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Internet = Online Social Networks ¢
I

0 Most visited websites:
0 Facebook (2sd), YouTube (39), Twitter (10™)

0 Facebook':
o > 800M users
O > 350M users access through their mobile
o > 250M photos are uploaded per day
O > 20M application installation per day

And privacy ¢¢

1: hitps:/ /www.facebook.com /press /info.php2statistics
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Goadl

0 Inferring Missing /Hidden information from a public

user profile

nl|. F. |Io I.I .F I. [2’3]

O Only using user’s revealed data

*: http:/ /1 3thfloorgrowingold.wordpress.com/



What people reveals ¢

Friendship Gender Likes Missing
I ‘ values
Current City Looking for Hometown Relationship  Interested In
Birthday Religion

6% 1%



Homophily or not homophily

Mme Michou Age = Hidden
Age ¢



Quiz

Who is this guy 2 Who likes his music ¢



Musice Why would that work ¢
IR

0 In real life, an individual interest (or lifestyle) might
reveal many aspects of his personal information

O demographics or geopolitical aspects.

0 Availability
O Seemingly harmless ;-)

O by default settings?



Not that easy
I

1 Heterogeneity
O Too general “l like Jazz Music”

o0 Too specific “Angus Young”

0 Difficult to semantically link interests

0 What is the link between Angus Young, Brian Johnson
and High Voltage ¢



likes
S0

v One of the MOST available data
v Describe users’ tastes
v Can be used to derive user information

O Gender, Location, Age, Marital status, Religion, etc.

x  Very sparse (millions of likes)

x User-generated (No defined pattern)

x  No “standard” granularity




A toy example

0 Mohammad-Reza Shajarian, Nazeri, Gogosh
0 What does it mean (lack of semantics)

0 What can we infer ¢



Semantics: a naive example
I

(] [
[ ShCI|GI'IGn: 1940 births; Living people; Iranian classical; vocalists Iranian;
humanitarians Iranian; male singers; Iranian musicians

0 Nazei: Grammy Award winners; Iranian Kurdish people; Living people; Iranian
classical vocalists; Iranian humanitarians; Iranian Légion d'honneur recipients; Iranian
male singers

O Gogosh: people of Azerbaijani; descent Iranian female; Persian-language
singers; Iranian pop singers; Iranian Shi'a; Muslims People from Tehran

Btw it belongs to
http:/ /facebook.com /kave.salamatian




Semantics: a naive example |l

N
] ShCIiCI rian: 1940 births; Living people; Iranian classical; vocalists Iranian;

humanitarians Iranian; male singers; Iranian musicians

0 Nazei: Grammy Award winners; Iranian Kurdish people; Living people; Iranian

classical vocalists; Iranian humanitarians; Iranian Légion d'honneur recipients; Iranian

male singers

O Gogosh: people of Azerbaijani; descent Iranian female; Persian-language

singers; Iranian pop singers; Iranian Shi'a; Muslims People from Tehran

Iranian classical
Vocalist Iranian
humanitarians Iranian
Iranian Kurdish people
people of Azerbaijani
Persian-language

Iranian Shi'a
Muslims People

Topic about Iran

vocalists lranian
Iranian classical vocalists

Topic about Islam
(Religion)

Topic about classical
music
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Tree of wikipedia
T

T




Extract semantic (Description)
I
0 ‘Ontologized’ version of wikipedia

O Using the “structured knowledge” of Wikipedia

m Extract keywords from a certain ‘granularity’
O Each like is an article

O Extract Parent Categories of the ‘like’ article

m Using the same granularity



Extract semantic (Description)
N

0 Using the same granularity allows us to semantically
‘link’ similar concepts

AC/DC: Australian heavy metal musical groups; Australian hard rock musical
groups; Blues rock groups; Musical groups established in 1973;

Ang UsS Young: AC/DC members; Australian blues guitarists; Australian rock
guitarists; Australian heavy metal guitarists

ngh Vol’rage: AC/DC songs ; Songs written by Angus Young; 1970s rock

song stubs



The Algorithm
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LDA Intuition
]

Interestl:
wl, w2,
w3 ..

All available

Interests

Il: Interestl
Tl: Topic 1

LD. Dics)

Classify

K topics

Topicl:
Prob (I1—2>T1)

Prob(I2->T1l)..




LDA as a Probabilistic model
I

1.

Treat data as observations that arise from a
generative probabilistic process that includes hidden
variables

® For documents, the hidden variables reflect the thematic structure
of the collection.

Infer the hidden structure using posterior inference

® What are the topics that describe this collection?

