wall optimization framework. In this framework we pro-
remains a challenge for network designers and adminisgtato ~ pose an optimal solution to construct the hierarchy based
A typical present day firewall enforces its security pokcie on rule-splitting, while maintaining the integrity of the
via a set of multi-dimensional packet filters (rules). Optimiza  original firewall rule set.



« A set of heuristics, based on a trade-off between optimathere s; represents a source IP addreg¢sa destination IP
ity, time complexity, and resource requirements to conveatidress, and; a service type.
the list based firewall rule sets into integrity preserving List-based firewalls work by examining the tuples in

hierarchical rule subsets. sequential order. For each packet, the first matching tuple
» An adaptive, traffic-aware protocol to detect and deferdktermines the action taken by the firewall. List based
against traffic anomalies. firewalls preform well if the list size is small. As the listzsi

« An experimental study to assess the performance of theales up to millions of tuples, managing and optimizing the
proposed solutions and measure the impact of dynarfirewall policies is a challenge. Moreover highly dynamic
cally exploiting the traffic characteristics on the perfortraffic changes introduces the challenge of dynamic rule
mance of firewalls. optimization.

The rest of the paper is organized as follows: Section I

describes the background on list based firewalls. The rule

cost metric is described in Section Il and we introducH|. Rule Cost Metric

the OPTWALL framework in Section IV. Section V depicts

the OPTWALL splitting design approaches. We present tiée main factor that affects the performance of a firewall is

evaluation and results in Section VI. Section VIl presehts tthe processing overhead due to packet inspection. Theanetri

related work. Finally, we conclude the paper in Section Vil calculation is done for a rule and can easily be applied to
tuples within a rule.

Il. List Based Firewalls To capture the overhead cost incurred by a firewall to

. . . . Corocess a rule and enforce the security policy, two metrics
A security rule is a multi-dimensional structure, wherelea . ) ; .
re defined. The first metric, denotedrate_size() measures

dimension is either a set of network fields or an action field, . . . .
e size of a given rule in terms of the number of bits

The rule set defines the security policies which must be . .
) hécessary to determine unambiguously a match between
enforced by the firewall.

In an Internet environment, a rule is defined by a Sgge rule definition and the corresponding fields of a packet

. T under inspection. The assumption underlying thke_size()
of source ip addresses set ofdestination ip addresses : . .
! : . . metric stems from the fact that the complexity of a matching
set of service typesand an action field. The service type S . .
. ) : operation is proportional to the size of the rule. Formally,
typically includes both the underlyingrotocol typeand a _: . . )
) ! . given a ruler, rulesizef’) can be defined as:
port number An action field can be eitheaccept deny or
forward. An accept action allows the packet access into the
protected domain. A deny action causes a packet, in violatio
of the security policy, to be rejected. Finally, a forwardiac d
leads to further inspection of the packet. Formally, a tllle ;¢ gize(r) — 25, 101 X [[spll + oz x [|dy[[}
- — [Pl B2 ... Pk i T
can be represented _aB. = [<§ , P4 _ ,<I>_,E], Wh_ere<I> +B x Ny x (|| Pro|| + || Poy|),
represents network fields aidis an action field. An instance
of a typical rule in an Internet environment can be of thghere, oy, a., and 3 are weight parametersS, and D,
following structure: are respectively the set of source and destination prefixes
which occur within the definition of the rule, andd, are
the bit representation of the source and destination pefixe

<sre={sy s, sk dst={dydo, o diy respectively,N, is the number of services defined within the

srv = {01,09,---,01}; rule, andPr,. andPo, are the bit representation of the protocol
and port identifiers, respectively.
action = {drop|accept| forward} > The second metric used in our experimentation is the cost

= of operating on a given rule set. This cost depends on the
rule’s rank and size, and on how often the rule is invoked by
the firewall. Formally, given a set of rules,r,, ..., r, the
cost of a given ruley;, cost(r;), is defined as follows:

where s; represents a source IP addregsa destination |
address, and; a service type.

In list-based firewalls, rules describing the network sitgur
policies form a “priority” list. The priority of a rule, also
referred to as theule rank is based upon its position within
the list. Earlier occurring rules have higher rank thanrlate cost(ri) = hit_count(r;) x 2 Vi ePr,
ones. A rule-set can be converted to a tuple-set by creatin% ) , ) )
all possible permutations of the fields in a rule. A formal/Nere,Pr; is the set ofr;'s predecessors in the list-based set

representation of a tuple is: of rules.

el

< sre = s;; dst = dj; srv = oy; Using the above metrics, the aim of optimization is to reduce
the rule set size and consequently the processing time of the
action = {drop|accept| forward} rule set. This in turn reduces the overall firewall operalon



Rule 1

cost. The resources that affect are the CPU utilization had t
memory usage of the firewall machihe. Rule 2

