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What	
  is	
  Fault	
  LocalizaDon?	
  
 	
  Problem	
  defini-on	
  

 Iden-fy	
  faulty	
  links	
  during	
  packet	
  forwarding	
  
 	
  A;acker	
  Model	
  

 Drop,	
  modify,	
  misroute,	
  or	
  inject	
  packets	
  at	
  data	
  plane	
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 	
  Challenges	
  
 Selec-ve	
  a;ack:	
  break	
  ping,	
  traceroute,	
  etc	
  
 High	
  overhead	
  

Source	
   Dest	
  
1	
   2	
   3	
   4	
   5	
  

“Got	
  it”	
   “Got	
  it”	
   “Got	
  it”	
   “Got	
  it”	
   “Got	
  it”	
  

Only	
  drop	
  node	
  5’s	
  ACKs	
   Slander	
  &	
  framing	
  



What	
  is	
  Fault	
  LocalizaDon?	
  
 	
  Challenges	
  (cont’d)	
  

 	
  A;acks	
  against	
  sampling	
  
 	
  Forgery	
  a;ack:	
  break	
  NeSlow,	
  Bloom	
  Filter,	
  etc	
  

Only	
  modify	
  packets	
  

100	
  pkts	
  
“Got	
  100”	
   “Got	
  100”	
   “Got	
  100”	
   “Got	
  100”	
   “Got	
  100”	
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Source	
   Dest	
  
1	
   2	
   3	
   4	
   5	
  

is	
  not	
  sampled,	
  drop	
  it!	
  

 	
  Natural	
  packet	
  loss	
  



Why	
  is	
  Fault	
  LocalizaDon	
  Important?	
  
 The	
  current	
  Internet	
  

 	
  Best	
  effort,	
  purely	
  end-­‐to-­‐end	
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Source	
   Des-na-on	
  

Worst	
  case:	
  23	
  

 	
  Fault	
  localiza-on	
  enables:	
  	
  
 Data-­‐plane	
  accountability	
  
 Intelligent	
  path	
  selec-on	
  
 Linear	
  path	
  trial	
  

Worst	
  case:	
  3	
  vs	
  23	
  trials	
  



Design	
  Goals	
  
 Security	
  

 	
  Against	
  drop,	
  modify,	
  inject,	
  and	
  replay	
  packets	
  
 	
  Against	
  mul-ple	
  colluding	
  nodes	
  

 Efficiency	
  
 	
  Low	
  detec-on	
  delay	
  	
  
 	
  Low	
  storage,	
  communica-on	
  and	
  computa-on	
  overhead	
  	
  

 Provable	
  guarantees	
  
 	
  Upper	
  bound	
  of	
  damage	
  without	
  being	
  detected	
  

 	
  Lower	
  bound	
  of	
  forwarding	
  correctness	
  if	
  no	
  fault	
  detected	
  

5	
  



ShortMAC	
  Key	
  Insight	
  #1	
  
 	
  Fault	
  Localiza-on	
  	
  Packet	
  authen-ca-on	
  

 	
  Fault	
  Localiza-on	
  	
  monitor	
  packet	
  count	
  and	
  content	
  
 	
  W/	
  pkt	
  authen,	
  content	
  	
  count	
  
 	
  Only	
  counts	
  	
  small	
  state,	
  low	
  bandwidth	
  cost	
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Source	
  
6	
  

	
  A	
   B	
   C	
  
6	
   4	
  6	
  

Detectable!	
  

Detectable!	
  



ShortMAC	
  Key	
  Insight	
  #2	
  
 	
  Limi+ng	
  a;acks	
  instead	
  of	
  perfect	
  detec-on	
  

 	
  Detect	
  every	
  misbehavior?	
  Costly!	
  Error-­‐prone!	
  
 	
  Absorb	
  low-­‐impact	
  a;ack:	
  tolerance	
  threshold	
  
 	
  Trap	
  the	
  a;acker	
  into	
  a	
  dilemma	
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Source	
   Dest.	
  

