
Bypassing Space Explosion in Regular
Expression Matching for Network Intrusion

Detection and Prevention Systems

Jignesh Patel, Alex Liu and Eric Torng

Dept. of Computer Science and Engineering
Michigan State University

Problem Statement
  Core operation in IDS/IPS is Deep Packet Inspection

–  Past DPI: string matching

–  Current DPI: regular expression (RE) matching
•  Example: SNORT, Bro

  Problem: given a set of REs, how to quickly scan
packet payload to determine which REs are matched?

Jignesh Patel - Michigan State University 2

Solution using Automata
  Common solution is to build an equivalent Finite State

Automata based on DFA.

  DFA size grows exponentially with number of REs.

  Several alternate automata have been proposed
D2FA, XFA, δFA etc.

Jignesh Patel - Michigan State University 3

Limitations of Prior Work
  Prior solution: Union then Minimize framework.

–  First combined DFA for the whole RE set is built.
–  Compression technique is applied to the combined DFA to

get the alternate automata.

  Problems:
–  The minimization/compression is applied on large combined

automata, hence requires too much time and memory.
–  The intermediate DFA might be too large to fit in memory.
–  Whole automata needs to be rebuilt if new RE is added to set.

Jignesh Patel - Michigan State University 4

RE1	

RE2	

REn	

:	

:	

DFA	

Subset	

construc4on	

DFA	

min.	

Alternate	

Automata	

Compression	

Algorithm	

NFA1	

NFA2	

NFAn	

:	

:	

NFA	

Merge	

Our Approach
  Our approach: Minimize then Union framework.

–  Build individual DFAs for each RE in the RE set.

–  Compress each DFA to get individual alternate automata.
–  Merge the all compressed alternate automata together.

  Advantages
–  The compression algorithm is applied to small DFAs.

–  Large intermediate DFA does not need to be built.
–  Easy to add new RE to the set with one merge.

  In this work we focus on the D2FA.

Jignesh Patel - Michigan State University 5

RE1	

RE2	

REn	

:	

:	

Alternate	

Automata	

Merge	
 Compression	

Algorithm	

Alt.	
 Automata1	

Alt.	
 Automata2	

Alt.	
 Automatan	

:	

:	

DFA1	

DFA2	

DFAn	

:	

:	

RE	
 to	
 Min	
 DFA	

D2FA Overview
  D2FA [Kumar et al., 2006] uses

common transitions between
states to reduce the number of
transitions.

  To build a D2FA:
1.  We choose a deferred state for each state in

the DFA.
2.  For each state, remove transitions that are

common with its deferred state.

Jignesh Patel - Michigan State University 6

s8

|∑|

s7 c1

s1

s2 s5

s4

s3

s6

c3

c2

c1

c3

c2

c1

D2FA Construction
  Build Space Reduction Graph (SRG)

  Find maximum spanning tree (MST) in SRG.
  Use the MST to set deferred states.

Jignesh Patel - Michigan State University

DFA	
 for	
 RE	
 set	
 {ab,	
 bc.*d}	
 D2FA	
 for	
 RE	
 set	
 {ab,	
 bc.*d}	
 	
 	
 	
 	
 521	
 Transi4ons	

a

b

∑-{a,b}

0

1 3/1

∑-{a,d}

2 c 4 6/2
b

d

5 7/1
a

b
a

b

0

1 3/1

2 c 4 6/2 d

5 7/1
a

b fail

from [0,3]

fail from [4,7]

a

a

b

a

b

b

a

a

a d

d

d

c

0

2

1

3

255

256

254 255

255

254

4

6

5

7

255

256

255 256

256

255

0

2

1

3

255

256

254 255

255

254

4

6

5

7

255

256

255 256

256

255

SRG	

2048	
 Transi4ons	

DFA for RE Matching in DPI
 

Jignesh Patel - Michigan State University 8
DFA	
 for	
 RE	
 set	
 {ab,	
 bc.*d}	

a

b

0

1 3/1

2 c 4 6/2 d

5 7/1
a

b fail

from [0,3]

fail from [4,7]

a

a

b

a

b

b

a

a

a d

d

d

c

Merging DFAs (1)
 

