
© Copyright 2012 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice.

Static detection of C++ vtable
escape vulnerabilities in binary
code

David Dewey Jonathon Giffin
School of Computer Science

Georgia Institute of Technology
{ddewey, giffin}@gatech.edu

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice.

Common problem in C++

In C++ specifically, how does one convert and instance of an
object into an instance of another object?

 “…use static_cast in all cases and see what the compiler
 says.”

 B. Stroustrup. The Design and Evolution of C++.
 Pearson Education, 1994.

2

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice.

C++ Type confusion vulnerabilities

Adobe Flash Player SharedObject Type Confusion Vulnerability
 CVE-2011-0611

Microsoft ATL/MFC ActiveX Type Confusion Vulnerability
 CVE-2009-2494

Microsoft Office Excel Conditional Expression Ptg Type Confusion
Vulnerability

 CVE-2011-1989

The list goes on… and on… and on…

3

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice.

Reverse engineering C++ binaries is hard

4

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice.

As it turns out, these are all the same problem…

• Recently, many software-level vulnerabilities caused by C++
type confusion

• Compiled C++ code can be very difficult to analyze
• IDS/IPS vendor wanted to provide signature coverage
• Software consumer concerned with application security
• Third-party interoperation

• Software developers regularly incorrectly use the static_cast
operator
• No compiler warning from most modern compilers
• C++ standard only requires “cv-check”

5

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice.

Root of the problem

• This code compiles without
warning with Visual Studio
and g++ (< 4.6)

• Running this code causes a
call to arbitrary memory

6

class class1 {
public:

class1();
~class1();
virtual void addRef();
virtual void print();

};

class class2 : public class1 {
public:

class2();
~class2();
virtual void voidFunc1() {};
virtual void debug();

};

int tmain(int argc, TCHAR* argv[])
{

class1 C1;
C1.addRef();
C1.print();
static cast<class2*>(&C1)->debug();
return 0;

}

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice.

Same problem

• In the previous slide, the
problem should be obvious
to a developer

• Consider this code. _tmain()
and internalFunction() may
be “miles apart”
• Separate libraries

• Not caught by g++ 4.6

• Very common code
construct in MS COM

7

int internalFunction(void *pv)
{
 static_cast<class1*>(pv)->addRef();
 static_cast<class1*>(pv)->print();
 static_cast<class1*>(pv)->debug();
 return 0;
}

int _tmain(int argc, _TCHAR* argv[])
{
 class1 *C1 = new class1;
 class2 *C2 = new class2;
 internalFunction((void *)C1);
 internalFunction((void *)C2);
 return 0;
}

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice.

Structure of a C++ object after compilation

00402138 off 402138 dd offset sub 4010D0

0040213C dd offset sub 4010A0

00402140 dd offset nullsub 1

00402144 dd offset sub 4010B0

00402148 dd offset dword 402274

0040214C off 40214C dd offset sub 4010D0

00402150 dd offset sub 4010A0

00402154 align 8

00402158 db 48h ; H

00402159 db 0

0040215A db 0

0040215B db 0

0040215C db 0

8

Class2

ptr to VTable

prop1

prop2

…

VTable

void (Class1::*AddRef)()

void (Class1::*print)()

void (Class2::*voidFunc1)
()

void (Class2::*debug)()

void Class1::AddRef()
{
 prop1++;

 return;
}

void Class1::print()
{
 cout << “I’m in
Class1” << endl;

 return;
}

void Class2::voidFunc1
()
{
 return;
}

void Class2::debug()
{
 cout<<“In
 debug”<<endl;

 return;
}

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice.

RECALL

• Reconstruct C++ objects from binary code

• Perform reaching definition analysis on object definitions to
determine which object is being referenced at a given use
point (make reverse engineering easier)

• Perform a “congruence check” to determine the safety of the
use of a given object (detects vtable escape vulnerabilities)

9

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice.

High-level architecture of RECALL

10

IDA Pro

llvm-bcwriter

x86 Machine Code

Assembly

LLVM bitcode opt

ClassTracker

LLVM IR

Resolved Methods

Type Mismatches

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice.

x86 to SSA

• First, we translate x86 machine code into an SSA-based IR
• We chose an SSA-based IR to make translation simpler

• x86 assembly is mostly triple-based
• Use-def chains are implicit (core requirement for reaching definitions)
• Problems with going to higher-level IR

• Chose the LLVM IR due to the robustness of the LLVM
analysis framework

• LLVM is attractive from a licensing perspective

11

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice.

Object reaching definition analysis

Where:
 GEN is the set of objects that are
 instantiated in a given basic block

 KILL is the set of objects that are
 deleted in a given basic block

 For interprocedural analysis,
 REACHIN at the entry of a function
 F is equal to REACH[c] at the call
 to F from a call site c

12

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice.

Indentifying object instantiation

• Stack-allocated
 Implement object structure heuristics

•  Inline constructor
•  Explicit constructor

• Heap-allocated – new() operator
 Call to YAPAXI(uint size)

•  Inline constructor
•  Explicit constructor

13

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice.