	
  	
  A;ack	
  more?	
  
Will	
  get	
  caught!	
  

Stay	
  under	
  2%?	
  
Damage	
  is	
  bounded!	
  

 	
  Enable	
  probabilis-c	
  algorithms	
  with	
  provable	
  bounds	
  



ShortMAC	
  Key	
  Ideas	
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 	
  Limi-ng	
  instead	
  of	
  perfectly	
  detec-ng	
  fake	
  packets	
  
 	
  Source	
  marks	
  each	
  packet	
  with	
  k	
  bits	
  (with	
  keyed	
  PRF)	
  

 	
  The	
  ShortMAC	
  packet	
  marking	
  

Source	
   Dest	
  

1	
   2	
  

K1	
   K2	
  K1	
   K2	
  

Forge	
  m?	
  50%	
  chance	
  of	
  
inconsistency.	
  Detectable!	
  

k-­‐bit	
  MAC,	
  
e.g.,	
  k	
  =	
  1	
  

(	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  1,	
  0,	
  1)	
  

Kd	
  Kd	
  

1	
  

1	
  
K1	
  

K2	
  
0	
  

Kd	
  

PRFKd	
   (	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  SN,	
  	
  TTLd)	
  	
  =	
  

PRFK2	
  (	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  SN,	
  TTL2,	
  	
  	
  	
  	
  	
  	
  )	
  =	
  

PRFK1	
  (	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  SN,	
  TTL1,	
  	
  	
  	
  	
  	
  	
  ,	
  	
  	
  	
  	
  	
  	
  )	
  =	
  



ShortMAC	
  Key	
  Ideas	
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 	
  High-­‐level	
  steps	
  

 	
  Secure	
  repor-ng	
  	
  
 	
  Each	
  node	
  maintains	
  two	
  counters	
  (counter	
  only!)	
  

 	
  Threshold-­‐based	
  detec-on	
  robust	
  to	
  natural	
  errors	
  

forges	
  500	
  pkt	
  

sends	
  1000	
  pkts	
  

1	
   2	
   3	
  

Source	
   Dest.	
  

1-­‐bit	
  MAC	
   1000	
  

0	
  

1000	
  

0	
  

750	
  

250	
  
625	
  

125	
  

 	
  More	
  details:	
  Onion	
  ACK	
  for	
  repor-ng,	
  threshold-­‐based	
  
detec-on,	
  etc	
  



TheoreDcal	
  Bounds	
  
 The	
  math	
  

 The	
  numbers	
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2) When fm and fm′ are adjacent (m′ = m + 1), these
two nodes can be regarded as one single “virtual” malicious
node Fm with neighbors fm−1 and fm+2, as shown in Fig-
ure 5. (i) If fm or fm+1 drops packets, a discrepancy will
exist between Cgood

m−1 and Cgood
m+2, no matter what values of

Cgood
m and Cgood

m+1 Fm claims. (ii) If fm or fm+1 injects
packets, Cbad

m+2 will become non-zero and make lm+1 sus-
picious. In any case, an adjacent link of Fm (a malicious
link) will become suspicious.
In the general case with n colluding nodes, we can first

group adjacent colluding nodes into virtual malicious nodes
as in Figure 5, resulting in non-adjacent malicious nodes
(including virtual malicious nodes). Then we can show
non-adjacent malicious nodes can be detected based on the
above analysis.
Despite colluding attackers cannot corrupt packets more

than the same thresholds as an individual attacker on any
single link, they can choose to distribute packet dropping
across multiple links. In this case, the total packet drop rate
by colluding attackers increases (and is still bounded) lin-
early to the number of malicious links in the same path, as
analyzed in Section 6.

