
On Limitations of Designing Leakage-Resilient Password Systems: Attacks, Principles and Usability

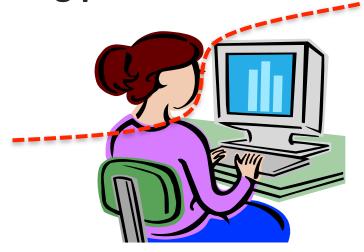
Qiang Yan, Jin Han, Yingjiu Li, Robert H. Deng School of Information Systems

Singapore Management University

Leakage-Resilient Password Systems (LRPS)

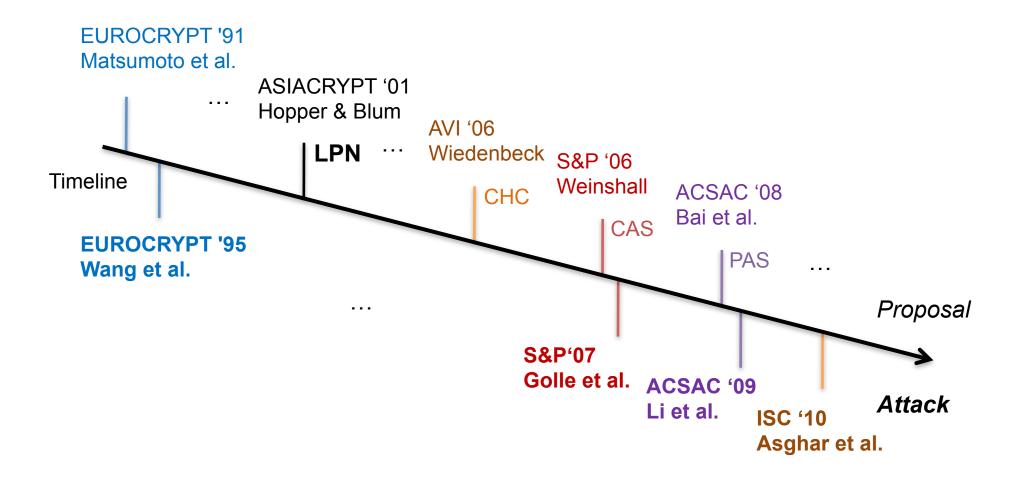
- Malware, e. g. software keylogger,
 MITM-at-the-browser
- Untrusted input device e.g. hardware keylogger

Shoulder surfing
 e. g. hidden camera recording

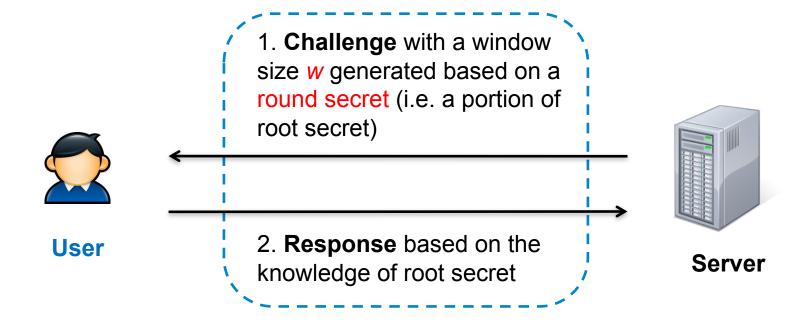


Leakage-Resilient Password Systems (LRPS)

