
On the Problem of Trust in Mobile Agent Systems
�

Uwe G. Wilhelm and Sebastian Staamann

Laboratoire de Systèmes d'Exploitation

Levente Buttyán

Laboratoire de Telecommunications

Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

e-mail: {Uwe.Wilhelm, Sebastian.Staamann, Levente.Buttyan}@epfl.ch

Abstract

Systems that support mobile agents are increasingly

being used on the global Internet. Security concerns

dealing with the protection of the execution environ-

ment from malicious agents are extensively being tack-

led. We concentrate on the reverse problem, namely

how a mobile agent can be protected from malicious be-

haviour of the execution environment, which is largely

ignored.

We will identify the problem of trust as the ma-

jor issue in this context and describe a trusted and

tamper-proof hardware that can be used to divide this

problem among several principals, each of which has

to be trusted with a special task. We show that the pre-

sented approach can be used to mitigate an important

problem in the design of open systems.

1 Introduction

The notion of trust has long been recognized as being

of paramount importance for the development of se-

cure systems [8, 16, 28]. For instance, any conceivable

system for authenticating users needs trusted func-

tionality that holds the necessary authentication in-

formation (see e.g., [26, 22]). However, the meaning

that is associated with trust is hardly ever clearly de-

�ned in these approaches and the reader is left with

his intuition.

To illustrate the problem of trust, we will start

with a description of the problems encountered when

protecting the execution environment from malicious

agents. Although we are primarily interested in the

reverse problem of how a mobile agent can be pro-

tected from malicious behaviour of the execution en-

vironment, we prefer to illustrate the notion of trust

with a problem that is more readily understood. Let

us consider the example of signed code, such as Java

applets or ActiveX controls. The issue of code signing

�Research supported by a grant from the EPFL (�Privacy�

project).

has been identi�ed as a major problem that is cur-

rently being tackled in both systems (Signed Java

Archives [11] in Java and Authenticode [17] in Ac-

tiveX). The signature is intended to convey trust in

the code. However, the only thing that it can con-

vey is the trust in the identity of the signer of the

code and the integrity of the received code (i.e., the

assurance that the code was not tampered with af-

ter the signature has been applied). If the user also

trusts the signer, which is an entirely di�erent ques-

tion, he can place some con�dence in the code (e.g., if

he has been satis�ed with previous applications from

this principal). If on the other hand the signer is an

unknown company that tries to introduce a new ap-

plication into the market, then the only thing that

is gained by the signature is accountability. That is,

if the code turns out to be malicious (or simply con-

tains bugs that might damage the local system), the

user knows who was responsible for the incurred dam-

age � provided that the creator of the code did not

successfully employ elaborate methods to evade this

accountability.

In Java, there is another possibility to establish

more trust in the mobile code prior to its execution

by checking the bytecode for proper construction and

by reducing the capabilities of mobile code through

the de�nition of an explicit policy for access to lo-

cal resources. The latter is enforced by the Security

Manager, which is a trusted entity in the local system.

Again, no concepts to protect the mobile agent from

the execution environment exist. We will investigate,

whether a similar mechanism for policy enforcement

can be adapted to achieve the protection of mobile

agents.

A more theoretical approach to better structure the

notion of trust can be found in [2], where the authors

identify trust management as an important problem

to provide security in network services. Their ap-

proach is centered on local reasoning and requires the

existence of trusted entities. A motivation why such

entities are trusted, is not provided.

1 of 11

In this paper we want to address the underlying

question of how trust in a certain principal can be

motivated based on social or technical reasoning and

we will discuss our ideas in the context of mobile agent

systems1. We believe that our �ndings can have im-

portant repercussions for the architecture of open sys-

tems for mobile agents, where everyone should be ca-

pable to enter as service provider. If, for instance,

an unknown company designs a novel service that re-

quires a user to surrender private information, the user

might be quite reluctant to hand it over to a service

provider he has never heard of. We will show how

the trust that the user has in another principal can be

transferred to the new service provider.

In the following Section 2, we will introduce our

model for mobile agents and point out the problems

related to trust within this model. Then, in Section 3,

we will discuss the notion of trust and de�ne its re-

lation to policy, which will enable us to better assess

the possible motivations for trust. In Section 4, we

will introduce a piece of trusted hardware, the TPE,

and a protocol, the CryPO protocol, that will allow us

in Section 5 to show how these can be used to give a

motivation for trust that is based on technical means.

In Section 6 we discuss why this is a better way to ap-

proach the problem and what e�ects this has on the

notion of open systems. Finally, Section 7 concludes

the paper with a summary of the main contributions.

2 The mobile agent paradigm

The mobile agent paradigm (also referred to as mo-

bile code, mobile computation, or program mobility)

has been identi�ed by many authors as a promis-

ing and innovative new approach to structure prob-

lems in distributed computing [4, 6, 12, 13, 24]. The

paradigm is still under lively discussion and it has

been shown in [14] that there is no single compelling

reason to favour the mobile agent paradigm over clas-

sic client/server approaches. On the other hand,

the same authors point out that the mobile agent

paradigm provides interesting solutions to many real-

life problems, for instance in the context of:

� mobile users, where agents are sent out from a

mobile computer in order to accomplish a well-

de�ned task on behalf of the user while he is

disconnected from the communication network.