6 Theoretical Results and Comparison

We prove the (N, δ)−data-plane fault localization (Def-
inition 4) and (α,β)δ−forwarding security of ShortMAC
(Definition 6), which in turn yield the θ−guaranteed for-
warding correctness (Definition 5). Proofs of the lemmas
and theorems are provided in Appendix A.
Comparison of theoretical results. Before presenting the
theorems, we first summarize and compare ShortMAC the-
oretical results with two recent proposals, PAAI-1 [59] and
Stat. FL [16] (including two approaches denoted by SSS and
sketch). Table 1 presents the numeric figures using an exam-
ple parameter setting for intuitive illustration, while Short-
MAC presents similarly distinct advantages in other param-
eter settings. In this example scenario shown in the table,
the guaranteed data-plane packet delivery ratio is θ = 92%.
The communication overhead for a router in ShortMAC is
1 extra ACK for every 3.8 × 104 data packets in an epoch;
the marking cost is 10 bits for the 2-bit MACs in a path
with 5 hops, and the per-path state at each router is 21 bytes
(16-byte symmetric key, 2-byte Cgood, 1-byte Cbad, and 2-
byte per-path SN ). Though Barak et al. proved the ne-
cessity of per-path state for a secure fault localization pro-
tocol [16], such a minimal per-path state in ShortMAC is
viable for both intra-domain networks with tens of thou-
sands of routers and the Internet AS-level routing among
currently tens of thousands of ASes.
We provide the intuition for ShortMAC’s distinct ad-

vantages. PAAI-1 or Stat. FL used either low-rate packet

sampling or approximation techniques for packet finger-
printing, both of which waste entropy contained in cer-
tain packet transmissions, thus resulting in long detection
delay (e.g., the transmission results of non-sampled pack-
ets will not contribute to the detection phase). In con-
trast, ShortMAC counts every packet transmission thus
achieving much faster detection rate. In addition, secure
packet sampling requires additional packet buffering [59],
and packet fingerprint takes considerable memory [16].

Lemma 1 Injection Detection: Given the bound δ on de-
tection false negative and false positive rates, the injection
detection threshold Tin can be set to Tin =

2 ln 2d
δ

q4 , where
d is the path length and q = 2k

−1
2k is the probability that

a fake packet will be inconsistent with the associated k-bit
MAC. The number of fake packets β an adversary can in-
ject on one of its malicious links without being detected is

limited to: β = Tin

q +

r

(

ln 2
δ

)2
+8qTin ln 2

δ +ln 2
δ

4q2 .

In Lemma 2, we derive N , the number of data packets
a source needs to send in one epoch to bound the detection
false positive and false negative rates below δ. Due to natu-
ral packet loss, a network operator first sets an expectation
based on her domain knowledge such that any benign link
in normal condition should spontaneously drop less than ρ
fraction of packets. We first describe how the drop detection
threshold Tdr is set when N and δ are given. Intuitively,
by sending more data packets (larger N ), the observed per-
link drop rate can approach more closely its expected value,
which is less than ρ; otherwise, with a smaller N , the ob-
served per-link drop rate can deviate further away from ρ,
and the drop detection threshold Tdr has to tolerate a larger
deviation (thus being very loose) in order to limit the false
positive rate below the given δ. On the other hand, a small
N is desired for fast fault localization. We define Detection
Delay to be the minimum value of N given the required δ.

Lemma 2 Dropping Detection and (N, δ)- Fault Local-
ization: Given the bound δ on detection false positive and
negative rates and drop detection threshold Tdr, the detec-
tion delay N is given by: N =

ln( 2d
δ )

2
(

Tdr−ρ
)2(

1−Tdr

)d , where

d is the path length. Correspondingly, the fraction of pack-
ets α an adversary can drop on one of its malicious links
without being detected is limited to: α = 1 − (1 − Tdr)2 +

β
N(1−Tdr)d .

In practice, Tdr can be chosen according to the expected
upper bound ρ of a “reasonable” normal link loss rate such
that a drop rate above Tdr is regarded as “excessively lossy”.

Theorem 1 Forwarding Security and Correctness:
Given Tdr, δ, and path length d, we can achieve
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In practice, Tdr can be chosen according to the expected
upper bound ρ of a “reasonable” normal link loss rate such
that a drop rate above Tdr is regarded as “excessively lossy”.