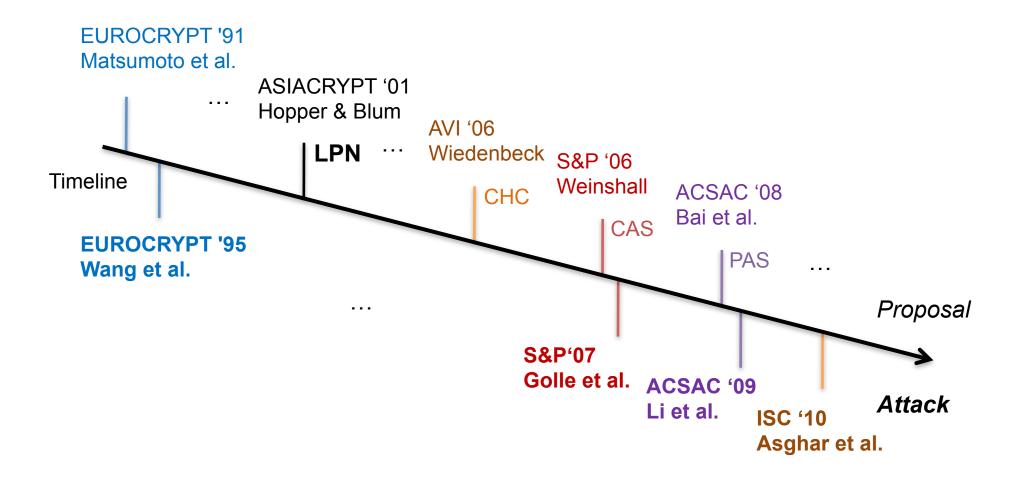
- Assumption
 - strong passive attacker


Adversary sees **everything** below the red line.

- Unaided user


Prior efforts on LRPS for unaided humans

The **k**-out-of-**n** LRPS Paradigm


User's root secret (i.e. password) consists of k secret elements out of n.

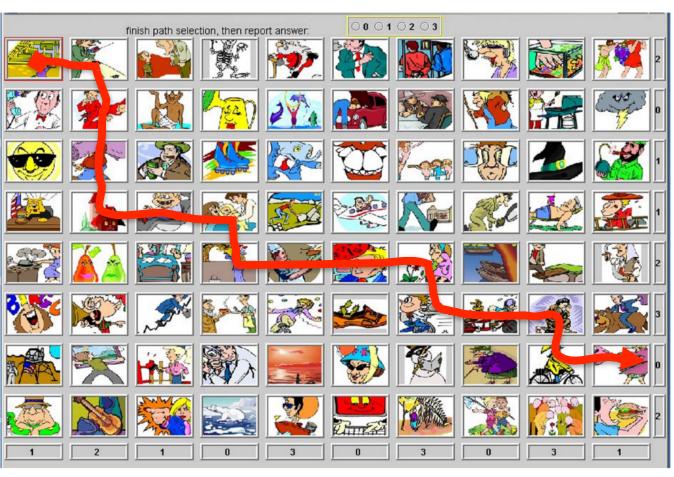
Repeat steps 1 and 2, until the number of correct user responses reaches a **threshold**.

Prior efforts on LRPS for unaided humans

Two generic attacks

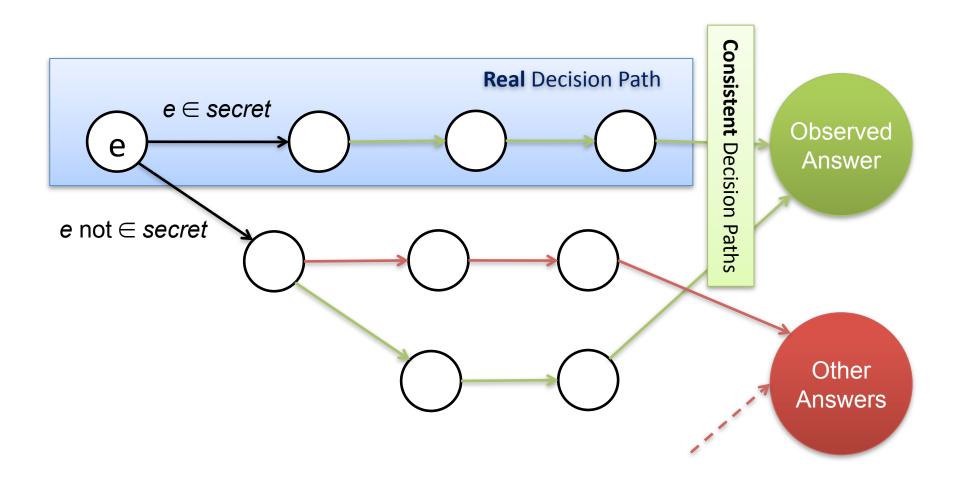
Brute force

- Eliminate password candidates that do not lead to correct responses.
- Effectiveness is design-independent.
 - Applicable to any LRPS with small password space


