w W PENNSTATE NDSS 2012
5

Kruiser: Semi-synchronized Non-
blocking Concurrent Kernel Heap
Buffer Overflow Monitoring

Donghai Tian'?, Qiang Zeng?, Dinghao Wu?,
Peng Liu? and Changzhen Hul

1 Beijing Institute of Technology
2The Pennsylvania State University

Kernel Heap Buffer Overflow

Function
Pointer

Kernel Kernel
Object Object

Motivation

e There are more and more kernel buffer
overflow explolits.

 To our knowledge, there are no practical
mechanisms that have been widely
deployed detecting kernel heap buffer
overflows.

Current Methods: Limitations 1 & 2

e Some approaches perform detection before
each buffer write operation.

[PLDI '04], [USENIX ATC '02], [NDSS '04]

High

overhead!

e Some approaches do not check heap buffer
overflows until a buffer is de-allocated.

[LISA 03],

BLACK

HAT '11]

_arge ¢

etection delay!

Our ldea

Security
checking

™

(et) ooz
checking

Inlined Checking Concurrent checking

Basic Method

« Canary-based Concurrent | kemel object

Monitoring
Network [FHoOK
drivers |
File | Hook
extenstions

Heap
metadata I

Canary

Monitor

Challenges

o Self-protection.
e Monitor and the metadata

e Synchronization.

e Races between hooks and monitor
« Compatibility.

e OS and hardware

Out-of-the-VM Architecture

(Our previous CCS submission - rejected)

Guest VM1 Guest VM2
Page allocation
hook
Network >
drivers |
. Monitor
¢ Page allocation |
| hook
File >
systems

[Corel} [Corezl

Hybrid VM monitoring Architecture
(NDSS submission - accepted)

Guest VM1 Guest VM2
Kernel 7 ecure
address space ; address space i
[: () ! 4)
Network g |
drivers
. o : Hea :
: * Hooks & i Monitor
| L/ i metadata
File | —»(Enry code)—»
(n 1
systems Di i|
\ J ,l . J
' /I

VMM

Now, Kernel Cruising

 How to gather canary location info?

e How to deal with the races between hooks and
monitor?

10

Kernel Cruising

e Page ldentity Array (PIA)
 Heap buffer canary location information
e Other information

 Race conditions
e Concurrent updates by two hooks

* Inconsistent reads by monitor
 Time of check to time of use (TOCTTOU)

11

Semi-synchronized Non-blocking
Cruising Algorithm

* Avoid Concurrent Entry Updates.

e Put the PIA entry update operations into the
critical section.

12

Resolve TOCTTOU

Hook:

If the page Is moved to the heap page pool
flag = ;

else If the page Is removed from the heap

flag = ->false->
Monitor: A B A

- O O . S . e] o S S S S S S S S S R S R S S R S S e e S e e e e e ey

W EEE EEEN EEEE BEEE BEEE NSNS BN B BEEE BEEE GEEE NS B G BN BN BN G B B G B A B S S S S S S S e e e .

- e s e e o

ABA Hazard Solution

If the page Is moved to the heap page pool
version++;

else If the page Is removed from the heap
version++;

If (the canary Is tampered) {
If (version == original version) {
report overflow!

} 14

Secure Canary Generation

 R1) The canaries are not predictable.

 R2) The canary generation and verification
algorithms should be efficient.

o Generate unpredictable canaries using
RC4 from a per-virtual-page random value.

15

e Evaluation
e Related Work
e Summary

Outline

16

Effectiveness

* \We exploited five heap buffer overflow
vulnerabilities in Linux, including three

synthetic bugs and two real world
vulnerabilities .

* All the overflows are successfully detected
by Kruiser.

17

Performance Overhead

M SIM-Kruiser E Kruiser

SPEC CPU2006 performance (normalized to the execution time of original Linux).
18

Scalability

1000
900
800
700
600
500
400
300
200 — 44—ttt

123456 78 9101112131415161/7181920
Concurrency

—--&-- Original
—=— SIM-Kruiser
—— Kruiser

s

Requests per second

Throughput of the Apache web server for varying numbers of concurrent requests.
19

Detection Latency

Different cruising cycle for different applications in the SPEC CPU2006 benchmark

Maximum Minimum Average Average
Benchmark
cruising number | cruising number | cruising number | cruising cycle(;:s)

perlbench 107,824 105,145 106,378 39,259
bzip2 79,085 76,325 76,682 27,662
gee 78,460 76,810 77,413 27,774
mef 82,885 79,328 79,540 28,156
gobmk 80,761 80,345 80,519 28,606
hmmer 81,278 80,435 80,591 28,635
sjeng 81,437 80,259 80,535 28,610
libquantum 80,911 80.317 80,407 28.493
h264ref 80,756 80,337 80,480 28,572
omneftpp 82,109 80,796 81,088 28,836
astar 81,592 81,022 81,097 28,897
xalancbmk 99,436 82,747 88,454 30,190

10 of 12 applications have less than
29ms (for scanning the kernel heap).

20

 Related work
e Summary

Outline

21

Related Work

e Countermeasures Against Buffer Overflows
o StackGuard [USENIX Security '98]
* Heap Integrity Detection [LISA '03]
e Cruiser [PLDI '11]
e DieHard [PLDI '06] and DieHarder [CCS '10]

e VM-based Methods
e SIM [CCS '09]
e OSck [ASPLOS "11]

22

Summary

» Kruiser can achieve concurrent monitoring
against kernel heap buffer overflows.
* Non-blocking
e Semi-synchronized
 NO false positive

e The hybrid VM monitoring scheme
provides high efficiency without sacrificing
the security guarantees.

23

Thank you!

Questions?

po.

2

Outline

Background and ldea
Architecture

Kernel Cruising
Evaluation

Related Work
Summary

25

Non-blocking Cruising Algorithm

Monitor(){

uint verl, ver2;

for (int page = 0; page < ENTRY NUMBER; page++){
/'verl = PIA[page].version; ™
' if (The page is non-heap page)
i continue; // Bypass non—heap page

i Read the metadata stored in PIA[page];

| ——— -

Avoid Read

| I
ver2 = PIA[page].version; Inconsistency:

If (verl !=ver2)

- -

. ____continue; // Metadata was updated.
Is the page still for (each canary within the page){
used by the heap? . (if (the canaryis tampered){ \
| DoubleCheckOnTamper(page, verl);;
S ;
}

	Kruiser: Semi-synchronized Non-blocking Concurrent Kernel Heap Buffer Overflow Monitoring
	Kernel Heap Buffer Overflow
	Motivation
	Current Methods: Limitations 1 & 2
	Our Idea
	Basic Method
	Challenges
	Out-of-the-VM Architecture�
	Hybrid VM monitoring Architecture�
	Now, Kernel Cruising
	Kernel Cruising
	Semi-synchronized Non-blocking Cruising Algorithm
	Resolve TOCTTOU
	ABA Hazard Solution
	Secure Canary Generation
	Outline
	Effectiveness
	Performance Overhead
	Scalability
	Detection Latency
	Outline
	Related Work
	Summary
	幻灯片编号 24
	Outline
	Limitations of Current Methods(2/2)
	Non-blocking Cruising Algorithm
	Guaranteed Detection

