National EW Research & Simulation Center

Persistent OSPF Attacks

Gabi Nakibly^{1,2}

1

Alex Kirshon² Dima Gonikman² Dan Boneh³

¹National EW Research & Simulation Center, Israel ²CS department, Technion, Israel ³CS department, Stanford

Network & Distributed System Security 2012

MANOR Advanced Defense Technologies Division National EW Research & Simulation Center

Overview

- They allow to remotely control a router's routing table without having to control the router itself.
- A <u>single</u> compromised router inside an AS can compromise the routing of the <u>whole</u> AS.
- Potentially every OSPF implementation is vulnerable.
 - The attacks were verified against Cisco's IOS.

Overview

MANOR Advanced Defense Technologies Division

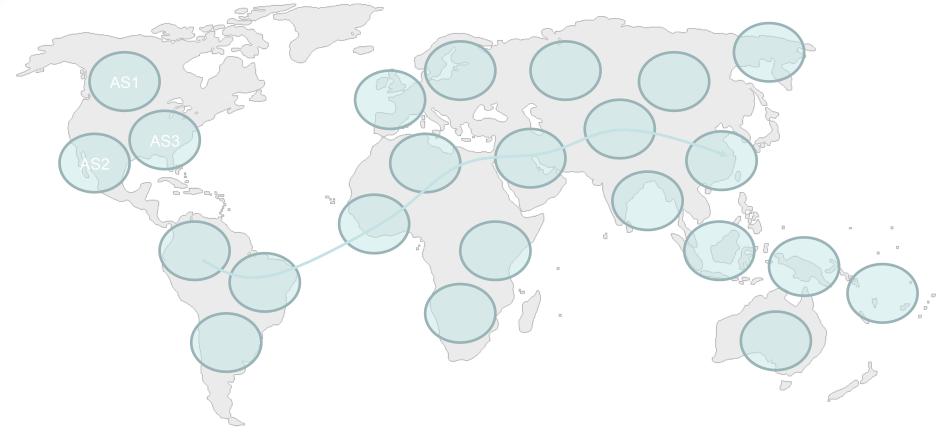
National EW Research & Simulation Center

Who is vulnerable?

- Potentially all commercial routers are vulnerable!
- The vulnerabilities were found in the spec of the OSPF protocol [RFC 2328].
- The attacks have been verified against Cisco IOS 15.0(1)M.
 - IOS's latest stable release

National EW Research & Simulation Center

Outline


• OSPF primer

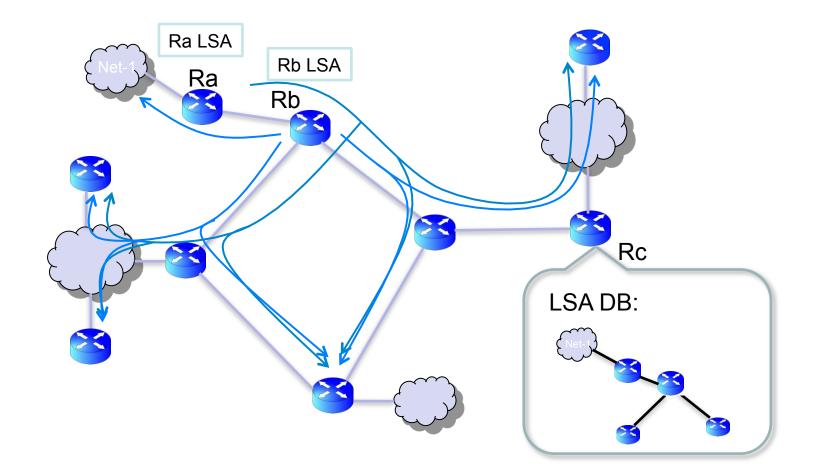
- OSPF security strengths
- The newly found vulnerabilities and attacks
- Attacks' effectiveness

