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Problem Statement 
  Core operation in IDS/IPS is Deep Packet Inspection 

–  Past DPI: string matching 

–  Current DPI: regular expression (RE) matching 
•  Example: SNORT, Bro 

  Problem: given a set of  REs, how to quickly scan 
packet payload to determine which REs are matched? 
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Solution using Automata 
  Common solution is to build an equivalent Finite State 

Automata based on DFA. 

  DFA size grows exponentially with number of  REs. 

  Several alternate automata have been proposed 
D2FA, XFA, δFA etc. 
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Limitations of  Prior Work 
  Prior solution: Union then Minimize framework. 

–  First combined DFA for the whole RE set is built. 
–  Compression technique is applied to the combined DFA to 

get the alternate automata. 

  Problems: 
–  The minimization/compression is applied on large combined 

automata, hence requires too much time and memory. 
–  The intermediate DFA might be too large to fit in memory. 
–  Whole automata needs to be rebuilt if  new RE is added to set. 
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Our Approach 
  Our approach: Minimize then Union framework. 

–  Build individual DFAs for each RE in the RE set. 

–  Compress each DFA to get individual alternate automata. 
–  Merge the all compressed alternate automata together. 

  Advantages 
–  The compression algorithm is applied to small DFAs. 

–  Large intermediate DFA does not need to be built. 
–  Easy to add new RE to the set with one merge. 

  In this work we focus on the D2FA. 
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D2FA Overview 
  D2FA [Kumar et al., 2006] uses 

common transitions between 
states to reduce the number of  
transitions. 

  To build a D2FA: 
1.  We choose a deferred state for each state in 

the DFA. 
2.  For each state, remove transitions that are 

common with its deferred state. 
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D2FA Construction 
  Build Space Reduction Graph (SRG) 

  Find maximum spanning tree (MST) in SRG. 
  Use the MST to set deferred states. 

Jignesh Patel - Michigan State University 

DFA	
  for	
  RE	
  set	
  {ab,	
  bc.*d}	
  D2FA	
  for	
  RE	
  set	
  {ab,	
  bc.*d}	
   	
  	
  	
  	
  521	
  Transi4ons	
  

a 

b 

∑-{a,b} 

0 

1 3/1 

∑-{a,d} 

2 c 4 6/2 
b 

d 

5 7/1 
a 

b 
a 

b 

0 

1 3/1 

2 c 4 6/2 d 

5 7/1 
a 

b fail 

from [0,3] 

fail from [4,7] 

a 

a 

b 

a 

b 

b 

a 

a 

a d 

d 

d 

c 

0 

2 

1 

3 

255 

256 

254 255 

255 

254 

4 

6 

5 

7 

255 

256 

255 256 

256 

255 

0 

2 

1 

3 

255 

256 

254 255 

255 

254 

4 

6 

5 

7 

255 

256 

255 256 

256 

255 

SRG	
  

2048	
  Transi4ons	
  



DFA for RE Matching in DPI 
    
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Merging DFAs (1) 
    
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Merging DFAs (2) 
    
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Merging D2FA 
  We extend the UCP construction for merging DFAs to 

merge D2FAs. 

  To generate D2FA, we need to set deferred state for 
each state. 

  Set the deferred state as soon as new state is 
created. 

  Since deferred state is set when a state is created, we 
only need to store the non-deferred transitions for the 
state. 

  The whole DFA is never built since we always store 
the D2FA. 
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Setting Deferred State 
    
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Merging D2FA Example 
  For most states, one of  the 

first pair is the best pair. 

  In our experiments, 
average number of  
comparisons needed < 1.5 
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Experimental Results: Main 
  We used real world 8 RE sets that were used in prior 

work for our experiments. 

  We group the 8 RE sets into three groups according 
to type of  REs in the sets: STRING, WILDCARD, 
SNORT 

  We compare D2FA Merge algorithm with the Original 
D2FA algorithm. 
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RE set 
group 

# States / 
ASCII len. 

Trans 
increase 

 Def. depth ratio Space  
ratio 

Speedup 
factor  Avg. Max. 

All	
   17.7	
   20.10%	
   7.3	
   4.8	
   1390	
   301.6	
  

STRING	
   0.7	
   44.00%	
   1.8	
   1.6	
   2672.8	
   99.5	
  

WILDCARD	
   36	
   3.00%	
   12	
   8.2	
   42.7	
   338.2	
  

SNORT	
   10.7	
   21.30%	
   6.3	
   3.6	
   1882.1	
   399.7	
  



Experimental Results: Scale 
  To test scalability we use a synthetic RE set with REs of  the 

form /c1c2c3c4.*c5c6c7c8/ 
  We add one RE at a time until memory estimate goes over 1GB. 

  Original D2FA algorithm: 
–  # REs added: 12 
–  # states in final D2FA: 397,312 
–  Time to build D2FA: 71 hours 

  D2FA Merge algorithm: 
–  # REs added: 19 
–  # states in final D2FA: 80,216,064 
–  Time to build D2FA: 1.2 hours 

  For 12 REs, D2FA Merge only needs 10 seconds to build. 

  D2FA Merge results in same D2FA size as the original algorithm. 
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Questions? 

  Thank you for listening! 
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