Situate new data into the estimated model.
B How does this new document fit into the estimated topic structure 2

D.Blei (MLSS’09)



LDA
I I —

1 Words collected into documents
O Each document is a mixture of a small number of topics

0 Each word's creation is attributable to one of the document's
topics

O Topics are not nominative

O Input:

= Documents (words Frequency)
® Number of Topics (K)

O Output

= Word distribution per topic
w Probability for each documents to belong to each topic
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The Algorithm

Augmented interests (Interest descriptions)

Interests
I1 : Michael Jackson
12 : Lady Gaga
I3 : Lil Wayne Wikipedia
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Step3



Inferring Hidden Attribute
2

0 IFV ‘uniquely’ quantifies the interest of each user
along topics

0 Classify users based on IFV

O Simple approach
O Using the nearest neighbors (K-NN)

0 Similar users grouped together.

O User sharing the ‘same’ taste should share the same
attributes



Nearest Friend Neighbor
I

0 We define an appropriate distance measure in this
space: chi-squared distance metric

(Vi — Wi
v = Z V+W))

1 Using Kd-tree to reduce the computation from %/2
to O(Mlogy M))



Example
—r

IFV Attribute to infer

T W+ W)

The n nearest users to user1 are: S={user3, userm, ...}

The attribute is equal the the majority of the attribute in S
(Majority voting)



Datasets
Tao |

0 Public Profiles
O Crawled more than 400k profiles (Raw-Profiles)

0 More than 100k Latin-written profiles with music
interests (pub-Profiles)

0 Private Profiles
O Using a Facebook App.

0 More than 4000 Private profiles (used 2.5 K, Volunteer-
Profiles)



Attribute inference
N

0 We infer the following attributes:

O Binary
m Gender {Male, Female}
m Relationship {Single, Married}

O Multi-value
m Country {US,PH,IN,ID,GB,GR,FR,MX,IT,BR } (top10)
m Age group {13-17, 18-24, 25-34, 35-44, 44-54, >54}



Base-Line Inference
IS

01 Rely on marginal distributions

0 Maximum Likelihood of attributes
I{vIiuy =val*v € U} |
1U |

P(ux=vallU) =

0 Guess the attributes’ x value from its most likely
value for all users

Attribute Value

Gender 51% (Male)
Relationship status Unknown

Age 26.1% (26-34)

Country 23% (U.S)




Inference Accuracy of PubProfiles
I

Attribute Baseline | Random guess | IFV Inference
Gender 51% 50% 69 %
Relationship 50% 50% 71%
Country 41% 10% 60%
Age 26% 16.6% 49%

TABLE IV: Inference Accuracy of PubProfiles

0 More than 20% of gain in most cases



Deeper view: Gender
I

0 It is clear from the results that music Interests predict
Female with a high probability

0 May be explained by the number of female
profiles in our dataset (62%)

Inferred
Attribute Male Female
Male 53% 47%
Female 14% 86%

TABLE V: Confusion Matrix of Gender



Deeper view: Relationship
I

0 It is challenging since less than 17% of crawled users disclose
this attributes
0 Single users are more distinguishable

o Single users share on average 9 music Interests whereas married
share only 5.7

Inferred : :

Attribute Single | Married
Single 78% 22%
Married 36% 64%

TABLE VI: Confusion Matrix of Relationship



Deeper view: Country
En

0 80% of users belong to top 10 countries

0 Country with specific (regional) music have better accuracy

=>» we clearly see the role of the semantic

w0 5 L — Country | % of users
= US 71.9%
= PH 7.80%
=g IN 6.21%
X : I IN [
= PH ID 5.08%
— D
| GB 3.62%
GR 2.32%
e FR 2.12%
= MX 0.41%
. GR T us MX PH ID IT 0.40%
BR 0.01%

TABLE VII: Top 10 countries dis-
tribution in PubProfiles




Accuracy for VolunteerProfile
A
0 The results are slightly the same as for PubProfile

0 Our method is independent from the source of
information

Attribute Baseline | Random guess | IFV Inference
Gender 51% 50% 72.5%
Relationship 50% 50% 70.5%
Age 26% 16.6% 42%

TABLE IX: Inference Accuracy for VolunteerProfiles



Discussion ¢/
A ————

v No need for frequent model updates

v The approach is ‘rather’ General

v OSN Independent: Many other sources of Information
(deezer, lastfm, blogs, forums) etc.

v Use a free, open and updated encyclopedia



Discussion X E IDislike

- J
1 Augment the model by analyzing more interest’
category
O Movies
O Books
o Sport ...
0 Multilanguage Wikipedia to handle foreign
language

0 More aggressive stemming



Conclusion

oy
0 Wikipedia Ontology to extract Semantics
01 LDA to extract Topics

O Socio, demographics, geo political aspects
o “virtual” Communities

7 K-NN to infer attributes

01 The approach is general
0 Using seemingly harmless information

O Efficient, inconspicuous profiling



If someday we all go to prison
for downloading music,

| just hope they split us by
the music genre.
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E Facebo0k Questions

Get answers from the le you trust.
( ) pPEOpIE Y




Crawling Facebook
I .

0 Crawling Facebook was challenging

O Protection using JavaScript rendering:
® Using a homemade lightweight browser

O Protection using a threshold for a maximum number of request
® Using multiple machines

0 Avoiding Biased Sampling
O Crawling Facebook public directory (100 millions users)
O Randomly choose a user and crawl his/her profile

0 Parsing HTML pages

O It is just a mess



Availability of attributes

B

Gender

Interests 57 100 62
Current City 23 29 48
Looking For 22 34 -
Home Town 22 31 48
Relationship 17 24 43
Interested In 16 26 -
Birth Date 6 11 72

Religion 1 2 0



