The Case for Prefetching and
Prevalidating TLS Server
Certificates

Emily Stark, Lin-Shung Huang, Dinesh
Israni, Collin Jackson, Dan Boneh

February 8, 2012



Transport Layer Security

’\.’—v () Iﬁ https://encrypted.google.com ‘

e Want to secure traffic between web
browsers and servers

e One problem is latency from TLS
handshake



The TLS handshake

‘Q— () IB https:/jencrypted.google.com ‘

3 B

Client Servér

Initialize handshake
_




The TLS handshake

‘Q— () IB https:/jencrypted.google.com ‘

3 B

Client Server
Initialize handshake
—_—

Certificate
—




The TLS handshake

‘Q— () IE https:/jencrypted.google.com ‘

Certificate Client Server
validation Initialize handshake
_
. Certificate
Certificate valid? —
(—

Response
—_—



The TLS handshake

‘Q— () I@ https:/jencrypted.google.com ‘

Certificate Client Server
validation Initialize handshake
_
. Certificate
Certificate valid? —
{—
Response Negotiate key

«—



The TLS handshake

‘Qﬁ () Iﬁ https:/jencrypted.google.com ‘

Certificate Client Server
validation Initialize handshake
B —
. Certificate
Certificate valid? —
(—
Response Negotiate key
—

HTTP request
_—

HTTP response
—



The TLS handshake

‘Qﬁ () Iﬁ https:/jencrypted.google.com ‘

Certificate Client Server
validation Initialize handshake
_
) Certificate
ertificate valid? VR

(—
Response

Negotiate key

D —
«—

HTTP request
_—

HTTP response
—



Certificate validation: OCSP

e Online certificate status protocol



Certificate validation: OCSP

e Online certificate status protocol

o Server certificate specifies OCSP
responder



Certificate validation: OCSP

e Online certificate status protocol

o Server certificate specifies OCSP
responder

e Clients asks responder whether cert is
valid



Certificate validation: OCSP

e Online certificate status protocol

o Server certificate specifies OCSP
responder

e Clients asks responder whether cert is
valid

e Responder specifies how long response is
valid for



The TLS handshake

‘Qﬁ () Iﬁ https:/jencrypted.google.com ‘

Certificate Client Server
validation Initialize handshake
B —
. Certificate
Certificate valid? —
(—
Response Negotiate key
—

HTTP request
_—

HTTP response
—



The TLS handshake

‘Qﬁ () Iﬁ https:/jencrypted.google.com ‘

Certificate Client erver
validation

nitialize handshake
_—
Certificate

Certificate valid?
—
R ns
esponse

Negotiate key

HTTP request
_—

HTTP response
—



Removing round trips

Previous proposal, TLS Snap Start

e Zero round trip handshake



Removing round trips

nitialize handshakeé
_—
Certificate

Negotiate key
—_—
—

HTTP request
_—
HTTP response
—




Removing round trips

4 @

Client Servér

Initialize handshake
Snap Start extension
HTTP request
—_—
HTTP response
—



Snap Start challenges

e Client must know server certificate
e Cached from previous visit



Snap Start challenges

e Client must know server certificate
e Cached from previous visit

e Revocation checking is still slow

3 B

Client Server

Initialize handshake
Snap Start extension
HTTP request
B —

HTTP response
<7



Snap Start challenges

e Client must know server certificate
e Cached from previous visit

e Revocation checking is still slow

Certificate Client Server
validation
Certificate valid?
<7
Response
Initialize handshake
Snap Start extension
HTTP request
B —

HTTP response
<7



Problem

e TLS imposes extra latency due to
retrieving and validating server
certificate

e How to obtain certificate to do Snap
Start handshake?
e How to validate without extra latency?