1The term mobile agent has been charged with many dif-

ferent meanings. We use it here in the context of distributed

systems (as opposed to its use in arti�cial intelligence) to refer

to an object that is capable to move between di�erent agent ex-

ecution environments in order to accomplish some well-de�ned

task on behalf of its owner.

Once the user reconnects, the agent returns and

reports the result of the task or the problems it

encountered.

� high-bandwidth interactions, where an agent is

sent to a database server that holds a large

amount of unstructured data to search for some

speci�c information for the user.

� resident agents, which are stationary agents that

take residence at some service provider and han-

dle simple routine actions for their owner. An

example for such routine actions is the communi-

cation management for a mobile user, where the

agent decides how to handle an incoming commu-

nication request based on con�gured data (e.g.,

black and white lists), current information (e.g.,

time and date), and the user's situation (e.g., in

a meeting or on holiday).

We are here neither interested in the underlying

technology that is used to implement the mobile agent

paradigm nor are we concerned with more high-level

questions such as those identi�ed in [4]. We only re-

quire a rather simple model for our discussion; thus,

we identify the following major abstraction that we as-

sociate with mobile agents. A mobile agent consists of

code and data (it may or may not contain the explicit

execution state of the agent), which can be marshaled

by the agent owner (in the following also referred to as

service user) in a transportable form and subsequently

sent to the agent executor (also referred to as service

provider).

The agent can be con�dentiality and integrity pro-

tected during transit to protect it against outside at-

tackers through the use of cryptographic mechanisms.

These mechanisms can also provide data origin au-

thentication for the marshaled agent.

The agent executor will then eventually unmarshal

the agent and instantiate it on its local agent execu-

tion environment. Here, the mobile agent can interact

with other agents and try to accomplish the task it

was given by its owner. Depending on the employed

technology, the agent may continue to move to other

service providers in order to accomplish its task and

ultimately return to its owner or simply return the

result of its task to the user in a message. We do not

consider agents that visit several service providers as

a special case, since in our solution this is only several

instances of the same problem.

Our main interest lies in the fact that the relocation

of a mobile agent raises the problem of how to protect

the agent (especially the data contained in it) from

undue manipulation by or undesired disclosure to the

2 of 11

agent executor, which is mainly a question of trust in

the agent executor.

2.1 The problem with trust

There are many examples where an agent might need

con�dential information that should not be disclosed

to the service provider, even though the agent needs

the information to accomplish its task:

� an agent for electronic-commerce might hold data

that could give a bargaining advantage to the ser-

vice provider if it were known to him (e.g., a max-

imum price that the service user is willing to pay

or the lowest QoS that he is willing to accept be-

fore inquiring at another service provider).

� a shopping agent (which we conceive as a spe-

cial form of an agent for electronic-commerce that

also integrates mechanisms for on-line payment)

might hold information for several payment meth-

ods (e.g., di�erent credit cards) of which the ser-

vice provider should obtain at most one informa-

tion in case the agent buys from it, but never

more than one (in order to not disclose the pay-

ment information the service provider does not

need). We will return to this example in Sec-

tion 5.1.

� an agent in a personalized information system

might contain private data from the customiza-

tion by the user that is needed to �nd the right

information; for instance, an agent searching for

movies that are likely to interest its owner, might

contain some very personal information about the

user's special interests, which can not necessarily

be inferred from simply observing a �nal choice.

If the agent purchases a ticket for some movie, the

agent executor should not be able to determine

for what reason a particular movie was chosen.

� �nally, an agent that merely searches for some

particular �nancial information (such as stock

quotes) might, depending on the owner of the

agent, convey some very sensitive information

(the mere request already conveys the interest in

the information).

In a conventional agent system, when the agent

owner (service user) sends a mobile agent to an agent

executor (service provider) in order to use some ser-

vice, the agent owner loses all control over the code

and data of the agent. The agent executor can:

� reverse engineer the agent's code,

� analyze the agent's data,

� arbitrarily change the agent's code and data, or

� experiment with the agent (e.g., by feeding it with

arbitrary data and resetting it to its initial state,

in order to observe the agents reactions � using

a combination of both, a provider might obtain

the complete payment information from an agent

even though it might not be able to analyze the

code and data directly and it does not really want

to provide the service to the agent).

This constellation puts the service provider in a

much stronger position than the service user. The user

simply has to trust the service provider not to use the

methods described above to illicitly obtain con�den-

tial information from the agent, which it has to carry

in order to use the service. There is no way for the

user to control or even know about the behaviour of

the service provider.

The reason for the imbalance between service

provider and service user in the mobile agent model

as compared to the client/server model is that in the

former approach, the service user has no guarantees

whatsoever concerning the execution of its agent. In

the client/server approach, the service user relies on

many assumptions that are so basic that one hardly

ever thinks of them. Nevertheless, these guarantees

allow to implement certain types of behaviour in the

client part of the distributed application that can not

be implemented in conventional agent systems (e.g.,

code will be executed at most once, code will be ex-

ecuted correctly, availability of a reasonably reliable

time service, etc.). This advantage relies on the fact

that the client implementation is under the physical

control of the user. Based on these assumptions, a

client can observe what is happening in the system

and notice irregularities. Thus, it is able to react ac-

cordingly, for instance, to interrupt an ongoing trans-

action. Another possibility to take advantage of these

assumptions from the client's point of view would be

to log any irregularities at the client side so that they

can be provided as evidence in the case of a dispute

with some service provider.