Theorem 1 Forwarding Security and Correctness:
Given Tdr, δ, and path length d, we can achieve

Protocol ShortMAC PAAI-1 SSS Sketch
Detect. Delay (pkt) 3.8 × 104 7.1 × 105 1.6 × 108 ≈ 106

Comm. (extra %) < 10−5 1 1 < 10−5

Marking Cost (bytes) 2 0 0 0
Per-path State (bytes) 21 2×105 4 × 103 ≈ 500

Table 1. Theoretical comparison with PAAI-1 [59] and Stat. FL [16] (including two approaches SSS
and sketch). Note that the details of sketch are not provided in the published paper [16], and the full
version of [16] does not present the explicit bounds on detection delay. The above figures for sketch
are estimated from their earlier work [?]. In this example scenario, d = 5, δ = 1%, ρ = 0.5%, Tdr = 1.5%,
a symmetric key is 16 bytes, and ShortMAC uses 2-bit MACs. PAAI-1 specific parameters include the
“packet sampling rate” set to 0.01, the end-to-end latency set to 25 ms, the source’s sending rate set
to 106 packets per second, each packet hash is 128 bits.

(α,β)δ−forwarding security where α is given by Lemma 2
and β is given by Lemma 1. We also achieve (Ω, θ)-
Guaranteed forwarding correctness with Ω equal to
the number of malicious links in the network, and
θ = (1 − Tdr)d − β

N . where N is derived from Lemma 2

In Theorem 2, we analyze the protocol overhead with the
following three metrics (we further analyze the throughput
and latency in Section 8 via real-field testing):
1) The communication overhead is the fraction of extra
packets each router needs to transmit.
2) The marking cost is the number of extra bits a source
needs to embed into each data packet.
3) The per-path state is defined as the per-path extra bits
that a router stores for the security protocol in fast memory
needed for per-packet processing.4

Theorem 2 Overhead: For each router, the communica-
tion overhead is one packet for each epoch of N data pack-
ets. The marking cost is k ·d bits for the k-bit MACs where d
is the path length. The per-path state comprises one lg N -
bit Cgood counter, one lg β-bit Cbad counter, one lg N -bit
last-seen per-path SN , and one epoch symmetric key.

7 SSFNet-based Evaluation

In addition to analyzing the theoretical performance,
we implement ShortMAC prototype on the SSFNet sim-
ulator [6] to study the detection delay and security of
ShortMAC. Section 8 further investigates ShortMAC’s
throughput and latency. These experimental results provide
average-case performance with various attack strategies to

4The buffering space needed for the Onion-ACK construction of
report messages in ShortMAC is not a major concern, as the Onion-
ACK is computed only once every epoch, which can be buffered in off-chip
storage.

complement the theoretical results derived in the worst case
scenario (due to multiple mathematical relaxations such as
Hoeffding inequality) and constant dropping/injection rates.

Evaluation scenario and attack pattern. Since Short-
MAC provides a natural isolation across paths due to
its per-path state, our evaluation focuses on a single
path. Specifically, we present the result of a 6-hop path
(routers f1, f2, f3, f4, f5 and the destination f6) since our
experiment yields the same observation with other path
lengths. We simulate both an (i) independent packet cor-
ruption pattern where a malicious node drops/injects each
packet independently with a certain drop/injection rate, and
(ii) random-period packet corruption pattern where the be-
nign (non-attack) period Tb and attack period Ta (when the
malicious node drops/modifies all legitimate packets) are
activated in turns. The durations for both periods are ran-
domly generated. For both attack patterns, we control the
average packet drop/injection rates and observe that both
attack patterns yield similar observations. Hence, in the fol-
lowing experiment, we only show the results for the inde-
pendent packet corruption pattern. Also, we infuse natural
packet loss rate ρ for each link to simulate natural packet
loss, which is not provided by SSFNet. As Section 5 elab-
orates ShortMAC security against colluding attacks, we
only show the representative results for a single malicious
node f3. For each simulation setting, we run the simulation
1000 times and present the average results.