Statistical analysis

- Find out the most likely passwords.
- Effectiveness is design-dependent.
 - Applicable to many LRPSs even with large password space
- They are common knowledge but are underestimated.

Statistical bias in decision paths (1/2)


CAS High [S&P06, Weinshall]: Root secret consists of **k** = 30 images out of 80

- 1. Start from upper-left corner.
- 2. Move down if the current image is a secret image; Otherwise move right.
- 3. **Answer** = the number associated with the exit.

Probabilistic decision tree

Score mechanism of probabilistic decision tree

- Rationale:
 - At least one of the consistent decision paths is the correct path.
 - Other consistent decision paths are "noises" whose effects will cancel out over multiple rounds.
- Basic probabilities:
 - P_1 : $P(e \subseteq secret) = \frac{k}{n}$
 - $-P_0$: P(e not \subseteq secret) = $1 P_1$
- Create a 1-element score table; in each round, compute
 - $P(X) = P(\langle S_1, D_1, D_2, S_2 \rangle) = P_1 * P_0 * P_0 * P_1$
 - $-P_c$ = sum of probabilities of all consistent paths
 - Score(S_1) += $P(X)/P_C$
 - Score(D_1) -= $P(X)/P_C$

Statistical bias in decision paths (2/2)

CAS High [S&P06, Weinshall]

43758 possible decision paths in total, with average path length of 14.55.

Secret images score significantly higher than decoy images after a sufficient number of observations.

Recover the exact root secret after observing 65 sessions.

Usability costs of preventing the two generic attacks

1. Large root secret space

Memory

2. Large round secret space

Memory

Computation

3. Uniformly distributed challenges

Round Number

Window Size

4. Complex challenges

or **counting-based** challenges

Computation

Round Number

Quantitative evidences from psychology

- Human beings have limitations on cognitive capability and memory.
 - These limitations will NOT be significantly improved even after repetitive rehearsal.
- Atomic Cognitive Operations
 - (Single/Parallel) Recognition
 - (Free/Cued) Recall
 - (Single-target/Multi-target) Visual Search
 - Simple Cognitive Arithmetic