We intend to create an environment for mobile

agents that allows them to base their execution on

similar assumptions, so that it becomes possible for a

mobile agent to protect itself from a malicious service

provider.

3 The notion of trust

We already mentioned the importance of trust for se-

curity in distributed systems and pointed out the lack

3 of 11

of a clear de�nition of what is meant by the terms

trusted principal or trusted system. In the following

we will present our analysis of possible trust relations

with other principals.

A reason for the lack of a clear de�nition of trust

could be that trust is more a social than a technical is-

sue and consequently quite di�cult to tackle entirely

in a technical approach. The major problem stems

from the fact that the notion of trust mixes the goals

of a principal with its behaviour to achieve these goals.

In order to trust some principal it is usually necessary

to concur with or at least approve of its goals (which

are not always clearly stated) and to believe that it

will behave accordingly. In our de�nition of trust, we

will try to clearly separate these two issues by gather-

ing the goals of a principal in a policy, which is a set

of rules that constrains the behaviour of this principal

for all conceivable situations. This policy has to be

written down and made available to all other princi-

pals that interact with the issuer of the policy. Then,

we de�ne trust in another principal as the belief that

it will adhere to its published policy.

The question of whether a certain principal can be

trusted now consists of (a) checking its published pol-

icy in order to decide if it is acceptable and (b) to es-

tablish a motivation for the belief that it will adhere

to its published policy. The former is quite di�cult

but can be supported by a formal speci�cation of the

security policy (similar to the approach in [20]). The

latter, however, is a problem that is quite di�cult to

formalize. In order to better grasp the possible mo-

tivations for such a belief, we identi�ed the following

four foundations for trust:

� blind trust

� trust based on (a good) reputation

� trust based on control and punishment

� trust based on policy enforcement

Blind trust indicates that there is no particular mo-

tivation to believe that a principal will adhere to its

published policy other than its own assertion. It is

obviously the weakest foundation for trust and not

recommended for any important transaction.

Trust based on (a good) reputation stems from the

fact that the principal in question is well known and

has very little to gain through a violation of its own

policy but a lot to lose in case a policy violation is

discovered. This loss is supposed to transpire from the

lost revenue due to customers taking their business to

another principal. Reputation is an asset that is very

expensive to build up and that is invaluable for any

company. Thus, a principal would not risk to lose its

good reputation for a small gain and will consequently

adhere to its policy.

Trust based on control and punishment is quite sim-

ilar to trust based on reputation (even though it ac-

tually means that we do not trust the principal at all,

but rather the underlying technical and legal frame-

work to ensure the principal's proper behaviour). The

idea is to arti�cially introduce the same tradeo� de-

scribed above by enacting appropriate laws. Here, the

short term gain that might be achieved through a pol-

icy violation is supposed to be negated by appropriate

punishment.

The main problem of the last two approaches is

the di�culty to discover a policy violation in the �rst

place. If the risk for such a discovery becomes so small

that it can almost be neglected by an o�ender, there

is much less motivation for a principal to adhere to its

published policy. In such a situation it is necessary to

improve the controls to make a discovery su�ciently

probable. Further problems are the enforcement of

laws, which can be quite expensive for a single per-

son, but also the di�erent perceptions of punishment

� a person who has not much to lose might readily

risk some years of imprisonment for the possibility of

a relatively large gain.

Another problem in the approach stems from the

fact that many abuses of con�dential information are

not necessarily conducted for the purposes of the com-

pany that holds this information, but rather by mali-

cious insiders of such a company, who do it for strictly

personal reasons or �nancial bene�ts [23, 25]. Such

abuses are even more di�cult to discover (there are

less people involved) and to punish (it has to be de-

cided if only the employee for malicious behaviour,

only the company for negligence, or both have to be

pursued).

The problem to reliably discover a policy violation

could be resolved by requiring a very high degree of

transparency. However, this is di�cult to achieve and

it is quite likely that even trustworthy principals with

a very good reputation might not accept it. We there-

fore assume that complete transparency is not a very

useful tool for supervision. A better approach would

be to designate specialized companies that execute fre-

quent in-depth controls of the conduct of companies.

Finally, neither of the two approaches can prevent

malicious behaviour, but they only try to compensate

for it after it has been discovered. For many situations

in real-life, where an o�ence might have an irrepara-

ble e�ect (e.g., the collapse of the Barings Bank, where

the Bank o�cials trusted their trader [10]) or where a

proper functioning of the system is absolutely essen-

4 of 11

tial, this guarantee might not be strong enough.

We would like to remark that most of these prob-

lems are also present in our every-day life and there-

fore quite well understood. However, the question

stands if we can do better than that.

Trust based on policy enforcement would obviously

be the best foundation for trust, since this means that

a principal simply can not violate its published policy

(actually, this implies that we do not have to trust

the principal anymore) and we can solely rely on this

policy to verify that the principal's behaviour will be

acceptable. The behaviour of the principal becomes

completely transparent as far as it is constrained by

its policy without the need to actually supervise any

particular action. If the policy prescribes a particular

action for some event and if the policy is enforced

then it is guaranteed that the action will take place.