Against various dropping attacks. Figure 6(a) depicts the
detection delay N and error rates δ with per-link natural
loss rate ρ as 0.5%, drop detection threshold Tdr as 1%,
and a stealthy malicious drop rate as 2%. We see that even
against stealthy dropping attacks with a dropping rate as low
as 2%, ShortMAC can successfully localize a faulty link in
< 2000 packets with an error rate δ < 1%, which is orders
of magnitudes faster than the worst-case theoretical bound
(Lemma2). Figure 6(b) depicts different detection delays

 	
  PAAI-­‐1:	
  X.	
  Zhang,	
  A.	
  Jain,	
  and	
  A.	
  Perrig,	
  “Packet-­‐dropping	
  
Adversary	
  Iden-fica-on	
  on	
  Data-­‐plane	
  security.”	
  
 	
  SSS,	
  Sketch:	
  B.	
  Barak,	
  S.	
  Goldberg,	
  D.	
  Xiao,	
  “Protocols	
  and	
  
Lower	
  Bounds	
  for	
  Failure	
  Localiza-on”	
  

Protocol	
   ShortMAC	
   PAAI-­‐1	
   SSS	
   Sketch	
  

Delay	
  (pkt)	
   3.8×104	
   7.1×105	
   1.6×108	
   ≈106	
  

State	
  (bytes)	
   21	
   2×105	
   4×103	
   ≈500	
  



Experimental	
  EvaluaDon	
  

 Average-­‐case	
  performance,	
  proof	
  of	
  concept	
  

 Simula-on	
  +	
  Prototyping	
  
 Simula-on:	
  large-­‐scale,	
  security	
  proper-es	
  

 Prototype:	
  computa-onal	
  overhead	
  

 SSF-­‐net	
  based	
  simula-on	
  
 	
  Single	
  6-­‐hop	
  path	
  
 	
  Malicious	
  node	
  in	
  the	
  middle	
  

 	
  Independently	
  dropping/injec-ng	
  packets	
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SimulaDon	
  Results	
  
 False	
  rates,	
  detec-on	
  delay,	
  and	
  comparison	
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(c) Injection attacks.
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(d) Combined attacks.

Figure 6. In this set of simulations, f3 is the malicious router performing attacks. The parameter are
set as follows: (a) The malicious drop rate is 2%, Tdr = 1%, and natural drop rate ρ = 0.5%. (b) The
malicious drop rate is 2%, and Tdr = 1%. (c) The malicious injection rate is 2% using 2-bit MACs,
natural loss rate ρ = 0.5%, and Tdr = 1%. (d) “drop p inject q” denotes the use of p% dropping rate
and q% injection rate at f3.

with different natural packet loss rates, demonstrating that
larger |Tdr − ρ| yields higher detection accuracy and lower
detection delay.

Against various injection attacks. Figure 6(c) shows the
results when f3 injects packets at a 2% rate (relative to
the legitimate packet sending rate). It shows that the error
rates stay below 1% in a few hundred packets, indicating
that even with 2-bit MACs, an adversary can only inject up
to around ten packets without being detected. We further
investigate the effects of using different lengths of k−bit
MACs, and Figure 7 shows that the detection delay and er-
ror rate dramatically diminish as k increases.

Against combined attacks. Figure 6(d) shows how the
combinations of dropping and injection attack strategies (in
our setting, dropping/injection rates are chosen between 2%
– 5%) influence the protocol. We observe that the detection
delay is mainly determined by the dropping detection pro-
cess, which is much slower than the injection detection pro-
cess. This also indicates that a malicious node cannot gain

any advantage (and actually can only harm itself) by inject-
ing bogus packets in attempt to bias the counter values.