Tracking object types

14

Class2

ptr to VTable

prop1

prop2

…

VTable

void (Class1::*AddRef)()

void (Class1::*print)()

void (Class2::*voidFunc1)
()

void (Class2::*debug)()

void Class1::AddRef()
{
 prop1++;

 return;
}

void Class1::print()
{
 cout << “I’m in
Class1” << endl;

 return;
}

void Class2::voidFunc1
()
{
 return;
}

void Class2::debug()
{
 cout<<“In
 debug”<<endl;

 return;
}

• For each object, create a structure mapping the structure of
the object

• Tag each object type with the virtual address of the
constructor

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice.

Congruence Check

15

ClassY

ptr to VTable

prop1

prop2

…

VTable

void (Class1::*AddRef)()

void (Class1::*print)()

void (Class2::*voidFunc1)()

void (Class2::*debug)()

void Class1::AddRef()
{
 prop1++;

 return;
}

void Class1::print()
{
 cout << “I’m in Class1”
<< endl;

 return;
}

void Class2::voidFunc1()
{
 return;
}

void Class2::debug()
{
 cout<<“In
 debug”<<endl;

 return;
}

Class X

ptr to VTable

prop1

prop2

…

VTable

void (Class1::*AddRef)()

void (Class1::*print)()

void (Class2::*voidFunc1)()

void (Class2::*debug)()

void Class1::AddRef()
{
 prop1++;

 return;
}

void Class1::print()
{
 cout << “I’m in Class1”
<< endl;

 return;
}

void Class2::voidFunc1()
{
 return;
}

void Class2::debug()
{
 cout<<“In
 debug”<<endl;

 return;
}

Do
these
align?

Do
these
align?

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice.

Caveats

• Not designed for the analysis of malware or obfuscated code
• Does not require RTTI or debug symbols
• Focus is on code compiled with Visual Studio, but techniques
can be generalized to other compilers

• If an object is allocated and the class pointer is stored in a
collection, when the pointer is retrieved, we cannot track the
type (future work)

16

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice.

Results

• Able to reconstruct and analyze objects from sample code
that models:

 [stack-allocated, heap-allocated] x [inlined ctor, explicit ctor]

• Able to identify vulnerabilities in microbenchmarks designed
to simulate real vulnerabilities:
• Simulated CVE-2011-0611(Adobe Reader)
• Simulated CVE-2010-0258 (Microsoft Excel)

17

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice.

Why microbenchmarks?

18

Function_A:

…
%3 = new()
…
%6 = new()
…
delete(%6)
…
call Function_B(%3)

Function_B(void* a):

…
%2 = new()
…
%5 = new()
…
delete(%2)
…
Call [a+0x4]

REACHIN:
{}
REACH:
{x} REACH: {x,y}

REACH:
{x}

REACHIN:
{x}
REACH: {x,z}

REACH:
{x,z,w}
REACH: {x,w}

•  Analysis is performed interprocedurally
•  Procedures can be analyzed
independent of their location in the
binary
•  “Moving” procedures does not impact
the correctness of the analysis

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice.

Select Related Work

D. F. Bacon and P. F. Sweeney. Fast static analysis of C++ virtual function calls. In Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), 1996.
B. Calder and D. Grunwald. Reducing indirect function call overhead in C++ programs. In Proceedings of the ACM SIGPLAN-

 SIGACT Symposium on Principles of Programming Languages (POPL), Portland, Oregon, 1994.
C. Meadows. A procedure for verifying security against type confusion attacks. In IEEE Computer Security Foundations

 Workshop (CSFW), Pacific Grove, California, June 2003.
H. Pande and B. Ryder. Data-flow-based virtual function resolution. In Proceedings of the Third International Symposium on
Static Analysis (SAS), 1996.
H. D. Pande and B. G. Ryder. Static type determination for C++. In Proceedings of the 6th USENIX C++ Technical
Conference, 1994.
A. Slowinska, T. Stancescu, and H. Bos. Howard: A dynamic excavator for reverse engineering data structures. In

 Proceedings of the Network and Distributed Systems Security Symposium (NDSS), 2011.
D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. Kang, Z. Liang, J. Newsome, P. Poosankam, and P. Saxena.

 BitBlaze: A new approach to computer security via binary analysis. In International Conference on Information
 Systems Security, 2008.

J. Viega, J. T. Bloch, Y. Kohno, and G. McGraw. ITS4: A static vulnerability scanner for C and C++ code. In Proceedings
 of the 16th Annual Computer Security Applications Conference (ACSAC), 2000.

19

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice.

Conclusion

• In our paper, we make the following contributions:
• Resolve vtable dispatch calls in compiled binaries
• Programmatically identify vtable escape vulnerabilities introduced by C++
developers

• Construct a general C++ decompilation framework for use in other analyses

20

© Copyright 2012 Hewlett-Packard Development Company, L.P. The information
contained herein is subject to change without notice.

Questions?
ddewey@gatech.edu

giffin@gatech.edu

21

