NDSS 2012, February 7th 2012, San Diego NC STATE UNIVERSITY

Department of Computer Science

Systematic Detection of Capability Leaks in
Stock Android Smartphones

Michael Grace Yajin Zhou Zhi Wang Xuxian Jiang

North Carolina State University

Phones and Computers

“I have always wished that my computer would be as easy
to use as my telephone. My wish has come true. | no
longer know how to use my telephone.”

— Bjarne Stroustrup (designer of C++)

Phones: the PCs of the Future?

NC STATE UNIVERSITY

- Smartphone shipments increased 42% between 3Q
2010 and 3Q 2011 (Gartner, 11/15/2011)

- More smartphones shipping than personal
computers (ibc, 2/7/2011)

- New markets: first computer = smartphone

Smartphone # Handheld PC

- Unique abilities specific to the form factor
- Many sensors: “context-aware”
- Dialup =» always on = always with you

- Resource constrained

- Different vendor relationships and primacy

Related Work

* Problems with Permissions

- e.g., Kirin [Enck et al., CCS ‘09], Soundcomber [Schlegel et al., NDSS ‘11], Stowaway [Felt et
al., CCS “11], Guess Who's Texting You [Schrittwieser et al., NDSS ‘12]...

 Information Leak Detection
- e.g., PiOS [Egele et al., NDSS ‘11], TaintDroid [Enck et al., OSDI “10]...

* Phone Defenses

- e.g., MockDroid [Beresford et al., HotMobile ‘11], TISSA [Zhou et al., TRUST ‘11], AppFence
[Hornyack et al., CCS ‘11], Permission Re-Delegation [Felt et al., USENIX Security ‘11],
QUIRE [Dietz et al., USENIX Security ‘11], XManDroid [Bugiel et al., NDSS ‘12], MoCFI [Davi

etal., NDSS’12]...

- Market Issues
- e.g., DroidMOSS [Zhou et al., CODASPY ‘12], DroidRanger [Zhou et al., NDSS ‘12]...

Firmware and Fragmentation

NC STATE UNIVERSITY

* A conspicuous gap in the body of work!

- Not like on desktops, or other smartphone
platforms

- Research Goal: Determine the impact firmware
customizations have on security and privacy

Android Capabilities

NC STATE UNIVERSITY

 Platform defines some APIs

 APIs may require capabilities (called permissions)

 Applications can define APIs the same way

- What happens when an application defines a new
APl based on a restricted old one?

 That’s up to the author!

Capability Leaks

« Capability Leak: A situation where an app can gain
access to a restricted APl without requesting proper
permission

 Explicit Capability Leak: Broadening access to a
restricted APl by exposing it via another API

 Implicit Capability Leak: Inheriting permissions from
other applications

Explicit Capability Leaks

Leaking API
(needs no permissions,
has permission P)

Outside Caller
(no permissions)

Restricted API
(needs permission P)

Detecting Capability Leaks

- Android SDK gives us no tools!

* Function composition
- Capability leak: g(x) = f(x) + some other stuff

e Intuitive algorithm:
1. Find interesting (dangerous) APIs (f(x))
2. Find new API definitions (g(x))
3. Link them!

10

System Overview

Woodpecker

Preloaded
Apps
Possible Path Infeasible
Identification Path Pruning
Framework

Classes

Phone Image

Android Framework
Knowledge

11

Possible Path Identification

1. Construct a control-flow graph

2. Find all paths from an IPC entry point to an APl of
interest

12

Possible Path Identification: Challenges

NC STATE UNIVERSITY

- Object references
- Class hierarchy used to conservatively resolve references

- Extensive use of callbacks
- Use framework knowledge to stitch together callbacks

UlThread.start() UlThread.run()

Thread.start()

SMSThread.start() SMSThread.run()

Infeasible Path Pruning

NC STATE UNIVERSITY

- Many potential paths exist
« Most are either impossible or uninteresting

- Must prune these uninteresting paths

- Branch conditions need an understanding of program
data-flow

* Explicit permission checks are “infeasible paths”

« Our approach: Symbolic Path Simulation

14

Symbolic Path Simulation

15

Implementation

- Based on the baksmali decompiler (1.2.6)

- Covers 13 permissions, controlling:
- Phone information
 Location API
« Phone dialing
 Sending text messages
- Camera/microphone
- Rebooting/shutting down the device
- Installing/removing apps
* Factory reset

16

Evaluation

quistly brifliant™ 0 w G 00 8[e

MOTOROLA

17

Permission
Coarse Location
Fine Location
Call Phone
Call Privileged
Camera
Delete Packages
Install Packages
Master Clear
Read Phone State
Reboot
Record Audio
Send SMS
Shutdown

Legend
v

v

HTC

EVO 4G || Wildfire S

v
v

AN S BN

Motorola

DROID. DROID X

v
v

Explicit Capability Leaks Found

Samsung

Epic4G Nexus One|| NexusS

NC STATE UNIVERSITY

Google

18

Demo

NC STATE UNIVERSITY

19

Implicit Capability Leaks Found

HTC Motorola Samsung Google

Permission Legend EVO4G WildfireS ' DROID DROIDX | Epic4G NexusOne NexusS
Coarse Location v v v
Fine Location v
Call Phone v
Call Privileged v
Camera
Delete Packages
Install Packages
Master Clear
Read Phone State v v v v
Reboot
Record Audio
Send SMS
Shutdown

20

Performance Measurement

IMEI
Legend 3366.63s

HTC EVO 4G 4175.03s 160

Wildfire S 3894.37s 144

Motorola DROID 2138.38s 76

DROID X 3311.94s 161

Samsung Epic 4G 3732.56s 138

Google Nexus One 2059.47s 76

Nexus S

1815.71s

72

NC STATE UNIVERSITY

21

Discussion

* Accuracy
- False negatives: native code, undocumented extensions
- False positives: conservative analysis

* Threads and Time
- Instruction interleaving, shared state
- Example: callback handling

22

Conclusions

- Capability leaks present a tangible threat to security
and privacy on existing Android smartphones

- We present a system, Woodpecker, to detect these
capability leaks

23

NC STATE UNIVERSITY

Thank youl!

24

Implicit Capability Leaks

- Applications don’t have permissions, user identifiers
(UIDs) do.

e o o e o o e e M M e e e e e e e e e e e e e e e e S e S S S — — ———— ———— — ———— —

UID A UlD X UID B

App A App B

Manifest Manifest

Permission MASTER _CLEAR
sharedUserld X

No relevant permission

|
|
|
|
|
|
|
|
|
|
|
|
sharedUserld X |
|
|
|
|
|
|
|
|
|
|
|
|

masterClear() masterClear()

i e ——————————— —— —— — — — —— —— —— —— —— —