Rule 3
V. OPTWALL

Contrary to a list-based structure, a hierarchical desiguald
to efficient organization of rule sets, thereby increasiitg s
nificantly the performance of the firewall. OPTWALL uses
a hierarchical approach to partition the original rulesgoi

mutually exclusive subsets of rules to reduce the overhéad o . ’ Filter K H Rule Subset
packet filtering. .
In OPTWALL, the processing of a packet at a firewall starts Rule N Filter; N Filter; = ¢, N >>> K

at the root of the hierarchical structure. The packet is subs
qguently forwarded to the remaining levels of the hieraratry f
further processing. Packet processing completes if a matcty'St Based F
between the attributes of the packet, as defined by the firewal

security policy, occurs. In this case, tlaetion, defined by

the corresponding firewall rule, is enforced. Alternatyein Fig. 1: N rules into K partition problem
a non-match, a default action is invoked. The default action

irewall Rule Set K-Partittn Rule Subsets
(N Rules)

can either beaccept in which case the packet is forwarded [ Rule1
to destination, oreject in which case the packet is dropped. guies Fu Fau oo Fu Rets
In the following, a formal specification of the objective and
basic operation of OPTWALL are discussed. Rule 3
A. OPTWALL Design Goals : il FRTTTRROY 2 7] e,
Given a large rule set, the objective of OPTWALL is to :
partition this set into'K’ mutually exclusive subsets. Each . =
subset is associated with a unique filter which represents a .
superset of the associated policy subset.
The hierarchical approach of the OPTWALL architecture is ) - - F' Rule
driven by three main design goals: Rule N e S RS - Subseix
1) Reduce the cost of processing the firewall rule set,
defined at the average processing time a packet incurs FNF=e¢  N>>>K (F=Filter
before an action is enforced by the firewall, List Based Firewall Rule Set OPTWALL
2) Preserve the semantics of the original rule set, and (N Rules) Hierarchical K-Partition Rule Subsets

3) Maintain the optimality of the rule set as traffic patterns
and rule sets change.

It is to be noted that in its general form thHg-partition’
problem is NP hard, as it can be reduced to'@lastering’ [4]
or the ‘K-median’ problem [5]. Figure 1 depicts the process Fig. 2: Basic operation of OPTWALL
of partitioning N rules into K subsets. .
OPTWALL uses an iterative approach to partition the oritin&€ir corresponding filters. We then discuss the procedsee u
set of rules and produce a multi-level hierarchy of mutualfp build the OPTWALL hierarchical structure and the actions
exclusive, cost-balanced rule subsets. Initially, the m#t is required to maintain this structure.
divided into two subsets and filters, which covers the rulgs Data Structure
contained in each subset, are developed. The resultingtsyb
along with their corresponding filters, form the first levéttoe
hierarchy. This iterative process continues until furtthigision
of the subsets at the current level of the hierarchy is nodon
cost effective. Note that this cost also includes the cost The desi ¢ the d hat th
determining the filters. The OPTWALL partitioning process i € desigh of the data structurg must ensure that the
described in Figure 2. operational cost is reduced. The design must also ensutre tha

In the following sections we will present the processes usHEF semantic integrity of the original rule set is preserved

to achieve each of OPTWALL design goals. We first descritlk is to be noted that the operat_ional cos_t is deFermined by
the deepest rule subset. Balancing the hierarchical steict

1The metric used in this paper follow the same guideline agjn [ in order to reduce the length of the deepest rule subset

ﬁn order to process the rules, OPTWALL uses a hierarchical
data structure in which the deepest level of the hierarchy
ontains the rule subsets and the intermediate levels iconta

O%l;ers which cover the rules included in those subsets.



is, therefore, vital if the desire is to achieve the maximurseries of IP-table rule subsets. It is to be noted that msst li
reduction in processing cost. Furthermore, the data streictbased firewalls, such dsnux ipchains support the ability to
must be designed in such a way that the re-balancing procdesward packets from one list to another for further progess
in response to traffic changes, can be achieved with minin@bnsequently, the OPTWALL hierarchical structure can be
overhead. used to augment the filtering capabilities of list based fiésy
Semannc integrity of .the prlglnal rule set can be gchlgveB,_ Hierarchical Structure Maintenance
during the rule set partitioning process, by computingriite
that represent accurately and completely the rule subiSets. The hierarchical structure is built to reflect the curreatffic
thermore, packet processing must follow the same semanti@stern and rule sets. As the traffic pattern and rule setsgeha
specified by the filters resulting from the partitioning pees. the hierarchical structure must be updated to maintain its
If the rules are split and re-ordered, in order to optimizealance. To detect changes, OPTWALL monitors the traffic
operational cost, the process of re-enforcing the originkd logs in real-time and adjusts the hit counts. OPTWALL assert
semantics must be achieved with reduced overheard. that changes have occurred if the difference between the old
and updated hit counts of any rule exceeds a predetermined
threshold. This threshold, a tunable parameter, is deteuhi
The process of building the hierarchical structure desdibbased on the traffic characteristics and the policy set under
previously is accomplished using three basic stages: consideration.