OSPF primer

National EW Research & Simulation Center

Internet Routing – The Big Picture

Inter-AS routing – BGP Intra-AS routing – OSPF, RIP, IS-IS

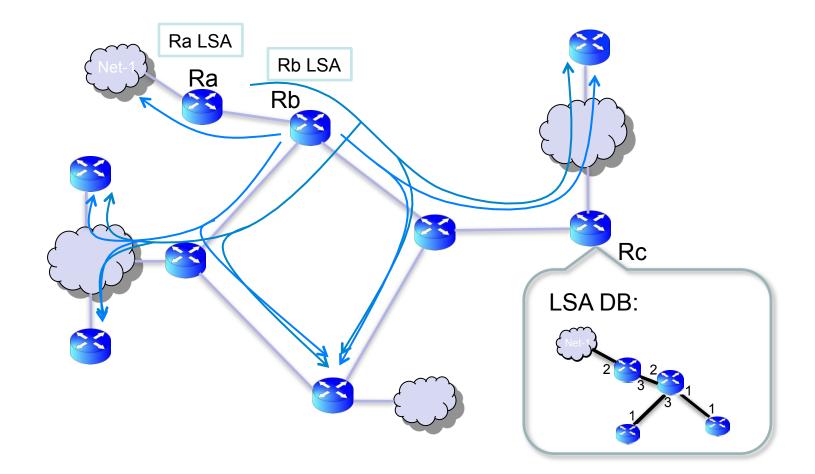


OSPF primer

MANOR Advanced Defense Technologies Division

National EW Research & Simulation Center

How OSPF works?



OSPF primer

MANOR Advanced Defense Technologies Division

National EW Research & Simulation Center

How OSPF works?

National EW Research & Simulation Center

LSAs

- Each LSA is advertised periodically
 - Sequence number
 - To differentiate between instances of the same LSA
 - Age
 - To allow a specific instance of an LSA to expire

National EW Research & Simulation Center

The Attacker

RAFAEL

- Location: Inside the AS
 - Controls a single router
 - Arbitrary location
 - Goal:

 Persistent control over the routing tables of other routers in the AS

MANOR Advanced Defense Technologies Division

National EW Research & Simulation Center

OSPF Security Strengths

- Per-link authentication
 - Every link has its own shared secret
- Every LSA is flooded throughout the AS
- The "fight back" mechanism

National EW Research & Simulation Center

Known Attacks

• Falsify LSAs of:

- The attacker's router
 - Very limited
- other routers
 - Known examples: Seq++, MaxSeq,...
 - Trigger immediate fight back
 - A non-persistent attack
- phantom routers
 - Does not have an affect on the routing table

National EW Research & Simulation Center

Known Attacks

• In summary,

- The common conception is that even if the attacker is an insider it can not <u>persistently</u> falsify the LSA of a router it does not control.
 - Hence, it can not significantly poison the routing tables of other routers.

MANOR Advanced Defense Technologies Division

National EW Research & Simulation Center

The New Attacks

- Attack #1 Remote False Adjacency
 - Make a remote router include a non-existing link in its LSA
- Attack #2 Disguised LSA
 - Falsify the entire LSA of remote router

MANOR Advanced Defense Technologies Division

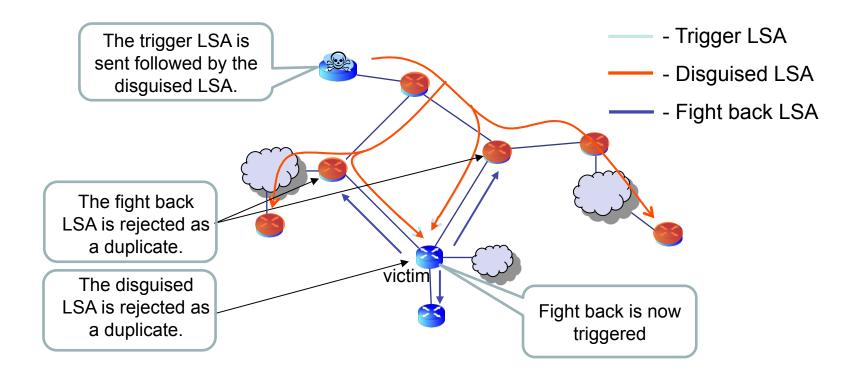
National EW Research & Simulation Center