Variance due to different malicious node positions. To in-
vestigate the influence of the position of the malicious node,
we consider a path with 6 forwarding nodes f1, f2, . . . , f6

and place the malicious node at each position (1 to 6) in
turn. We limit the error rate < 1% and obtain the corre-
sponding detection delays. Figure 8 shows one represen-
tative scenario where both dropping and injection rates are
5%. We can see that (i) the dropping detection delay in-
creases linearly when the malicious node is farther away
from the source. This is because in the ShortMAC detec-
tion process, the source always inspects the closer links first
and stops once the first “faulty” link is detected. The FP rate
thus increases when more links exist between the source and
the malicious node due to natural packet loss on each link.
(ii) In contrast, the injection detection delay exhibits little
variance (cannot be seen from the figure as the detection
delay is determined by the dropping detection), which can
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put of a ShortMAC router and a ShortMAC source sepa-
rately to better illustrate the throughput of each component,
while the end-to-end path throughput can be easily derived
by taking the minimum throughput of the two evaluation
results. Then we evaluate the end-to-end latency with dif-
ferent path lengths ranging from 2 to 64. We also exploit
the multi-core parallel processing at the source node via
OpenMP API [5].
Summary of evaluation results. The evaluation results
of our Linux software prototype demonstrate that both a
ShortMAC router and source node can retain more than
92% of the baseline throughput (no ShortMAC operations
are employed). Furthermore, the additional latency due to
ShortMAC operations is negligible (tens of microseconds)
even with a path length of 64 hops. The results further in-
dicate the ShortMAC scheme is fully scalable as the num-
ber of processing cores increases in a software-based imple-
mentation, while we anticipate hardware implementation of
the MAC operations in ShortMAC can further boost the
protocol throughput. Details of the evaluation results are as
follows.
Router throughput with different PRF implemen-
tations. We first evaluate the throughput of a user-
level ShortMAC router with different PRF implemen-
tations (i.e.,UMAC [51], HMAC-SHA1 [30], and AES-
CMAC [50]) with the support of the new Intel AES-NI in-
structions [26]. The ShortMAC router connects a source
machine and a destination machine, with the source sending
TCP packets via Netperf as fast as possible to the destina-
tion to stress-test the router. For comparison, we use the
Linux kernel forwarding throughput without ShortMAC
operations as the base line. The ShortMAC router runs as
a single user-space process without exploring parallelism,
which already matches up the base line speed as shown be-
low.
Figure 10 depicts the results with packet sizes from 100

to 1500 bytes, showing that UMAC-based PRF implemen-
tation yields the highest throughput, which retains more

than 90% of the baseline throughput (e.g., 92% with 1.5KB
packet size and 96% with 1KB packet size ). With a small
packet size of 100 bytes, both the baseline and ShortMAC
throughput dropped substantially (similar to other public
testing results [3]), because the network drivers used in
our experiments are running under interrupt-driven mode,
which hampers throughput when packet receiving rate is
high. However, UMAC-based PRF still retains 53.84

57.52=94%
of the baseline throughput.
Source node throughput.We further evaluate the through-
put of a ShortMAC source node with different path length
d, where for each path length the source needs to per-
form d − 1 UMAC-based PRF operations. Originally, it
might seem that the ShortMAC source node represents the
throughput bottleneck as the source needs to compute mul-
tiple k-bit MACs. However by parallelizing the Short-
MAC operations on readily-available multi-processor sys-
tems, the throughput of a ShortMAC source node can fully
cope with the base line rate even with a path length of 8.
For comparison, we use the source node throughput with-
out ShortMAC operations as the baseline. We evaluate two
different parallelizations based on widely used OpenMP [5]
API. Our first implementation (internal parallelism in short)
uses multiple OpenMP threads to parallelize the computa-
tion of multiple k-bit MACs per packet. Our second imple-
mentation (external parallelism in short) assigns different
packets to different OpenMP threads.
We evaluate the ShortMAC source throughput with var-