Jignesh Patel - Michigan State University 9

DFA	
 for	
 RE	

bc.*d	

0

1

c

2

3/2

b

d

b

d

fail

from 0,1

fail

DFA	
 for	
 RE	

ab	

a b 0 1 2/1

a
a fail

from [0,2]

a

b

0,0
0

1,0
1

2,1
3/1

0,1
2

c

0,2
4

0,3
6/2

b

d

Merged	
 DFA	
 for	
 RE	
 set	

{ab,	
 bc.*d}	

a b 1,2
5

2,2
7/1

a

a

a b
b

c
a a

a

d

d d

fail

from [4,7]

fail

from [0,3]

1,1

2,0

2,3 1,3

Merging DFAs (2)
 

Jignesh Patel - Michigan State University 10

Merging D2FA
  We extend the UCP construction for merging DFAs to

merge D2FAs.

  To generate D2FA, we need to set deferred state for
each state.

  Set the deferred state as soon as new state is
created.

  Since deferred state is set when a state is created, we
only need to store the non-deferred transitions for the
state.

  The whole DFA is never built since we always store
the D2FA.

Jignesh Patel - Michigan State University 11

Setting Deferred State
 

Jignesh Patel - Michigan State University 12

v

w

u

D1

D2

D3

v1 v2 vi
…	

w1 w2 wj
…	

…	

Merging D2FA Example
  For most states, one of the

first pair is the best pair.

  In our experiments,
average number of
comparisons needed < 1.5

Jignesh Patel - Michigan State University 13

a

b

∑-{a,b}

0,0
0

1,0
1

2,1
3/1

∑-{a,d}

0,1
2

c

0,2
4

0,3
6/2

b

d

D2FA	
 for	
 RE	

ab	

D2FA	
 for	
 RE	

bc.*d	

Merged	
 D2FA	
 for	
 RE	
 set	

{ab,	
 bc.*d}	

a b 1,2
5

2,2
7/1

a b 0 1 2/1

∑-a

∑-b

0

∑-d

1

c

2

3/2

b

d 0
255

2
256

0

0

2

1

3

D1

D2

D3

Experimental Results: Main
  We used real world 8 RE sets that were used in prior

work for our experiments.

  We group the 8 RE sets into three groups according
to type of REs in the sets: STRING, WILDCARD,
SNORT

  We compare D2FA Merge algorithm with the Original
D2FA algorithm.

Jignesh Patel - Michigan State University 14

RE set
group

States /
ASCII len.

Trans
increase

 Def. depth ratio Space
ratio

Speedup
factor Avg. Max.

All	
 17.7	
 20.10%	
 7.3	
 4.8	
 1390	
 301.6	

STRING	
 0.7	
 44.00%	
 1.8	
 1.6	
 2672.8	
 99.5	

WILDCARD	
 36	
 3.00%	
 12	
 8.2	
 42.7	
 338.2	

SNORT	
 10.7	
 21.30%	
 6.3	
 3.6	
 1882.1	
 399.7	

Experimental Results: Scale
  To test scalability we use a synthetic RE set with REs of the

form /c1c2c3c4.*c5c6c7c8/
  We add one RE at a time until memory estimate goes over 1GB.

  Original D2FA algorithm:
–  # REs added: 12
–  # states in final D2FA: 397,312
–  Time to build D2FA: 71 hours

  D2FA Merge algorithm:
–  # REs added: 19
–  # states in final D2FA: 80,216,064
–  Time to build D2FA: 1.2 hours

  For 12 REs, D2FA Merge only needs 10 seconds to build.

  D2FA Merge results in same D2FA size as the original algorithm.

Jignesh Patel - Michigan State University 15

Questions?

  Thank you for listening!

16 Jignesh Patel - Michigan State University