Attack #2 – Disguised LSA

- The vulnerability
 - Two different instances of an LSA are considered identical if they have the same [RFC 2328 Sec. 13.1]:
 - Sequence number
 - Checksum
 - Age (+/- 15 minutes)
 - The actual payload of the LSAs are not considered!
- The attack
 - Advertise a false LSA having the same values for these three fields as a valid LSA.
 - The benefit: no fight back is triggered since the victim views the false LSA as a duplicate of the LSA it just advertised.

Attack #2 – Disguised LSA (cont.)

- The attack (cont.)
 - But, there is a problem: all other routers in the AS will also consider the false LSA as a duplicate
 - therefore, they will not install it in their LSA DB.
 - Solution: Disguise the LSA to the <u>next</u> valid instance of the LSA
 - While at the same time the victim originate this next valid instance
 - The trigger is done using the fight-back mechanism


Attack #2 – Disguised LSA

MANOR Advanced Defense Technologies Division

National EW Research & Simulation Center

Application

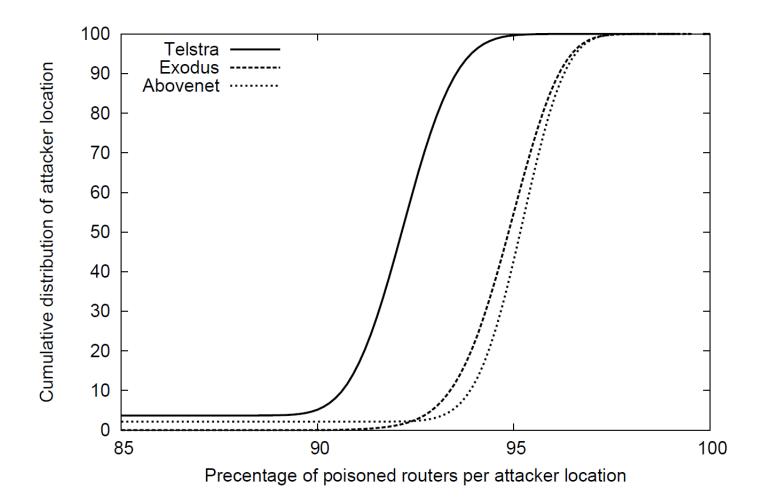
• The attacker floods consecutively the trigger and then the disguised LSA.

National EW Research & Simulation Center

How the disguised LSA can be crafted?

• Age: this is the easiest one.

- The disguised LSA will be advertised within 15 minutes of the valid (fight back) LSA.
- Sequence: the value is always incremented by one.
 - The disguised LSA will have the sequence of the trigger LSA plus 1.
- Checksum: this is the hardest feat, but not that hard.
 - The content of the next valid LSA is deterministic and predictable, hence the checksum is also predictable.
 - A dummy Link entry in added to the payload of the LSA.
 - The value of this entry is calculated such that the entire LSA will have the desired checksum.
 - This can be done since a checksum is a 16-bit result of a linear calculation on the LSA octets.


National EW Research & Simulation Center

Attack Effectiveness

- We simulated the attack on real ISP topologies
 - Inferred by the RocketFuel project
- We measured for every pair of attackervictim locations what is the percentage of poisoned routers.

National EW Research & Simulation Center

Simulation Results

National EW Research & Simulation Center

Conclusions

- Up until now the common conception was that even if the attacker is an insider it can not persistently poison the routing table of a router it does not control.
 - The new attacks shatter this misconception.
- Using these attacks one can control the entire routing domain from a single router.

National EW Research & Simulation Center

In Summary ...

Using these attacks one can control the entire routing domain from a single router.