C. Hierarchical Structure Building

processing ordering and splitting. In the following, we dis-  If the need to balance the hierarchical structure rises,
cuss the basic operations carried out at each of these desIPTWALL uses the existing traffic logs to update the cost
stages. of rules in the rule subsets, including rules which have been

The pre-processing stage takes as its input the origirmded to reflect a new security policy. OPTWALL then uses
list based rule set and produces an optimized rule set. Thisordering re-splitting, and promoting to re-establish the
optimized rule set consists of fully disjoint and conciséesy balance of a hierarchical structure.
where all rule redundancies and dependencies are removeRe-ordering consists of re-prioritizing the rule subsdts a
[3]. The fact that the rules in the rule set are mutuallshe deepest level of the hierarchical structure. This m®ce
disjoint provides OPTWALL with full flexibility to re-order is necessary to take into consideration the impact of traffic
the rules and divide them into rule subsets, without vioati variations on the hit count of rules in a given rule set. Re-
the semantics of the original rule set. ordering is triggered when a the different between the cdirre

In the pre-ordering stage, rules are re-ordered such tleat ind previous hit counts of a given rule exceeds the threshold
highest cost rules are moved to the top of the rule set. AsRe-splitting is invoked when a sub-hierarchical structure
stated previously, the cost of a rule is based upon the sizebefcomes out of balance, due to traffic variations. A sub-
the rule and the amount of traffic processed by that rule, hierarchical structure is considered to be out-of-baldahtee
indicated by its hit count. By re-ordering rules the ovecalst average packet processing cost exceeds a predefined tldcesho
of processing traffic is reduced. This process can occur at any level, including the root of the

The goal of the splitting stage is to produce a partition ef thhierarchical structure. When sub-hierarchical structareut
original rule set into a set of mutually disjoint rule sulssetof balance, splitting is applied to the original rule subtbett
This process involves taking the pre-processed rule set aygherated this sub-hierarchical structure. In some ciasis,
dividing it into rule subsets, each of which is defined by aot possible to produce a more balanced hierarchical strict
filter. Each filter is a series of disjoint tuples that fullyves in which case the level is marked as currently optimal and the
its corresponding rule subset. threshold for the intermediate levels are increased.

To partition the original rule set, OPTWALL uses a multi- Promoting aims at reducing the overhead of packet pro-
step process, whereby it initially splits the original ridet cessing at different levels of the hierarchy. The need ft& ru
into two subsets. It then recursively runs this splittinggess promotion occurs when a single rule hit count increases dra-
on the subsets produced by the previous stage to generatentla¢ically and exceeds its predefined threshold. This saenar
next level of the hierarchical structure. This splittingppess is likely to occur during anomalous traffic behavior, typiga
continues until the overall processing cost overshadows thbserved during Denial-of-Service (DoS) attacks. To raitg
benefit gained by further splitting the current subsets. Whéhe impact of DoS attacks and drastically reduce the cost
this occurs, the splitting process terminates and the puevi of processing traffic generated by these attacks, the rule is
level is selected as the feasible optimal depth of the hiarar promoted to a level above the filters. Depending on the rule’s
cal structure. priority, promotion may continue recursively until it rdees

The efficiency of the partitioning process strongly dependts appropriate priority level. In the extreme case, thesrul
on the way the rule subsets are produced at different leveisly be moved all the way up to the root of the hierarchical
of the hierarchy. Several strategies to produce feasibke rstructure. This promotion is temporary and the rule, as it
set splitting can be used. These strategies are discussetaémer removed from the rule subsets. The reason behind the
SectionV. temporary promotion stems from the transitory nature of DoS

The produced hierarchical structure is then converted toattacks. Once the traffic has returned to its normal levhts, t



DISTANCE() and WIDEN(). All three function are available
Original Ruleset on the filter object and all accept a single argument of a tuple
The MATCHY() function checks to see if a tuple is covered
by the filter. The source and destination IP addresses are
compared to the range specified in the filter. Similarly the

. i port number is compared to the port range specified in the
Remove Duplicate Create Disjoint Re-order Rules ' . . .
Rules and Rule Set Based Upon Cos i filter. The protocol type is matched to a list of protocol tgpe
Compress Funetion i the filter evaluates upon. This function returns true if tinalé

matches the tuple and false otherwise.
| The DISTANCE() function calculates the distance between
Split Capital Rules - a given tuple and the filter. If the filter matches the tuple
Into Two Sets And i . . . . .
Produce Two Filterts i then the value returned by this function is 0. Otherwises thi
That Deseribe Each function returns a positive number between 0 and 1, not

i inclusive. The distance is based on the entire tuple.
| To calculate the distance between two IP addresses we look
_ Install Rule Set O . at the numerical distance between them is considered. If the
Monitor Cost Two Children And I . .
At Children Install Filters On i IP addresses represent ranges, the distance function based
‘ Parent . the distance between the two furthest points within the @ang
T . is calculated. A similar procedure is used to calculate the
8 distance between ports or port ranges. The protocol distsnc
set to 0 if the protocol already exists in the protocol listttoe
filter. Otherwise the distance is set to 1. All the distanaes a
then normalized to the maximum values of their respective
fields. The summation of this normalized values are then
weighted and re-normalized to produce a value between O or

1.

P o e Monitor Cost The WIDEN() function is used to expand a filter such that
it matches the given tuple. This is achieved by expanding the
IP range, port range, and protocols. A function calculates t
cost of the tuple based on traffic characteristics and othpe t
properties.

The driver of the splitting process is the search for a set
of filters, which covers the the hierarchical structure with
violating the semantic integrity of the original ruleset,arder
to improve the operational cost of the firewall. Ideally,ioyz!

