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Background

i |

More than 800 million active users

People on

Facebook More than 50% of our active u

Facebook I

facebook.com
A social utility that connects people, to keep up with friends, upload photos, share links and ... More
ﬁﬁ ﬁﬁ w Search Analytics » Audience »

Twitter |

twitter.com
Social networking and microblogging service utilising instant messaging, SMS or a web interface.
ﬁﬁ ﬁﬁ [4'_ Search Analytics » Audience »
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\\é'oAnother Study in Spam Detection??
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rUnique characteristics of OSNs

— Are existing features still effective?
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Goals and Existing Work

\

e
r An effort towards a system ready to deploy

% Online detection ¢ Detection of campaigns absent from
« High accuracy training set
< Low latency % No need for frequent re-training

« Existing studies in OSN spam:
— [Gao IMC10, Grier CCS10] offline analysis
— [Thomas Oakland11] landing page vs. message content

— Numerous work in spammer-faked account detection
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Key Intuition

We Do NOT:
Inspect each message individually




Key Intuition

We Do:
Inspect correlated message clusters
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Eg\a sttem Overview

rDetect coordinated spam campaigns.
Time
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%; Incremental Clustering
[\
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\
r- Requirement:

— Given the clustering result of the first kK messages and
(k+1),, message

— Efficiently compute the result of the (k+1) messages

* Adopt text shingling technique
— Pros: High efficiency

— Cons: Syntactic method
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Feature Selection
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 Feature selection criteria:

— Cannot be easily maneuvered.

— Grasp the commonality among campaigns.

* 6 identified features:

% Sender social degree * Average time interval
* Interaction history “ Average URL #

% Cluster size * Unique URL #

L)
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« Evaluation

 Conclusions & Future Work
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%;. Dataset and Method
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Facebook 187M 217K Jan. 2008 ~ Jun. 2009
Twitter 17M 467K Jun. 2011 ~ Jul. 2011

* All experiments obey the time order

— First 25% as training set, last 75% as testing set.

« Evaluated metrics:
¢ Overall accuracy ¢ Accuracy under attack
¢ Accuracy of feature subset < Latency

s Accuracy over time ¢ Throughput
13
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Overall Accuracy
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Best result
— FB: 80.9% TP 0.19%FP
— TW: 69.8%TP 0.70%FP
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True Positive Rate (%
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Roadmap

« Conclusions & Future Work
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We design an online spam filtering system

based on spam campaigns.

— Syntactical incremental clustering to identify message
clusters

— Supervised machine learning to classify message
clusters

* We evaluate the system on both Facebook and
Twitter data
— 187M wall posts, 17M tweets
— 80.9% TPR, 0.19% FPR, 21.5ms mean latency

Prototype release:
http://list.cs.northwestern.edu/osnsecurity/
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Q{ Future Work
[\

Cool , | by no means noticed anyone do that prior to . {URL}
Wow ,| innoway noticed anyone just before . {URL}
Amazing ,| by no means found people do that just before . {URL}

{CodUalldor semanptic clusteringapproachesy; +
{noticed | found} + {anyone | people} + {do that | €} +
{prior to | just before} + . {URL}

Template generation?
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\\g: Contributions

rDesign an online spam filtering system to deploy as a
component of the OSN platform.

— High accuracy

— Low latency

— Tolerance for incomplete training data

— No need for frequent re-training

* Release the system

— http://list.cs.northwestern.edu/socialnetworksecurity
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Incremental Clustering

N\
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Sender Social Degree
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 Compromised accounts:

— The more edges, with a higher probability the node
will be infected quickly by an epidemic.

¢ Spammer accounts:

— Social degree limits communication channels.

* Hypothesis:

— Senders of spam clusters have higher average social
degree than those of legitimate message clusters.
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Interaction History

* Legitimate accounts:

— Normally only interact with a small subset of its
friends.

« Spamming accounts:

— Desire to push spam messages to as many recipients
as possible.

* Hypothesis:

— Spam messages are more likely to be interactions
between friends that rarely interact with before.
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Interaction History

rlnteraction history score of spam and legitimate
clusters, respectively.
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! Other Thoughts
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« Scalability

— 300M tweets/day

— Map-reduce style and cloud computing?
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