In reality, things are probably not that easy. A policy

might be composed of many di�erent rules, of which

only a subset is enforceable, while others can at best

be controlled; for these we still have to rely on other

foundations for trust.

There is no possibility to enforce rules within a

policy without relying on some piece of trusted and

tamper-proof hardware [6]. In the following section,

we will describe such a piece of hardware and the re-

quirements that have to be met so that it can be used

to enforce certain rules of a policy.

4 Tamper-proof hardware and the

CryPO protocol

We will �rst present the execution environment that

we rely on and then describe the CryPO (cryptograph-

ically protected objects2) protocol that uses it. Fig-

ure 1 gives an overview of the principals in the system.

The TPE manufacturer produces the TPEs, which

can be bought by any agent executor (service

provider). An agent owner (service user) has to trust

the TPE manufacturer to do this properly (see Sec-

tion 6). The broker is basically a directory service to

�nd the other principals.

4.1 Notation

The described approach relies on public key cryptog-

raphy [7] (such as RSA [19]). A detailed description of

cryptography and the corresponding notations is not

within the scope of this presentation, for information

on this topic see, for instance [3, 21]. The notation we

will use is as follows.

2We have originally chosen the term object since it is more

general than the term agent.

TM: AE:
AO:TPE:

Br:
Agent Executor
Agent Owner

Broker
TPE Manufacturer
Tamper Proof Environment

computer
host

provides

TM

AEAO

trust

TPE

Br

Figure 1: Overview of the Principals in the CryPO pro-

tocol

A principal P has a pair of keys (KP ;K
�1

P
) where

KP is P 's public key and K�1
P

its private key. Given

these keys and the corresponding algorithm, it is pos-

sible to encrypt a messagem, denoted fmgKP , so that

only P can decrypt it with its private key. A signed

message, including a digital signature on the message

m, generated by P is denoted fmgSP .

In the following we assume the usage of optimiza-

tion schemes such as encrypting a large message with

a symmetric session key, which in turn is encrypted

using public key cryptography and prepended to the

message as well as the use of hash algorithms to reduce

the amount of data that has to be signed. However,

for ease of presentation, we will not make this explicit.

4.2 The execution environment

As we have noted above, there is no way to enforce any

particular behaviour from another principal without a

piece of trusted and tamper-proof hardware. We will

discuss the problem of trust in the tamper-proof hard-

ware in Section 6. The concept of tamper-proofedness

usually applies to a well-de�ned module, sometimes

called black-box, that executes a given task. The

outside environment cannot interfere with the task

of this module other than through a restricted inter-

face that is under the complete control of the tamper-

proof module (see Section 4.4). We will call this device

tamper-proof environment (TPE). The TPE provides

a full execution environment for agents, which can not

be inspected or tampered with. Any agent residing on

the TPE is thus protected by the TPE both from dis-

closure and manipulation.

The TPE is a complete computer that consists of a

cpu, ram, rom, and non-volatile storage (e.g. hard-

disk or �ash ram). It runs a virtual machine (VM)

5 of 11

that serves as execution environment for agents and an

operating system that provides the external interface

to the TPE and controls the VM (e.g., protection of

agents from each other). Furthermore, the TPE con-

tains a private keyK�1
TPE

that is known to no principal

other than the TPE � also the physical owner of the

TPE has no information concerning this private key.

This can be achieved by generating the private key

on the TPE3. Using this approach, the key is never

available outside of the TPE and, thus, protected by

the operating system and the tamper-proofedness of

the TPE. The secrecy of the private key is a crucial

requirement for the usage or the TPE to enforce a

particular behaviour.

The TPE is connected to a host computer that is

under the control of the TPE owner. This host com-

puter can access the TPE exclusively through a well

de�ned interface that allows, for instance, the follow-

ing operations on the TPE:

� upload, migrate, or remove agents;

� facilitate interactions between host and agent or

between agents on the TPE;

� verify certain properties of the TPE (such as

which agents are currently executing).

Due to its implementation as a tamper-proof mod-

ule and the restricted access via the operating system,

it is impossible to directly access the information that

is contained on the TPE.

This property is ensured and guaranteed by the

TPE manufacturer (TM), which also provides the

agent executor AE with a certi�cate (signed by TM).

The certi�cate contains information about the TPE,

such as its manufacturer, its type, the guarantees pro-

vided, and its public key. The agent owner AO has

to trust the TM (see Section 6) that the TPE actu-

ally does provide the protection that is claimed in the

certi�cate.

4.3 CryPO protocol

The CryPO (cryptographically protected objects)

protocol transfers agents exclusively in encrypted form

over the network to a TPE. Therefore, it is impossi-

ble for anyone who does not know the proper key to

obtain the code or data of such a protected agent.

The protocol is divided into two distinct phases.

The �rst phase consists of an initialization, which has

to be executed once before the actual execution of the

3Other, more sophisticated approaches to create the pair

of keys could be envisaged, which could also incorporate key

recovery mechanisms (e.g., escrowed key shares).

protocol. The second phase is concerned with the us-

age of the TPE and the actual transfer of the agent.

The protocol is based on the interactions given in Fig-

ures 2 and 3.

4.3.1 Initialization: In the initialization phase, the

participants establish the trust relations that are as-

sociated with the di�erent keys:

� the TM publishes its certi�cation key KTM .