Contribution

e Real world study of OCSP response

times
o Certificate prefetching and prevalidation

e Propose four prefetching strategies
e Analysis of effectiveness
e Prototype implementation



How long does OCSP take in the

real world?

e Experimental setup
e OCSP response times collected from
users running Perspectives browser
extensions
o 242 clients, 4474 certificates, 24
responders



OCSP in the wild

Percentage of OCSP
lookups completed

0%
40%
30%
20%
10%

0%

CDF of OCSP response time:

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1300 1600 1700 1800 1900 2000 2100
Response time (ms)

Median: 291 ms, mean: 498 ms



OCSP in the wild

Percentage of OCSP
lookups completed

100%
a0%
80%
T0%
60%
0%
40%
30%
20%
10%

0%

CDF of OCSP response time:

<

/

/

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1300 1600 1700 1800 1900 2000 2100
Response time (ms)

Median: 291 ms, mean: 498 ms



OCSP in the wild

Percentage of OCSP
lookups completed

0%
40%
30%
20%
10%

0%

CDF of OCSP response time:

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1300 1600 1700 1800 1900 2000 2100
Response time (ms)

Median: 291 ms, mean: 498 ms



OCSP in the wild

CDF of OCSP response time:

100%
% - 90% /,___
O L 8 e
(@] %_ 7%
B E 60% /
28 sm //
.g o am% /
g 2 am /
T 8 2%
O am
0%

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1300 1600 1700 1800 1900 2000 2100
Response time (ms)

Median: 291 ms, mean: 498 ms



Design

e Prefetch certificates

e Enables Snap Start handshakes more
frequently

e Prevalidate certificates
e Removes OCSP lookup from critical path



Design questions

e When to prefetch? When to prevalidate?

e How to obtain certificate?



When to prefetch

|deas borrowed from DNS prefetching:

o DNS prefetching triggers are effective
for certs



When to prefetch

|deas borrowed from DNS prefetching:

o DNS prefetching triggers are effective
for certs

e Could be deployed with HTML hints for
effective prefetching



How to prefetch

e Goal: Obtain server certificate
o Challenge: Full TLS handshake is

expensive

e Four proposed methods that are more
efficient



Prefetching methods
Option 1: Truncated handshake

g B

Client Server

Initialize handshake
_
Certificate
—
Negotiate key

—_—
<

HTTP request
_—

HTTP response
<_,—,_



Prefetching methods
Option 1: Truncated handshake

g B

Client Server
Initialize handshake
—_—

Certificate
—



Prefetching methods
Option 1: Truncated handshake

e No public key crypto!
e Server admin does nothing

e But implementation requires new APl in TLS
layer



Prefetching methods

Option 2: HTTP GET request

e.g., to http://www.domain.com/cert

e Much less load than full TLS handshake, but
still impacts the server



Prefetching methods

What if we want no additional load on
server?



Prefetching methods

What if we want no additional load on
server?
Option 3: Retrieve from CDN

e HTTP GET request, avoid hitting web

Server



Prefetching methods

What if we want no additional load on
server?
Option 4: Retrieve from DNS

e DNS TXT record can store certificate

e No impact on web server



Prevalidation

o After prefetching cert, prevalidate it
e Normal OCSP lookup



Prototype

e Prefetching and prevalidating in
Chromium

e Piggyback on DNS prefetching
architecture

e DNS and HTTP GET prefetching



Analysis

e How much does prefetching and
prevalidating affect handshake latency?



Handshake latency

e Normal TLS handshake: 122 ms

\l, Remove round trips by prefetching cert and using Snap Start

e Snap Start, unvalidated cert: 83 ms

\l/ Remove OCSP validation by prevalidating cert

e Snap Start, prevalidated cert: 30 ms

Server: Ubuntu 10.04, 256MB, Apache 2.2.17, Client: Ubuntu 10.04, 1GB RAM

HTTP GET request: 16 ms



Conclusions

e OCSP latency matters, especially when
handshakes have fewer RTTs

e Need prefetched certificate to enable Snap
Start and for OCSP prevalidation

e 4 proposed strategies for prefetching certs

e Reduce TLS handshake by two RTTs and
OCSP response time (factor of 4 in our
experiments)