Fig. 3: OPTWALL: Architecture splitting ensures that, at the end of the partitioning psscall
) subsets has equal cost. Consequently, when an optimaissplit
promoted rule can be removed from the higher levels.  4chieved, the average processing cost of each packet isagdu

The automatized interaction between the levels (paren‘d—chby half of its original cost. An optimal strategy for perfaing
modules) of OPTWALL is illustrated in Figure 3. Each levelg cost-balanced split of the original set of rules is to use tw
starting from the root, acts as a central authority to a lowg[p-jists and alternatively place the rules in each listitisig

iCentral Authority

Trigger
Re-Split

Trigger

lem

SSH Sysf

Child Process

Syslog
Monitoring

Install Rule Set

Re-order Rule
Locally

level in the hierarchy. with the highest cost rule, until the set of rules is exhaliste
While this strategy is optimal, it is not always feasible.iSTh
V. OPTWALL Splitting Design Approaches due to the fact fact that each rule subset produced at eagh sta

of the splitting process must have a mutually disjoint set of
The efficiency of the splitting process, in terms of packeiiters. Computing such filters may not be always achievable.
processing overhead, strongly impacts the performanckeof t The next subsection focuses on the issues related to the
firewall. In this section, we first describe the splitting pees design of splitting the tuple set into hierarchical tuplésets.
and discuss various solutions proposed for splitting tHe rurirst, an optimal solution is presented and its applicapbiti a
set. In this paper we describe a rule with single attributae/a real firewall setting is discussed. A variety of heuristizhjch
as a tuple. We will use the tuple set as the input to our smiitti achieve near optimal solutions with reduced overhead here t
process. presented.

The output of the splitting operation are two filters andithei .

corresponding tuple subsets. The filters and tuple subsets % Optimal Approach
semantically similar to that of a single list based tuple $&e The optimal splitting approach is based on A search
process of splitting relies upon three basic functibh#sTCH(), strategy. Achieving an optimal partition is possible sitice



cost can be calculated cumulatively for any partition asit i
fixed and does not vary with the tuple priority. The basic step
of the Optimal Solution are depicted in Algorithm 1.

The functiong(n) determines the cost of the configuration - - .
in the current sgtat)e. The functiok(n), on the other hand, Algorithm 1 Optimal Solution :
computes the optimal cost of the remaining unassignedsuple 9(i;7) = cost oflist, andlist, after adding tuple n to
if placed in either of the subsets. The functiém,,.(n) list i _ _ o
calculates the maximum cost of the remaining tuples. This ?() = current cost of optimally placing the remaining
can be used as a guideline to terminate the computation of the tUples
filters if the cost benefit resulting from this new filters does cost(i,n) = g(iﬂ?) + h(n) )
not improve on the gains of the previous configuration. filterq, list, = filter and tuples for list A

Another mechanism, which is used to reduce the overhead filters, list, = filter and tuples for list B
incurred by the search of the feasible optimal solutionpis t  sfack = stack ordered with least cost on top

prune the search space. This is triggered when the differenc INPUT: )

between,,,, (n) andh,,:,(n) is lower than a specified error tuples|] - List of tuples sorted by cost
percentage. This enables the search to converge to filteas of ALGORITHM ] ]

nearly optimal solution at a much faster rate. counter =0, list, = 0, list, =

Even though a feasible optimal solution can be obtained, the currentTuple = t“‘ples[co?"”t"]
worst case time complexity is of the order &Y, where N is while counter < tuples.size() do
the number of tuples. As the number of tuples becomes large if cost(A, currentTuple) < cost(B, currentTuple)
searching for such a solution leads to a firewall bottleneck. thgn ] ] .
Another shortcoming of the optimal solution is that the mem- if filter, 0 filtery.wideneurrentTuple) #

ory requirement can also become prohibitive as the number < any, any, any, any > then
of tuples becomes very large. To address these drawbacks a St.““k'“dd.(< “St(l'l”tb U currentTuple,
set of heuristics are proposed. These heuristics converge t filtera, filtery.widen(currentTuple),
nearly optimal solution, while maintaining a time comptgxi counter >)
linear in the number of tuples. endif
filter,.widen(currentTuple);st,.add(currentTuple)
B. Heuristic Solution if filter, N filter, = < any,any,any,any >
The heuristic solutions proposed are local greedy search then
solutions aimed at determining a set of filters and splitting < listq, listy, filterq, filtery, counter > =
the list based tuple set into two tuple subsets. Each tuple stack.pop()
of the list based set is disjoint from the other. This aids end if
the performance and effectiveness of the approach to split  else
the tuples into smaller tuple subsets. As mentioned in [6] it filter,.widengurrentTuple) N filter, #
application of greedy scheme works best when the tuples < any,any, any, any > then
are all disjoint from one another. In other words, making stack.add(< list, U currentTuple,listy,
tuples disjoint from each other enables full flexibility fople filterq.widen(currentTuple), filtery,
splitting and re-ordering based on traffic characteristics (307_11”1567" >)
Depending on the choice of the initial filters, five different end if
variations of the Greedy Heuristic are proposed. The first filtery.widen(currentTuple)iist,.add(currentTuple)
variation of the Greed Heuristic is to deterministicall\sigs if filter, N filter, = < any,any,any,any >
the highest priority tuples as the initial filters. This histic is then
referred to a#it count-Hit count Heuristic . The idea behind < listy, listy, filterq, filtery, counter > =
choosing the highest ranked tuples as the initial filtersois t Stﬁ_‘Ck-pOPO
assign the highest costing tuples into different tuple st end if
order to arrive at a cost balanced solution. The main steps of ~ €nd if
the algorithm is described in Algorithm 2. counter + +
The next variation of the Greedy Heuristic is to assign one  currentTuple = tuples|counter]
initial filter as the highest costing tuple and the next aliti end while
filter as one amongst the rest of the tuples which is at a OUTPUT.
maximum distance from the highest cost tuple. The distasice i < filtera, lista, filtery, listy >

