
SecureSwitch: BIOS-Assisted Isolation and Switch
between Trusted and Untrusted Commodity
OSes !

Kun Sun, Jiang Wang, Fengwei Zhang, Angelos Stavrou !
Center for Secure Information Systems!

George Mason University!

Outline!

  Introduction!
  Related Works!
  Background Knowledge!
  System Architecture!
  Experimental Results!
  Discussion!
  Summary!

Introduction!

  Segregate personal communication and entertainment from
business and government operations!
  In untrusted environment: Web browser, online gaming, social

web portal!
  In trusted environment: Online banking, shopping, business

email!

  Trusted computing environment!
  Separate/isolate the trusted environment from the untrusted

environment!
  Prevent data leakage even if the host has been previously

infected with malware in the untrusted environment.!
  Enables secure transactions on demand with low context

switching latency!

Outline!

  Introduction!
  Related Works!
  Background Knowledge!
  System Architecture!
  Experimental Results!
  Discussion!
  Summary!

Lampson Red/Green System Separation!

  Our work focuses on isolation between two environments!
  Not on how the users decide what applications go into each OS !
  Not on how to give the user control over data exchanges between the two

environments!

Red/Green system: Policy + Isolation + Accountability +Freedom!
* Butler Lampson, Accountability and Freedom Slides, Microsoft, September 2005!

Software-based Isolation Solution!
VMM-based! OS-based! Browser-based!

Isolation
Level !

 OS level! User/Process level! Applet level!

Examples! Xen, VMware, QEMU,
UML!

FreeBSD Jail, !
Linux OpenVZ,
Solaris Container!

Adobe Flash, !
Java applets, !
Silverlight!

Security
concerns!

VMM vulnerabilities*!
Covert Channel!

VMM vulnerabilities!
OS vulnerabilities!
Privilege escalation!

VMM vulnerabilities!
OS vulnerabilities!
Browser vulnerabilities!

* From 1999 to 2009, 373 vulnerabilities affecting virtualization solutions.
! ! !--- “IBM X-Force 2010 Mid-year trend and risk report”!

Hardware-based Isolation Solution!

Multiple !
Computers!

Multi-boot! VT-x / SVM!
(DRTM)!

Isolation
Level!

Whole physical
computer!

OS level;! Instruction level;!

Examples! Bootloader: !
LILO, Grub!

Flicker [1];!
TrustVisor [2];!

Problems! Cost, inflexible! Long switching time! Software compatibility!

Our work provides an BIOS-assistant OS level isolation!
•  without using any mutable software layer (e.g., hypervisor)!
•  no changes of the OS source code !
•  no data leak between two OS environments!
•  fast switching time, around 6 seconds!

Outline!

  Introduction!
  Related Works!
  Background Knowledge!
  System Architecture!
  Experimental Results!
  Discussion!
  Summary!

ACPI Sleeping States!
  Advanced Configuration and Power Interface (ACPI)!

  OS-directed configuration; Power/thermal management!
  Industrial standard widely supported !

  Global System States!
  G0 --- Working (System Operational)
  G1---Sleeping (CPU stopped)
  G2 ---Soft Off
  G3 ---Mechanical off (Physical off switch)

  Sleeping States in G1: S1 – S4!
  S3: also called Standby, Suspend to RAM

  DRAM still maintained
  S4: also called Hibernation or Suspend to Disk

  DRAM not maintained
  Device Power States: D0 – D3!

  D0 - Fully-On!
  D3 -- Power off to device

BIOS, UEFI, and Coreboot!
  Basic Input/Output System (BIOS)!

  Initializing hardware like processor, memory, chipset, hard disk,
and other I/O devices.!

  Stored in non-volatile ROM chips.!

  Unified Extensible Firmware Interface (UEFI)!
  Define a new software interface between OS and firmware.!
  Ease the development by switching into protected mode in early

stage and writing code in C language.!
  Partially open source!

  Coreboot (formerly as LinuxBIOS)!
  Similar functionality as UEFI!
  Open source!
  We use Coreboot V4!

DIMM Mask and DQS Setting!

  A motherboard may have more than one Dual In-line
Memory Module (DIMM) slot.!
  We assign one DIMM to one OS. !

  BIOS uses “DIMM_MASK” variable to control which
DIMMs to be enabled.!
  BIOS sets corresponding “data strobes”(DQS) parameters to

enable DDR RAM memory access.!
  Require two sets of DQS setting to support the two DIMMs used

by two OSes separately. !