� the TM sends the certi�cate CertTPE =
fKTPEgSTM to the AE.

� the AE registers its reference4 with one or several

brokers.

TM: AE:
AO:TPE:

Br:REF:
Agent Executor
Agent Owner

Broker
TPE Manufacturer
Tamper Proof Environment

Reference for an AE

computer
host

provides

TM

AEAO

trust

K TM
TPE

Br

{K }TPE S TM

REF
AE

Figure 2: Initialization of the CryPO protocol

4.3.2 TPE usage: After the participants have �n-

ished the initialization, they can execute the usage

part of the CryPO protocol:

� The AO queries the broker for the reference to the

AE with which it wants to interact (or it already

holds this reference from a previous interaction).

� The AO veri�es the certi�cate CertTPE to check

the manufacturer and the type of the TPE, in

order to decide if it satis�es the security require-

ments of the AO. If it is not satis�ed with these

checks, it will abort the protocol.

� The AO sends the agent encrypted with the pub-

lic key of the TPE, fAgKTPE to the AE.

4A reference to an AE consists of its physical address in the

network and the certi�cate CertTPE for its TPE. The broker

can also verify that the AE actually controls the corresponding

TPE by executing a challenge-response protocol with the TPE

via the AE.

6 of 11

� The AE cannot decrypt fAgKTPE nor can it do

anything other than upload the agent to its TPE.

� The TPE decrypts fAgKTPE using its private key

K�1
TPE

and obtains the executable agent A, which

will eventually be started and can then interact

with the local environment of the AE or other

agents on the TPE.

� The agent can, after it has �nished its task, send a

message back to its owner or request its migration

back to its owner or to another AE to which it

holds a reference.

TM: AE:
AO:TPE:

Br:REF:
Agent Executor
Agent Owner

Broker
TPE Manufacturer
Tamper Proof Environment

Reference for an AE

computer
host

TM

AEAO

{A}
KTPE

trust

TPE

Br
AEname

REF
AE

{A}
KAO

Figure 3: Usage of the CryPO protocol

The obvious problem of protecting the TPE from

malicious agents is independent of the described ap-

proach and has to be tackled with additional mech-

anisms, such as code signing. The problem of pro-

tecting the TPE from tampered agents can easily be

solved by concatenating the agent with a well known

bit-pattern (magic number, MN) before encrypting it

fA;MN gKTPE . The TPE simply has to verify the cor-

rect MN before starting the agent.

4.4 Notes on feasibility

The actual construction of a tamper-proof module in

the real world is di�cult; nevertheless, there are many

applications that rely on them (e.g., payphones, debit

cards, or SIM cards for GSM). Given su�cient time

and resources, it becomes very probable that an at-

tacker can violate the protection of such a module [1].

We believe that the actual realization of the pre-

sented TPE with reasonably strong guarantees in real-

world settings is also quite di�cult, but nonetheless

feasible. Especially, since we only require the detec-

tion of tampering for most envisioned applications.

We imagine the TPE as a regular computer with

a special operating system. It is physically protected

with a special hardware that can e�ectively be sealed

to detect tampering, is under continuous video surveil-

lance similar to the systems used to supervise ATMs,

and is subject to challenge inspections by the TM or

an independent appraisal and inspection organization.

As explained in [1], such an installation is conceiv-

able and can even resist massive attacks. A thorough

analysis of the remaining risks has to be undertaken,

but this is not within the scope of this presentation.

4.5 Related work

The idea to use trusted hardware to ensure a certain

behaviour of a system, that was presented in this sec-

tion, has previously been explored by several authors.

In [15], Herzberg and Pinter describe a device that

can be used to protect software against piracy. In [5],

Chaum and Pedersen describe an architecture of a

wallet, which carries a database with personal infor-

mation that allows to protect the data in this database

from unauthorized access (including the owner of the

wallet). The described system incorporates trusted

hardware (called observer) which is comparable to the

one presented above but it is explored in a very dif-

ferent setting. A more recent approach by Yee and

Tygar [27] has many commonalities with the one pre-

sented here. However, the authors are rather inter-

ested in the classical security aspects of how to ensure

the secure functioning of the system, as opposed to

our interest in privacy. It might be possible to de�ne

a device that can be used for both approaches. This

will be a subject of our future work.

5 Usage of the TPE to enforce policies

The CryPO protocol and the TPE described above

guarantee the integrity of the execution environment

to the AO and protect the code and data of an agent

against manipulation and disclosure, both in transit

and during execution. This guarantee is based on the

trust relation between the AO and the TM, where the

AO trusts the TM to properly manufacture its TPEs

and to control them regularly (if necessary) so that

the claimed guarantees hold. The certi�cate enables

the AO to ensure that it really deals with a TPE from

a certain manufacturer.

We will now investigate how these guarantees can be

used to formulate rules of a policy, that can e�ectively

be enforced by a TPE. If the enforced policy rules

provide su�cient protection for a given agent, then

the user does not need to trust the AE, but it su�ces

7 of 11

to trust the TM. The problem of why the agent owner

should trust the TM is dealt with in the following

section.