calculated using thBISTANCEfunction as stated previously.
This variation of the Greedy Heuristic is referred to asliie
count-Max distance Heuristic

The third variant of the Greedy Heuristic uses a randomly



Algorithm 2 Hit count-Hit count Heuristic s rule (
INPUT: sre ( 1srv (
tuples[] - List of tuples sorted by cost : 18'18‘18'5 f:’r?é;route
filter, = tuples|0] :10.10.10.4 : echo-requests
filtery = tuples[l] :10.10.10.5 : ping-replies
for ¢ = 2 to tuples.length(do ) )
if filter,.matches(tuples[i]) then sdst( - action(
addtupleli] to list, 119-20202 Saccem
else if filter,.matches(tuples[i]) then :10.20.105 )
addtupleli] to list, )
else
distance, = filter,.distance(tuples[i])
distancey, = filtery.distance(tuples]i]) Fig. 4: Rule Structure
if distance, < distance, then
filterg.widen(tuples|i]) num;date;time;orig;type;action;alert;i/f_name;i/f_dir;
addtupleli] to list, product;src;dst;s_port;service;proto;..................
else

1;27Jul2005;23:59:04;10.10.10.1;log;accept;;gfel;

filtery.widen(tuples[i]) :
inbound;X;10.30.10.1;10.20.10.1;53480;161;udp ;;;

addtupleli] to listy

end if
end if Fig. 5: Traffic Log Instance
end for
OUTPUT: VI. Performance Evaluation
filter, - filter tuple for list A
filtery, - filter tuple for list B In this section we describe the experiments and evaluatons
list, - list of tuples for child A validate the proposed OPTWALL scheme. First, we briefly
list, - list of tuples for child B described the synthetic data used in this evaluation study.

The experimental set up, traffic generation and the evalnati

results are discussed.

selected initial filter assignment. This heuristic is referto A. Experimental Data

as Random-Random Heuristic A randomized algorithm is The data set used in the experimental study emulates, irsterm

used to determine initial filters from a set of possible fiter of size and number of rules, the data of of a typical list

The selected set is then used to build the hierarchicaltsireic based firewall managed by large ISPs supporting a variety of

customers. In this performance evaluation study, it is rmgsl

The fourth variant of the Greedy Heuristic is to consider th@at the ISP provides secure access to and from a group

distance between all possible pairs of filters. The pair Whigy cysiomers and business partners. The data set consists of
contains the filters with maximum distance from each other fige\wall rule sets and traffic logs.

selected. This strategy has potential to split the tuplesrell  g5ch ryle set consists of several thousand rules. Each rule
balanced sets. This heuristic is referred to ke distance- g 3 mylti-dimensional structure of tuples. A rule set corga
Max distance Heuristic. The complexity for all the above o, gyerage one million tuples. Figure 4 shows an instance of
approaches is proportional to the number of tuples in th&ini 5 1je structure. The dimensions of the rule include the®ur

tuple set. addresssre, the destination addresdst, the service types,
The fifth variant of the Greedy Heuristic is th&l Pair 5" and the action. Each dimension contains multiple values.

Heuristic. This variant considers all possible pairs of tuple'%Q'gsltgnﬁe of a tuple. ofﬁus r.uIe IS irc : |1:Q'10‘10'52;dd51? :t
as initial filters. Using the method depicted in Algorithm 2w 245+ 45 870 - ospf;action : accept >. Figure epicts

determine a split for each possible pair and then pick thie spﬁn entry _of the firewall traffic log. The firewall logs one entry
with the least cost. per session.

The results for All Pair Heuristic are not included as thg' Experimental Setup

heuristic never converged to a solution due to the excessiee experimental set up for the evaluation of the proposed
overhead required to obtain the most cost efficient configu@PTWALL approach consists of a machine acting as a fire-
tion among all possible pairs of tuples. The time complexitwall and another generating traffic and collecting logs. The
of this heuristic is of the order a¥3, whereN is the number machines used for our evaluation atéd/ D Athlon!™ 64 bit

of tuples. For large values df, the computational cost of the Processors 3000+ runnifi@buntu Linuz operating system.
heuristic becomes prohibitive. The machines are isolated for testing to ensure that there ar



Firewall Hierarchical vs. List-Based
1440 packets/sec, Max-Distance-Max-Distance Heurist ic

