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Another Study in Spam Detection?? 

•  Unique characteristics of OSNs 
–  Are existing features still effective? 

–  Number of words 

–  Average word length 

–  Sender IP neighborhood density 

–  Sender AS number 

–  Status of sender’s service ports 

–  … 

– Any new features? 

Not effective! 
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Goals and Existing Work 

•  An effort towards a system ready to deploy 

•  Existing studies in OSN spam: 
–  [Gao IMC10, Grier CCS10] offline analysis  

–  [Thomas Oakland11] landing page vs. message content 

–  Numerous work in spammer-faked account detection 

 Online detection 

 High accuracy 

  Low latency 

 Detection of campaigns absent from 
training set 

 No need for frequent re-training 
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•  Detection System Design 

•  Evaluation 

•  Conclusions & Future Work 

Roadmap 
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We Do NOT:  
 Inspect each message individually 

                                            … 

Key Intuition 

msg_1 msg_2 msg_3 msg_n 

Spam?? Spam?? Spam?? Spam?? 



8 8 

We Do:  
 Inspect correlated message clusters 

Key Intuition 

msg_k msg_j 

msg_k 

msg_i 
Correlated 
messages?? Spam 

cluster?? 
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System Overview 

Detect coordinated spam campaigns. 
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Incremental Clustering 

•  Requirement: 
–  Given the clustering result of the first k messages and 

(k+1)th message  
–  Efficiently compute the result of the (k+1) messages 

•  Adopt text shingling technique 
–  Pros: High efficiency 

–  Cons: Syntactic method 
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Feature Selection 

•  Feature selection criteria: 
–  Cannot be easily maneuvered. 

–  Grasp the commonality among campaigns. 

•  6 identified features: 
  Sender social degree 
  Interaction history 
  Cluster size 

  Average time interval 
  Average URL # 
  Unique URL # 
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•  Detection System Design 

•  Evaluation 

•  Conclusions & Future Work 

Roadmap 
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•  All experiments obey the time order 

–  First 25% as training set, last 75% as testing set. 

•  Evaluated metrics: 

Dataset and Method 

  Overall accuracy 
  Accuracy of feature subset 
  Accuracy over time 

  Accuracy under attack 
  Latency 
  Throughput 

Site Size Spam # Time 
Facebook 187M 217K Jan. 2008 ~ Jun. 2009 
Twitter 17 M 467K Jun. 2011 ~ Jul. 2011 
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Best result 
–  FB: 80.9% TP 0.19%FP 
–  TW: 69.8%TP 0.70%FP 

Overall Accuracy 
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No significant drop of TP or increase of FP 

Accuracy over Time 



16 16 

Latency 

Latency (ms) Facebook Twitter 
Mean 21.5 42.6 
Median 3.1 7.0 
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•  Detection System Design 

•  Evaluation 

•  Conclusions & Future Work 

Roadmap 
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Conclusions 

•  We design an online spam filtering system 
based on spam campaigns. 
–  Syntactical incremental clustering to identify message 

clusters 
–  Supervised machine learning to classify message 

clusters 
•  We evaluate the system on both Facebook and 

Twitter data 
–  187M wall posts, 17M tweets 
–  80.9% TPR, 0.19% FPR, 21.5ms mean latency 

Prototype release: 
http://list.cs.northwestern.edu/osnsecurity/ 
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Cool , I by no means noticed anyone do that prior to . {URL} 

Wow , I in no way noticed anyone just before . {URL} 

Amazing , I by no means found people do that just before . {URL}  

Future Work 

Cool , I by no means  noticed anyone do that  prior to  . {URL} 

Wow , I in no way  noticed anyone just before  . {URL} 

Amazing , I by no means  found people do that  just before  . {URL} 

{Cool | Wow | Amazing} + , I + {by no means | in no way} + 
{noticed | found} + {anyone | people} + {do that | ε} +  
{prior to | just before} + . {URL} 

Template generation? 

Call for semantic clustering approaches 
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Thank you! 
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Contributions 

•  Design an online spam filtering system to deploy as a 
component of the OSN platform.  
–  High accuracy 

–  Low latency 

–  Tolerance for incomplete training data 

–  No need for frequent re-training 

•  Release the system 
–  http://list.cs.northwestern.edu/socialnetworksecurity 
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Incremental Clustering 

shingle_1 

shingle_2 

shingle_3 

… 

msg_11 msg_13 

msg_21 msg_22 msg_23 

msg_31 msg_33 msg_32 

msg_12 

… 
… 
… 

msg_new 

shingle_i 

shingle_k 

shingle_j … 

Compare and 
Insert 
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Sender Social Degree 

•  Compromised accounts: 
–  The more edges, with a higher probability the node 

will be infected quickly by an epidemic. 

•  Spammer accounts: 
–  Social degree limits communication channels. 

•  Hypothesis: 
–  Senders of spam clusters have higher average social 

degree than those of legitimate message clusters. 
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Sender Social Degree 

Average social degree of spam and legitimate 
clusters, respectively. 
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Interaction History 

•  Legitimate accounts: 
–  Normally only interact with a small subset of its 

friends. 

•  Spamming accounts: 
–  Desire to push spam messages to as many recipients 

as possible. 

•  Hypothesis: 
–  Spam messages are more likely to be interactions 

between friends that rarely interact with before. 
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Interaction History 

Interaction history score of spam and legitimate 
clusters, respectively. 
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•  Scalability 

–  300M tweets/day 

–  Map-reduce style and cloud computing? 

Other Thoughts 