A proof or simply a convincing argument that the

enforced rules do provide a su�cient protection de-

pends not only on the rules and the task of the agent,

but also on what a particular AO considers to be a suf-

�cient protection. Thus, the answer can not be given

in its full generality but has to be decided on a case

by case basis. A formalization of the presentation of

the provided guarantees and the required protection,

together with a mechanism to show that the provided

guarantees do provide the required protection is an

interesting question for further research.

5.1 Protecting the shopping agent

We will explore this question considering the shopping

agent from Section 2.1. For the sake of this discus-

sion we assume that the TPE of the service provider

enforces a well de�ned set of rules, detailed in its pol-

icy. We will subsequently show that this set of rules

is su�cient to provide the desired protection for the

shopping agent. The rules enforced by the TPE are

the following:

a) the code of an agent will never be disclosed by the

TPE.

b) the data of an agent can exclusively be accessed

and manipulated through the interface of the

agent. If the agent does not provide methods to

directly access a particular data item, its value

can at most be inferred from the responses to

other method invocations.

c) the TPE guarantees that any invocation of the

agent's methods will be executed exactly accord-

ing to the code in the agent.

d) the TPE will allow agents to leave the TPE only in

encrypted form and it will provide the certi�cate

of the designated receiver to the agent, which can

decide whether it wants to be transferred to this

receiver or not. The TPE will honour the agents

decision.

e) the TPE provides an internal clock with reasonable

accuracy (on the order of several seconds). If the

TPE did not succeed to establish this time, it will

inform the agent about this problem.

f) the TPE provides a small amount of non-volatile

storage for a �xed period of time even to a re-

moved agent.

Based on these guarantees, it is now possible to im-

plement an agent that will under no possible circum-

stances reveal more than one payment information.

During its execution, the agent will interact with the

service provider in order to determine whether it will

purchase the item or the service requested by the user

from the service provider. If the agent decides to com-

mit the purchase, it will ask the service provider about

the supported payment methods. The agent will then

choose the preferred method of the user among those

supported by the service provider and �nalize the pur-

chase by the exchange of payment information. In or-

der to implement the desired protection, we use the

guarantees as detailed below.

According to guarantees a) and b), the code and

the data of the agent are protected against tampering

and disclosure and according to c), it will be executed

exactly as it was programmed. Therefore, we can rely

on the programmedmethods to not disclose more than

a single payment information. Since the agent will not

accept to be sent to any other TPE in the network and

since the TPE guarantees in d) that it will honour this

decision, the only TPE that we have to consider, is the

one that provides the above guarantees. These are not

su�cient to implement the desired protection for the

shopping agent since we have to consider the following

attack.

The agent executor could store the originally re-

ceived, encrypted agent before uploading it to its TPE

and obtain the �rst payment information by normally

interacting with the agent. In a second step the agent

executor could then replace the agent on the TPE

with the stored version and conduct another interac-

tion with the agent, this time requesting the second

payment information.

To counter this attack, the agent has to ensure that

it will be executed at most once on the TPE in ques-

tion5 or rather that any subsequent execution will

produce the same result. To implement this, we will

take advantage of the guarantees e) and f). We pro-

vide the agent with a limited lifetime (on the order

of a few days � if it has not accomplished its task

by then, there is probably a major problem that the

agent can not solve). Upon its arrival the agent veri-

�es that the TPE has a su�ciently accurate clock, it

inquires whether the TPE considers this time to be

correct, and then it checks that the current time is

still within its attributed lifetime. If either of these

requests results in a negative answer, the agent termi-

5If reliability is an issue in the application, the agent can use

checkpointing and recovery mechanisms to ensure that a failure

of the TPE will not prevent the agent from accomplishing its

task.

8 of 11

nates. This limited lifetime establishes a time T after

which the agent can never be executed any more. In

order to ensure the at most once execution before time

T , the agent veri�es that its identity is not already

stored in the non-volatile memory of the TPE, which

provides the proof that the agent has not previously

been instantiated on this TPE. Finally, it stores its

identity together with its lifetime in the non-volatile

memory of the TPE, in order to prevent further in-

stantiations of the same agent. As an alternative, the

agent could store the chosen payment information in

the non-volatile memory of the TPE and allow sev-

eral instantiations of the same agent. Each of these

instantiations, however, will always provide the same

payment information.

The lifetime associated with the stored information

can be used by the TPE to remove entries that are

no longer needed (from agents whose lifetime has ex-

pired) to prevent a memory over�ow in the TPE. If an

agent tries to allocate too much memory, the TPE can

refuse to provide the amount requested by the agent.

The agent can still be executed at a later time when

more memory is available, provided that its lifetime

has not expired.

Since the service provider has no possibility to

directly access the payment information within the

agent (b), since the agent will be executed correctly

(c), since the agent is programmed to only release a

single payment information during any particular ex-

ecution, and since the agent can be executed at most

once on a particular TPE (e) and (f), we can conclude

that the enforcement of the above guarantees allows

us to create an agent that holds information for sev-

eral payment methods, but that will disclose at most

one to the selected service provider.