Packet Original rule
Generator > set 80

70 A

60 -|
Splitter

N 50 4
40
30
Rule Rule
Log Processor [« subse subse 20 4
A B 10 |
0 - T T T T

List Based Hierarchical - Hierarchical - Hierarchical - Hierarchical -

Overall CPU Utilization

y

Lewel 1 Lewel 2 Lewel 3 Lewel 4
Fig. 6: Experimental Setup Levels of hierarchy
no other variants. Figure 6 shows the block diagram of the
experimental setup. Fig. 7: Hierarchical vs. List-Based

C. Traffic Generation
Performance Evaluation - Worst Case

There were two types of traffic characterizations used té- eva
uate OPTWALL, the worst case and emulated case behavior] 1% B it count-Hit court
In worst case scenario, traffic is composed of a single packe{ | B it count-Mex distance
type that does not match any of the tuples. This assures tha £ Random Rando
the packet will be caught only by the default action tuple.
The emulated traffic is generated by creating packets that
match each tuple and proportionally sending them to a traffic
trace similar to a large ISP’s firewall operation. The worst
case traces were used to study the worst case performand 20
of OPTWALL in comparison to the baseline case, a list
based firewall. Performance at worst case was determine( 0
by using constant traffic rates and measuring the overall
CPU utilization. Traffic rates were determined by loading th
firewall from 25% to 100% utilization with the installed list
based rule set. A similar approach was used to determine theFig. 8: Performance Evaluation (Worst-Case - 60,000 typles
load for the emulated traffic evaluations.

80 M O Max distance- Max distance

m Optimal

O List Based

60

CPU Utilization

40 +

2028 1907 1605 1443 1052 961 833
Load in Packets/second

depict a way to arrive at a sweet spot between the number of
D. Evaluation results re-splits and the gain to due the hierarchical design.

The following subsection discusses the various resultb-hi®) Worst case performance evaluation: The next
lighting the potential of the proposed OPTWALL approach.study performed is to determine the worst case packet pgoces
ing cost of the firewall. A worst case packet processing accur

X ) , , when very packet entering the system requires processing of
formed to evaluate the potential of the hierarchical desigah ; : ; ;

) o P S _ the entire tuple subset. This helps to determine the maximum
its e_ffect on efficient flrewal_l optimizatiom.r.t. a list based packet rate for worst case traffic processed by the firewall.
design. The extent of the hierarchy depends on the tuple $gtiqs tuple sizes are used for the evaluations. The sult
size, the trafﬂc_charact_erlsncs and thel variability mf_ftm are for a typical large tuple set, consisting of 60,000 tsple
For our evaluation we fixed the tuple size, load applied aRdqn, Figure 8 it can be concluded that the Optimal Approach
the splitting approach used to determine the benefit from thaq \1ax distance-Max distance Heuristic perform the best in
proposed hierarchical design. The experiments were c@@duc,omnarison to the baseline list based approach. It is to be

on a heavily loaded system and using the best performiqgieq hat filters determined by the Optimal Approach shows
heuristic amongst all the solutions proposed earlier in the.iar traffic filtering than the heuristics approaches.
paper. We use a tuple set of nearly 5,000 tuples, load of 1,440

packets/sec and the Max Distance-Max Distance Heuristic f8) Emulated traffic performance evaluation: The next

our evaluations. Results as in Figure 7 shows the potentsalidy is to determine the CPU consumption of the firewall
of the proposed OPTWALL framework. It is to be noted thavhen the traffic applied follows the normal traffic trace.
after a point re-splits cause more harm than good. The sesu®esults as in Figure 9 show the benefit of the proposed scheme.

1) Hierarchical model evaluation: This study was per-



T T

T T T
Worst case - List based
/ Worst Case - Max distance - Max distance
Emulated - List based

Emulated - Max distance - Max distance

80

40

Hit count in a given hour

Overall CPU Utilization

Ox:

%

0 ) oeeee f f f f ! !
0 1000 2000 3000 4000 5000 6000 7000

Load in Packets/sec

8000

Fig. 9: Emulated Traffic Performance Evaluation

The CPU improvement in the worst case is about 35% and in

High default deny rule hit

\

Fig. 10: Default Deny Hit Count for a typical day

0 23th|

@oth
W 1st

0O3rd
W 4th
@s5th
m6th
O7th
W 8th
moth
O 10th|
O 11th|
B 12th|
W 13th|
| 14th|
W 15th|
@ 16th|
O17th|
0 18th|
O 19th|
0 20th|
O 21th|
O 22th|

the emulated case is about 14%. Since, the CPU consumptie=
is additive, any gain on the emulated case can be translated
a capacity for dealing with more anomalous traffic that can b
handled by the firewall. In other words, OPTWALL can dea
with a larger predicted traffic volume and also a much large
anomalous traffic.

4) Handling attacks evaluation: The aim of this study

is to test the strength of OPTWALL in handling attacks
and traffic fluctuations. Since the hit counts for defaul
action tuples are large and unpredictable, it can cause
huge bottleneck to the entire firewall operation. Figure 1
illustrates an instance of a large hit count for a defaulioact

tuple. To test the performance of OPTWALL in handling such

Cost/Rule

30

Handling Denial of Service Attack

25

20 -

15 A

10 -

—— without OPTWALL
—— with OPTWALL

500 1000 10000 100000 1000000

Hit count for a default deny rule

attacks we emulated the attack and increasing the hit count
of a certain default action tuple froth~ 100, 000. Figure 11
shows the competence of OPTWALL in countering dynamic
traffic changes and hence aiding the steady maintenance of

Fig. 11: Countering DoS Attacks

firewall operation.