High security at cost of heavy cognitive demand

A /	_				
- /\ //		r	se	r	Ira
IVI			3 C	U	

k	n	Win size	Password space	Reported Time /round(sec)	HP (C) /round (sec)	HP (C) /login (sec)	HP (M)	HP Total = $M \times C$ $(\times 10^2)$
15	200	200	1.463×10^{22}	23.71	33.423	668.45	50.68	338.74
16	200	200	8.369×10^{24}	35.50	57.928	347.57	54.05	187.87
60	240	20	2.433×10^{57}	5.00	6.073	121.46	70.75	85.94
30	80	80	8.871×10^{21}	20.00	22.099	220.99	35.38	78.18
14	140	30	6.510×10^{18}	9.00	10.638	212.76	16.51	35.13
5	112	83	1.341×10^{8}	10.97	9.326	93.26	16.89	15.75
4	N/A	13	4.225×10^{5}	8.37	6.837	68.37	13.51	9.24
	15 16 60 30 14 5	15 200 16 200 60 240 30 80 14 140 5 112	k n 15 200 200 16 200 200 60 240 20 30 80 80 14 140 30 5 112 83	k n size space 15 200 200 1.463 × 10 ²² 16 200 200 8.369 × 10 ²⁴ 60 240 20 2.433 × 10 ⁵⁷ 30 80 80 8.871 × 10 ²¹ 14 140 30 6.510 × 10 ¹⁸ 5 112 83 1.341 × 10 ⁸	k n Win size Password space Time /round(sec) 15 200 200 1.463×10^{22} 23.71 16 200 200 8.369×10^{24} 35.50 60 240 20 2.433×10^{57} 5.00 30 80 80 8.871×10^{21} 20.00 14 140 30 6.510×10^{18} 9.00 5 112 83 1.341×10^8 10.97	k n Win size Password space Time /round(sec) /round (sec) 15 200 200 1.463×10^{22} 23.71 33.423 16 200 200 8.369×10^{24} 35.50 57.928 60 240 20 2.433×10^{57} 5.00 6.073 30 80 80 8.871×10^{21} 20.00 22.099 14 140 30 6.510×10^{18} 9.00 10.638 5 112 83 1.341×10^8 10.97 9.326	k n Win size Password space Time /round(sec) /round (sec) /login (sec) 15 200 200 1.463×10^{22} 23.71 33.423 668.45 16 200 200 8.369×10^{24} 35.50 57.928 347.57 60 240 20 2.433×10^{57} 5.00 6.073 121.46 30 80 80 8.871×10^{21} 20.00 22.099 220.99 14 140 30 6.510×10^{18} 9.00 10.638 212.76 5 112 83 1.341×10^8 10.97 9.326 93.26	k n Win size Password space Time /round(sec) /round (sec) /round (sec) HP (M) 15 200 200 1.463×10^{22} 23.71 33.423 668.45 50.68 16 200 200 8.369×10^{24} 35.50 57.928 347.57 54.05 60 240 20 2.433×10^{57} 5.00 6.073 121.46 70.75 30 80 80 8.871×10^{21} 20.00 22.099 220.99 35.38 14 140 30 6.510×10^{18} 9.00 10.638 212.76 16.51 5 112 83 1.341×10^8 10.97 9.326 93.26 16.89

More usable

The **strict** tradeoff relation may not holds, but the **low bound** does.

Why so hard? – capability asymmetry

The adversary

Advantage:

Computation Power Storage

Disadvantage:

Don't know the password

The user

Advantage:

Knowledge of the password

Disadvantage:

Limited cognitive computation

impossible to do CPA secure encryption

E(secret, challenge)

Limited memory

Conclusion

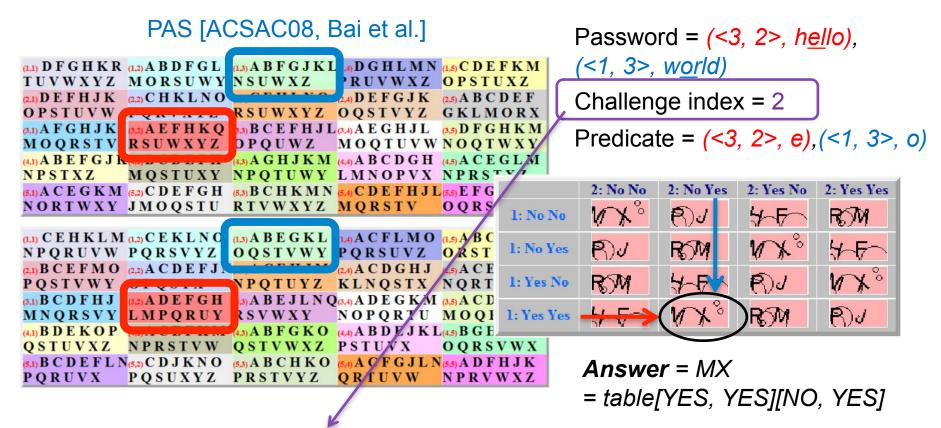
- Our work analyzed the inherent limitations of designing Leakage-Resilient Password Systems.
 - Analyze the impact of two generic attacks that are usually overlooked.
 - Propose the design principles that are necessary to mitigate these generic attacks.
 - Establish the first quantitative analysis framework on usability costs of the existing LRPS systems.
- Our results imply that:
 - An LRPS has to incorporate certain trusted devices in order to be both secure and usable.