Outline!

  Introduction!
  Related Works!
  Background Knowledge!
  System Architecture!
  Experimental Results!
  Discussion!
  Summary!

System Architecture!

Attack Model!

  Assumption!
  BIOS and option ROM on devices can be trusted.!
  No physical access to the protected machine!

  Attacks from the untrusted OS!
  Data exfiltration attacks: stealing sensitive data from the trusted

OS!
  Spoofing Trusted OS attacks: deceiving the user into a fake trusted

OS to perform sensitive transactions.!
  Cache-based side channel attacks: extracting sensitive information!

  Out of the scope !
  Denial of Service attacks!
  Network attacks on trusted OS!
  Malicious device firmware!

Secure Switching State Machine!

Trusted Path!

  A trusted path assures users that they really are working
with the operation system they intend to use.!

  Prevent spoofing trusted OS attacks!
  Untrusted OS should be truly suspended.!

  Power LED lights up when system is powered on, and blinks in the
sleep mode.!

  BIOS should be entered.!
  Press the power button.!

  Protecting system flags/variables!
  OS Flag: which OS should be woken next!
  Boot Flag: if untrusted OS has been loaded!

 Where to save these flags?!

Boot Flag: in CMOS !
OS Flag: physical jumper (e.g., pins in Parallel port connector) !

Secure Switching Process!

System Isolation!

  CPU Isolation: two OSes never run concurrently. !
  Memory Isolation: physical-level isolation!
  Hard disk isolation: encrypted hard disk + RAM disk!
  Other I/O isolation: clean the buffers and states in devices.!

  Isolation Mechanisms:!

CPU ! Memory! Hard Disk! VGA! NIC!
OS with ACPI S3! √! √! √! √! √!

BIOS! √! √!

Physical-level Memory Isolation!

  OS environments run in separate Dual In-line Memory
Modules (DIMMs).!

  BIOS only enables and reports one DIMM for each OS.!
  Two DQS settings for two OSes!
  “DIMM_MASK” controlled by the physical jumper.!
  When the “DIMM_MASK” conflicts with DQS setting, the

system crashes!

  Only the BIOS can initialize and enable the DIMMs;
software cannot initialize or enable DIMMs after the
system boots up!

Hard Drive Isolation!

  Hard disk encryption!
  Two hard disks, one for each OS.!
  Disk lock in ATA specification!

  BIOS only enables one hard disk!
  Attacker may change the setting to enable all hard disks!
  We use SMM-based detection to check that the channel enable

registers has not been changed!

  RAM disk !
  For browser-based application, save a small amount of

temporary data in the RAM!

Outline!

  Introduction!
  Related Works!
  Background Knowledge!
  System Architecture!
  Experimental Results!
  Discussion!
  Summary!

Prototype!

>  Hardware!
>  Motherboard: ASUS M2V-MX_SE!
>  CPU: AMD Sempron 64 LE-1300!
>  DDR2: Kingston HyperX 1GB!
>  HDD: Seagate 500GB!

>  Software!
>  BIOS: Coreboot + SeaBIOS!
>  Trusted OS: Linux (Centos 5.5)!
>  Untrusted OS: Windows XP!

Performance Analysis!

Linux Suspend Time Breakdown!

User Space : 1517.33 ms! Kernel Space: 1590.14 ms!

Linux Wakeup Time Breakdown!

User Space: 621.04 ms! Kernel Space: 1537.22 ms!

Outline!

  Introduction!
  Related Works!
  Background Knowledge!
  System Architecture!
  Experimental Results!
  Discussion!
  Summary!

Comparison with other systems!

Summary!

  We develop a BIOS-based secure isolation and switching
system to obtain a usable trusted workspace!
  Prevent data leakage!
  Without using hypervisor!
  No changes of OS source code!
  Low switching time!

Thank you.!

  Questions?!

Reference!

  [1]. J. McCune, B. Parno, A. Perrig, M. Reiter, and H. Isozaki. Flicker: An execution infrastructure
for TCB minimization. In Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2008, pages 315–328. ACM, 2008. !

  [2]. J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig. TrustVisor: Efficient
TCB reduction and attestation. In Proceedings of the IEEE Symposium on Security and Privacy,
2010.!