5) Sensitivity analysis evaluation: The final study is
aimed at sensitivity analysis of the proposed OPTWALL ap-
proaches. The analysis was performed for tuple sizes \@ryin
from 0 — 1000 tuples. Figure 12 details a comparative study
between the baseline list based, the best heuristic and th
optimal solution. Results depicted are for a heavily loadec
firewall operation. From the results it can be inferred tihat t
heuristic solutions are best suited for a hierarchical few
optimization framework.

VIl. Related Work

Due to the enormous impact of firewalls on network security
there has been a significant amount of research work on ho

Overall CPU Utilization

35

30 -

25 -

20

15

10 4

Sensitivity Analysis | ©P™

O List based

m Max distance-Max distance

200 400 600 800

Number of Tuples

1000

to optimize firewalls. Much of this work, however, has been
in the area of firewall policy modeling and optimization [7],
(81, [9], [10], [11], [12], [13], [14], [15], [16].

Fig. 12: Sensitivity Analysis




Very few attempts have been made to achieve mulincur in defending against intrusions and denial of service
dimensional firewall optimization. In [17], a tool to modelattacks. To the best of our knowledge this is the first effort
firewall policies and detect conflicts is described. In thi®wards using firewall traffic log information and hierarchy
work, the authors focus mainly on single attribute ruleso design and optimize firewalls. The performance of the
Similarly, in [13] a constraint logic programming (CLP)OPTWALL approach both for worst case and normal operation
framework to analyze rule sets is discussed. These reseasthhe firewall is studied. The results show that OPTWALL
work offer a good insight in how to model and analyze ruleads to reduced operational cost of firewalls.
sets. Neither of these works, however, consider optimizingOPTWALL presents a novel method to use hierarchy in
a multi-dimensional rule set. The approach proposed in [@ptimizing list based firewalls. It helps to achieve the maxi
optimizes the firewall rule set using Directed Acyclic Graphmum benefitvia various splitting processes to arrive at feasible
(DAGs) to describe rule dependencies. However, it doegptimal and near optimal solutions. We are presently waykin
not provide a methodology to build the DAG. Furthermor@n extending the hierarchical design concept onto physical
for complex graphs this scheme is ineffective. In [18], distributed firewalls. This would imply that the rule sulsset
framework to analyze and optimize rule sets is describetbuld be run on different machines or in parallel on the same
However, the authors do not provide specific details anachine.
how optimization can be achieved within the proposed
framework. Furthermore, this work does not consider tHe&. Acknowledgments

traffic characteristics in its optimization approach. We would like to thank Alexandre P. Ferreira for his valuable

. insights and feedback.
Recently there has been great attention to address trafl‘lnc-g

aware firewall optimization. Some efforts in rule reordgrin APPENDIX

using traffic specifications as in [6] have been proposed. ButThe following segment describes the intuition behind the
they consider a very small firewall policy set 00) and there proposed research. First the optimal solution for a listedas
is absence of complete rule reordering due to dependengiggwall policy set is presented and then the solution for K-
in the policy set. Furthermore, all traffic characterizasi@re partitions is discussed.

not considered for flrgwall opt|m|z§lt|on. [1_3] presents_ alto?a\_ Optimal solution - List based
geared towards adaptive optimization of list based fireswal

However, the work falls short of addressing non-linear goli A list based firewall is a sequence of tuples that are composed
Optimization_ In other words, it does not consider any tcaffi of filter fields and an action to be executed for packets that
aware design improvements in the firewall structure. ngatch the filter profile. Each tuple has a counter that counts
work presented in this paper builds on [3] and achievéyery time the tuple has been fired and has a rank that
complete non-linear policy reordering by removal of alleruldetermines its position in the list based sequence.
dependencies. The proposed firewall optimization approachEach test of a filter for a tuple consumes certain CPU
'OPTWALL is a novel adaptive hierarchical design gearegrocessing time. Assuming that the cost of testing is thetmos

towards very large policy optimization. expensive operation, the total CPU cost of a sequence adgupl
is the sum of the costs of the number of times the tuple is
VIIl. Conclusions and Future Work tested. For a tuple the number of times it is tested is a

summation of the tuple’s hit count plus the hit count of all

A firewall is a combination of hardware and software usegiples that succeeds it.
to implement a security policy governing the flow of network N N N
traffic between two or more networks. In its simplest form, a C= Z Z H. = C = ZZ « I, (1)
firewall acts as a security barrier to control traffic and nggna I P !
connections between internal and external network hosts. )

Firewalls have proven to be useful in dealing with a large Where_,C represents the total CQSt of the list based tuple
number of threats that originate from outside a network.yThQrOC_essmg’ and/; represents_ the hit cqunt of tuple
are becoming ubiquitous and indispensable to the operafion, With this result we can define the weighted cost of the tuple

the network. The continuous growth of the Internet, couplédk_l_hi‘ | ¢ cost of th s achieved by keening th
with the increasing sophistication of attacks, however, | € lowest cost ot the sequence IS achieved by keeping the