Thank You!

Brute force for biased challenges

Undercover [CHI08, Sasamoto et al.]: User selects k = 5 pictures out of n = 28; # of candidate root secrets is $C_{28}^5 = 98280$

At most one secret image will appear in each challenge.


P = 1 (0-indexed)

Brute force recovers the exact root secret after observing 6 sessions.

Answer = (P + r) mod 5, where r is a random integer delivered via a secure channel. Without knowing r, the answer tells nothing.

Brute force for round secrets

The SAME index is used for the same authentication session. Brute force recover the round secret after observing 1 session.

Implications: A challenge that can be solved by a small number secret elements is not secure, cognitive workload has to be increased.

Statistical bias in challenges

Undercover [CHI08, Sasamoto et al.]

At most one secret image will appear in each challenge.

P = 1 (0-indexed)

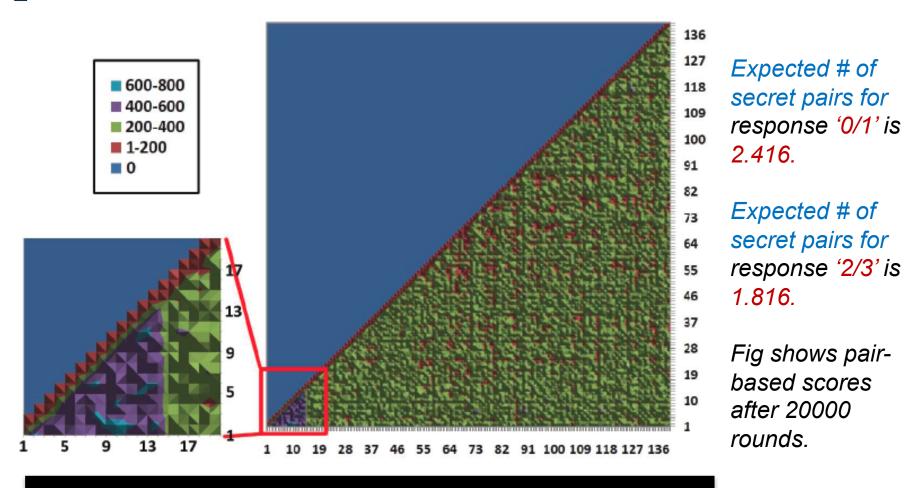
Build a 2-element counting table. A secret image will NOT appear together with another secret image. Recover root secret in 20 sessions.

Answer = (P + r) mod 5, where r is a random integer delivered via a secure channel. Without knowing r, the answer tells nothing.

Implications: A challenge that uniformly draws the candidate elements will be secure, but it will increase the round number or impose a larger window size.

Statistical bias in responses (1/2)

SecHCI [Cryptology ePrint 05, Li et al.]: Root secret consists of **k**=14 icons, **n**=140


5 secret icons appear (duplications allowed).

Answer = $5 \mod 4 = 1$, choose '0/1'

Challenges are designed such that 0/1 and 2/3 appear with the same probability, which is different from of the uniform distribution of secret pictures appearing in a challenge.

Statistical bias in responses (2/2)

Implications: A challenge based on counting problem must use the form $r = x \mod 2$; otherwise the pair-wise bias appears. This is true for all counting based challenges.

Usability score in the quantitative analysis framework

- Cognitive workload: HP(C)
 - Measured by sum of the reaction time of each atomic operations (e. g., counting, mod, simple arithmetic)
 - How fast can an average human solve the challenge?
 - The time limit is implementation-independent
- Memory demand: HP(M)
 - Measured by # of elements memorized X difficulty factor of the specific memory retrieval operation
 - Recall is much more difficult than recognition
- HP = HP(C) X HP(M)