ious packet sizes, and observe that in all cases ShortMAC
incurs negligible throughput degradation. Hence we only
show the results with packet size set to 1500 bytes in Fig-
ure 11. We can see that external parallelism yields the best
performance, which matches the baseline case where the
source performs no ShortMAC operations.
ShortMAC latency. We also evaluate the additional la-
tency incurred by a ShortMAC source node for computing
the k-bit MICs with different path lengths and packet sizes;
while the end-to-end latency can be derived base on our re-
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put of a ShortMAC router and a ShortMAC source sepa-
rately to better illustrate the throughput of each component,
while the end-to-end path throughput can be easily derived
by taking the minimum throughput of the two evaluation
results. Then we evaluate the end-to-end latency with dif-
ferent path lengths ranging from 2 to 64. We also exploit
the multi-core parallel processing at the source node via
OpenMP API [5].
Summary of evaluation results. The evaluation results
of our Linux software prototype demonstrate that both a
ShortMAC router and source node can retain more than
92% of the baseline throughput (no ShortMAC operations
are employed). Furthermore, the additional latency due to
ShortMAC operations is negligible (tens of microseconds)
even with a path length of 64 hops. The results further in-
dicate the ShortMAC scheme is fully scalable as the num-
ber of processing cores increases in a software-based imple-
mentation, while we anticipate hardware implementation of
the MAC operations in ShortMAC can further boost the
protocol throughput. Details of the evaluation results are as
follows.
Router throughput with different PRF implemen-
tations. We first evaluate the throughput of a user-
level ShortMAC router with different PRF implemen-
tations (i.e.,UMAC [51], HMAC-SHA1 [30], and AES-
CMAC [50]) with the support of the new Intel AES-NI in-
structions [26]. The ShortMAC router connects a source
machine and a destination machine, with the source sending
TCP packets via Netperf as fast as possible to the destina-
tion to stress-test the router. For comparison, we use the
Linux kernel forwarding throughput without ShortMAC
operations as the base line. The ShortMAC router runs as
a single user-space process without exploring parallelism,
which already matches up the base line speed as shown be-
low.
Figure 10 depicts the results with packet sizes from 100

to 1500 bytes, showing that UMAC-based PRF implemen-
tation yields the highest throughput, which retains more

than 90% of the baseline throughput (e.g., 92% with 1.5KB
packet size and 96% with 1KB packet size ). With a small
packet size of 100 bytes, both the baseline and ShortMAC
throughput dropped substantially (similar to other public
testing results [3]), because the network drivers used in
our experiments are running under interrupt-driven mode,
which hampers throughput when packet receiving rate is
high. However, UMAC-based PRF still retains 53.84

57.52=94%
of the baseline throughput.
Source node throughput.We further evaluate the through-
put of a ShortMAC source node with different path length
d, where for each path length the source needs to per-
form d − 1 UMAC-based PRF operations. Originally, it
might seem that the ShortMAC source node represents the
throughput bottleneck as the source needs to compute mul-
tiple k-bit MACs. However by parallelizing the Short-
MAC operations on readily-available multi-processor sys-
tems, the throughput of a ShortMAC source node can fully
cope with the base line rate even with a path length of 8.
For comparison, we use the source node throughput with-
out ShortMAC operations as the baseline. We evaluate two
different parallelizations based on widely used OpenMP [5]
API. Our first implementation (internal parallelism in short)
uses multiple OpenMP threads to parallelize the computa-
tion of multiple k-bit MACs per packet. Our second imple-
mentation (external parallelism in short) assigns different
packets to different OpenMP threads.
We evaluate the ShortMAC source throughput with var-

ious packet sizes, and observe that in all cases ShortMAC
incurs negligible throughput degradation. Hence we only
show the results with packet size set to 1500 bytes in Fig-
ure 11. We can see that external parallelism yields the best
performance, which matches the baseline case where the
source performs no ShortMAC operations.
ShortMAC latency. We also evaluate the additional la-
tency incurred by a ShortMAC source node for computing
the k-bit MICs with different path lengths and packet sizes;
while the end-to-end latency can be derived base on our re-
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