S . . ; .
placing further demands and complexity on firewalls desiiﬁt. N an inverse sprted ordgr by hit count. The proof_|s by
and management. witching tuplek with tuple! in the formula above and since

This paper focuses on the problem of firewall optimizatiorihf ?I%;egf:r;sr‘;fle?jt ;hfnge are
k k

To this end, the paper proposes a hierarchical framework :
OPTWALL, for traffic-aware firewall optimization. The basic2nd! * Hi is changed td: * H,
tenet of this framework is that the design of next generation
firewalls must leverage their packet inspection capabditvith

traffic awareness in order to optimize the operational dwsyt AC = kx(H, —H;)—Ix(H,—H;) = (k—1)*(H,—H;) (2)

i=1 j=i

Hence,



If k& < I, this implies that the cost will decrease,
stated differently, AC > 0) only if H,—H; < 0 = Hy < H;.

[13]

[14]

Hence, the lowest cost is achieved when the tuples are atdere

using their hit counts with the highest count as the firsteupl

B. Optimal solution - K partitions

[15]

[16]

Assuming a distribution of the tuples such that all tuples ca
appear only in one list and there is a function f(i) and g('t)”]

that maps a tuple with rankin list A or list B to the rank it

occupied in the single list. In this case the following edurat

holds:

Vi, j, f(i) # g(i) (3)

Vidj,i= f(j) Vi=g(j) (4)

(18]

Implies that, no tuples are duplicated and all tuples appear

in the new configuration.

N N/K N/M
C=> Hi+ Y ixHys+ Y ixHyp, N=K+M (5)

i=1 i=l i=l

Cost of the new tuple plus the cost of each partition.

Each partition has to be sorted similar to the reorder
discussion above. The tuples in the original sequence are to
be as low as possible in the new partitions to reduce the cost.
Exchanging tuples in the same row between lists does nat alte
the final cost of the firewall. Hence, the optimal solutions ar

as follows:
fli)=2ior2i + 1 andg(i) =2 or 2 + 1.
REFERENCES

[1] T. V. Lakshman and D. Stidialis, “High speed policy-bdspacket
forwarding using efficient multi-dimensional range matghi in In
Proceedings of SIGCOMM ACM Press, 1998.

[2] V. Srinivasan, S. Suri, and G. Varghese, “Packet clasgifin using tuple

space search,” itn Proceedings of SIGCOMM ACM Press, 1999.

[3] S. Acharya, J. Wang, Z. Ge, T. Znati, and A. Greenbergaffia-aware

firewall optimization strategies,” ilEEE International Conference on

Communicationslistanbul, Turkey, June 2006.
P. Brucker, “On the complexity of clustering problema)’in Optimiza-

(4]
(5]
(6]

(7]

tion and Operations ResearchSpringer-Verlag, pp. 45-54, 1977, 1997.

S. Singh, F. Baboesu, G. Varghese, and J. Wang, “Pacéssitication
using multidimensional cutting,” iISIGCOMM 2003.

H. Hamed and E. Al-Shaer, “Dynamic rule-ordering optation for
high-speed firewall filtering,” iPASIACCS 2006.

E. W. Fulp, “Optimization of network firewalls policiessing directed

acyclic graphs,” inProceedings of the IEEE Internet Management

Conference 2005.

[8] ——, “Parallel firewall designs for high-speed netwotks, INFOCOM,
2006.

[9] L. Qiu, G. Varghese, and S. Suri, “Fast firewall implensiuns for

software-based and hardware-based routersSI@METRICS '01: Pro-

ceedings of the 2001 ACM SIGMETRICS international conferemn
Measurement and modeling of computer systetdew York, NY, USA:
ACM Press, 2001, pp. 344-345.

P. Gupta and N. McKeown, “Packet classification usingrdnichical
intelligent cuttings,” inin Proceedings of Hot Interconne¢t$999.

S. Singh, F. Baboesu, G. Varghese, and J. Wang, “Patissification
on multiple fields,” inSIGCOMM 1999.

——, “Packet classification using multidimensional towg,” in SIG-
COMM, 2003.

[10]
[11]

[12]

P. Eronen and J. Zitting, “An expert system for analgzifirewall
rules,” in Proceedings of the 6th Nordic Workshop on Secure IT Systems
(NordSec 2001)Copenhagen, Denmark, Nov. 2001, pp. 100-107.

S. Hinrichs, “Integrating changes to a hierarchicaliggo model,” in
Proceedings of 9th IFIP/IEEE International Symposium otedgrated
Network Management Nice, France: IEEE, 2005.

E. Al-Shaer and H. Hamed, “Modeling and management il
policies,” IEEE Trans. Network and Service Managemerai. 1, no. 1,
Apr 2004.

S. J. Tarsa and E. W. Fulp, “Trie-based policy represtéons for
network firewalls,” inProceedings of the IEEE International Symposium
on Computer Communication2006.

E. Al-Shaer and H. Hamed, “Modeling and management il
policies,” IEEE Trans. Network and Service Managemerai. 1, no. 1,
Apr 2004.

J. Qian, S. Hinrichs, and K. Nahrstedt, “ACLA: A frameskdor access
control list (acl) analysis and optimization,” i@ommunications and
Multimedia Security2001.



