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Transport Layer Security
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e Want to secure traffic between web
browsers and servers

e One problem is latency from TLS
handshake
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Certificate validation: OCSP

e Online certificate status protocol

o Server certificate specifies OCSP
responder

e Clients asks responder whether cert is
valid

e Responder specifies how long response is
valid for
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Removing round trips

Previous proposal, TLS Snap Start

e Zero round trip handshake
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Problem

e TLS imposes extra latency due to
retrieving and validating server
certificate

e How to obtain certificate to do Snap
Start handshake?
e How to validate without extra latency?



Contribution

e Real world study of OCSP response

times
o Certificate prefetching and prevalidation

e Propose four prefetching strategies
e Analysis of effectiveness
e Prototype implementation



How long does OCSP take in the

real world?

e Experimental setup
e OCSP response times collected from
users running Perspectives browser
extensions
o 242 clients, 4474 certificates, 24
responders
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OCSP in the wild
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Design

e Prefetch certificates

e Enables Snap Start handshakes more
frequently

e Prevalidate certificates
e Removes OCSP lookup from critical path



Design questions

e When to prefetch? When to prevalidate?

e How to obtain certificate?
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When to prefetch

|deas borrowed from DNS prefetching:

o DNS prefetching triggers are effective
for certs

e Could be deployed with HTML hints for
effective prefetching



How to prefetch

e Goal: Obtain server certificate
o Challenge: Full TLS handshake is

expensive

e Four proposed methods that are more
efficient



Prefetching methods
Option 1: Truncated handshake
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Prefetching methods
Option 1: Truncated handshake

e No public key crypto!
e Server admin does nothing

e But implementation requires new APl in TLS
layer



Prefetching methods

Option 2: HTTP GET request

e.g., to http://www.domain.com/cert

e Much less load than full TLS handshake, but
still impacts the server
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Prefetching methods

What if we want no additional load on
server?
Option 4: Retrieve from DNS

e DNS TXT record can store certificate

e No impact on web server



Prevalidation

o After prefetching cert, prevalidate it
e Normal OCSP lookup



Prototype

e Prefetching and prevalidating in
Chromium

e Piggyback on DNS prefetching
architecture

e DNS and HTTP GET prefetching



Analysis

e How much does prefetching and
prevalidating affect handshake latency?



Handshake latency

e Normal TLS handshake: 122 ms

\l, Remove round trips by prefetching cert and using Snap Start

e Snap Start, unvalidated cert: 83 ms

\l/ Remove OCSP validation by prevalidating cert

e Snap Start, prevalidated cert: 30 ms

Server: Ubuntu 10.04, 256MB, Apache 2.2.17, Client: Ubuntu 10.04, 1GB RAM

HTTP GET request: 16 ms



Conclusions

e OCSP latency matters, especially when
handshakes have fewer RTTs

e Need prefetched certificate to enable Snap
Start and for OCSP prevalidation

e 4 proposed strategies for prefetching certs

e Reduce TLS handshake by two RTTs and
OCSP response time (factor of 4 in our
experiments)