6 Trust in the TPE manufacturer

We have just introduced the mechanism, with which

an agent can take advantage of the guarantees en-

forced by a TPE. However, as we have mentioned

above, in order for a user to trust in these guaran-

tees, it is necessary that he also trusts the TPE man-

ufacturer to properly design, implement, and produce

its TPEs. Since there is no way (to the knowledge

of the authors) to enforce a correct behaviour of the

TPE manufacturer, it seems that the presented ap-

proach simply replaces one required trust relationship

with another one. This is a correct observation from

a theoretical point of view. Nevertheless, we believe

that this replacement of trust in an arbitrary service

provider with trust in a TPE manufacturer has sev-

eral more subtle implications. We will brie�y discuss

the following advantages that we identi�ed:

� better understanding of security and privacy

problems

� centralized control

� resources to build reputation

� separation of concern

The TPE manufacturer is a specialized service

provider, which primarily deals in the �eld of the pro-

vision of security devices. Therefore it has a better un-

derstanding of security and privacy problems, which

makes it a much more capable entity to ensure this

service since it is more aware of the potential prob-

lems and pitfalls.

We assume that there will be relatively few TPE

manufacturers (on the order of several hundreds) com-

pared to the number of possible operators of the TPE

(on the order of several millions). This makes the con-

trol of their behaviour much easier for expert appraisal

organizations. Also, it is quite conceivable that a TPE

manufacturer might invite external experts to control

its internal operation, in order to obtain a better posi-

tion in the market (similar to the approach for quality

assurance in the ISO-9000 or the approach taken by

Intermind6).

The production of TPEs is considered to be a di�-

cult task (see Section 4.4). Therefore, we assume that

it will be undertaken by major corporations, which

have the necessary resources to build a good reputa-

tion and an incentive to protect this reputation, which

allows us to rely on good reputation as foundation for

trust in the TPE manufacturer.

The TPE manufacturer that is responsible for the

enforcement of the proper policy rules on the TPE,

has nothing to gain by not accomplishing its task.

Since the TPE will be operated independent from the

TPE manufacturer by a completely di�erent principal

and the TPE manufacturer has no means to access

the data that is processed on the TPE (no physical

connection), there is no possibility for the TPE man-

ufacturer to draw a direct bene�t7 from a TPE that

does not properly enforce its policy.

We assume that the above arguments of high exper-

tise, e�ective controllability, good reputation, and lack

6Intermind was evaluated by a Big 6 accountants �rm

to verify the implementation of its privacy policy. For fur-

ther information see press release from June 6, 1997 on

http://www.intermind.com/.
7There is the possibility that a TPE operator bribes a TPE

manufacturer to provide an incorrect TPE. We assume that

such a behaviour is a severe o�ence that is subject to criminal

investigation and not within the scope of this discussion.

9 of 11

of incentive are sound reasons to trust a TPE man-

ufacturer to build reliable and powerful TPEs. The

main advantage of the approach lies in the possibility

to leverage this trust in the TPE manufacturer onto a

completely di�erent principal in the role of a service

provider, which

� does not have the proper expertise to ensure a

secure operation of its hardware and to guarantee

the protection of the processed data.

� is quite di�cult to control, due to the sheer num-

ber of such service providers.

� has no particular reputation (and therefore none

to lose).

� might have short term goals that (in its point of

view) justify a policy violation.

With the presented approach, such a service

provider can easily de�ne the policy rules that it would

like its TPE to enforce (by selecting from the options

o�ered by the TPE manufacturer) and buy the appro-

priate TPE from a reputable TPE manufacturer. The

service provider can then immediately bene�t from

the trust that users have in the TPE manufacturer of

its TPE to convince them that it will not abuse any

con�dential data sent by the users. With this, the ap-

proach favours openness in the sense that it becomes

much easier for a new service provider to establish

itself in the market.

6.1 A note on open systems

In the open systems philosophy, any principal can

possibly become a provider of services. The techni-

cal problems associated with this approach are cur-

rently being tackled, for instance in the context of

CORBA [18] and TINA [9]. However, if a client wants

to use the services of some provider he has never heard

of and whom he does not trust and if the provider

needs some con�dential information from the client,

in order to provide the service, there is a dilemma.

Trust based on reputation is di�cult and expensive to

build (and thus hardly an option for a small company)

and trust based on control and punishment might not

be su�cient for the client especially if the provider is

located in a di�erent country with an unknown law-

system.

The client will not simply surrender the informa-

tion since he has no trust in this provider to properly

handle the con�dential information and the provider

can not build up its reputation, since it needs some

users that take the risk of blindly trusting him. In

this context the solution described above allows for

much simpler bootstrapping of trust. The provider

simply has to obtain the trusted hardware from some

reputable provider and advertise this with his service

o�er. If the rules in its policy that can be enforced

by the trusted hardware are su�cient to convince a

client that his con�dential information is su�ciently

protected then the two can start to do business with

each other.

7 Conclusion

In this paper we have discussed the notion of trust in

the context of mobile agent systems and introduced

a structuring for this problem domain. Starting from

this structure, we have proposed an approach that re-

lies on trusted and tamper-proof hardware, which al-

lows to prevent malicious behaviour rather than cor-

rect it. We believe this to be the better form of pro-

tection for personal data. We have shown how the

approach can be used to e�ectively protect some spe-

ci�c information contained in an agent using a simple

example in a real-world setting. Finally, we identi�ed

the positive implications that the presented approach

can have on the construction of open mobile agent

systems, where any principal can become a service

provider and receive mobile agents.

In real-life, there are limitations to the approach.

Given su�cient time and resources, a TPE operator

might succeed in breaking the system and it would

thus be possible for him to violate even those parts of

the policy that should be enforced by the TPE. Our

goal is to make this approach so costly that it would

negate a possible gain (there may be many di�erent

implementations of TPEs that provide di�erent secu-

rity guarantees). A non-repudiable proof for a pol-

icy violation of an enforced policy or of an attempted

or successful breaking of a TPE might be punished

much more severely than a mere policy violation since

it proves a much larger determination to commit a

criminal o�ence.

References

[1] R. Anderson and M. Kuhn. Tamper resistance

� a cautionary note. In The Second USENIX

Workshop on Electronic Commerce Proceedings,

pages 1�11, Oakland, California, November 1996.

[2] M. Blaze, J. Feigenbaum, and J. Lacy. Dis-

tributed trust management. In Proceedings of the

1996 IEEE Symposium on Security and Privacy,

pages 164�173, May 1996.

10 of 11

[3] G. Brassard. Modern Cryptology � A Tutorial,

volume 325 of Lecture Notes in Computer Sci-

ence. Springer Verlag, 1988.

[4] A. Carzaniga, G. P. Picco, and G. Vigna. De-

signing distributed applications with mobile code

paradigms. In R.Taylor, editor, Proceedings of the

19th International Conference on Software En-

gineering (ICSE'97), pages 22�32. ACM Press,

1997.

[5] D. Chaum and T. P. Pedersen. Wallet databases

with observers. In Advances in Cryptology:

Crypto'92, volume 740 of Lecture Notes on Com-

puter Science, pages 89�105. Springer, 1992.

[6] D. M. Chess, B. Grosof, C. G. Harrison,

D. Levine, C. Parris, and G. Tsudik. Itinerant

agents for mobile computing. IEEE Personal

Communications, 2(3):34�49, October 1995.

[7] W. Di�e and M. E. Hellman. New directions in

cryptography. IEEE Trans. Inform. Theory, IT-

22(6):644�654, 1976.

[8] DoD. Trusted Computer System Evaluation Cri-

teria (TCSEC). Technical Report DoD 5200.28-

STD, Department of Defense, December 1985.

[9] F. Dupuy, G. Nilsson, and Y. Inoue. The TINA

Consortium: Toward networking telecommunica-

tions information services. IEEE Communica-

tions Magazine, November 1995.

[10] The Economist. The collapse of Barings, March

4 1995.

[11] J. S. Fritzinger and M. Mueller. Java security.

White paper, Sun Microsystems, Inc., 1996.

[12] J. Gosling and H. McGilton. The java language

environment. White paper, Sun Microsystems,

Inc., 1996.

[13] R.S. Gray. Agent Tcl: A transportable agent

system. In Proceedings of the CIKM Workshop on

Intelligent Information Agents, Baltimore, MD,

December 1995.

[14] C. G. Harrison, D. M. Chess, and A. Kershen-

baum. Mobile agents: Are they a good idea?

In J. Vitek and C. Tschudin, editors, Mobile Ob-

ject Systems: Towards the Programmable Inter-

net, volume 1222 of Lecture Notes on Computer

Science, pages 25�47. Springer, 1997. Also avail-

able as IBM Technical Report RC 19887.

[15] A. Herzberg and S. S. Pinter. Public pro-

tection of software. In Advances in Cryptol-

ogy: CRYPTO'85, pages 158�179, Santa Bar-

bara, California, August 1985.

[16] ITU. ITU-T Recommendation X.509: The Direc-

tory � Authentication Framework. International

Telecommunication Union, 1993.

[17] P. Johns. Signing and marking ActiveX controls.

Developer Network News, November 1996.

[18] OMG. CORBA: The Common Object Request

Broker Architecture (Revision 2.0). Object Man-

agement Group, July 1995.

[19] RSA Data Security, Inc. PKCS #1: RSA En-

cryption Standard. RSA Data Security, Inc.,

November 1993.

[20] R. A. Rueppel. A formal approach to secu-

rity architectures. In EuroCrypt, pages 387�398,

Brighton, England, 1991.

[21] B. Schneier. Applied cryptography. Wiley, New

York, 1994.

[22] J. G. Steiner, C. Neuman, and J. I. Schiller. Ker-

beros: An authentication service for open net-

work systems. In Proceedings of the USENIX

Winter 1988 Technical Conference, pages 191�

202. USENIX Association, Berkeley, USA, Febru-

ary 1988.

[23] New York Times. U.S. workers stole data on

11,000, agency says, April 6, 1996.

[24] J. E. White. Telescript technology: The founda-

tion for the electronic market place. White paper,

General Magic, Inc., 1994.

[25] I. S. Winkler. The non-technical threat to com-

puting systems. Computing Systems, USENIX

Association, 9(1):3�14, Winter 1996.

[26] T. Y. C. Woo and S. S. Lam. Authentication for

distributed systems. IEEE Computer, 25(1):39�

52, January 1992.

[27] Bennet Yee and Doug Tygar. Secure coprocessors

in electronic commerce applications. In Proceed-

ings of The First USENIX Workshop on Elec-

tronic Commerce, New York, New York, July

1995.

[28] P. Zimmermann. PGP User's Guide. MIT Press,

Cambridge, 1994.

11 of 11

