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Common problem in C++ 

In C++ specifically, how does one convert and instance of an 
object into an instance of another object? 

 “…use static_cast in all cases and see what the compiler 
  says.” 

  B. Stroustrup. The Design and Evolution of C++.  
   Pearson Education, 1994. 
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C++ Type confusion vulnerabilities 

Adobe Flash Player SharedObject Type Confusion Vulnerability 
 CVE-2011-0611 

Microsoft ATL/MFC ActiveX Type Confusion Vulnerability 
 CVE-2009-2494 

Microsoft Office Excel Conditional Expression Ptg Type Confusion 
Vulnerability 

 CVE-2011-1989 

The list goes on… and on… and on… 
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Reverse engineering C++ binaries is hard 
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As it turns out, these are all the same problem… 

• Recently, many software-level vulnerabilities caused by C++ 
type confusion 

• Compiled C++ code can be very difficult to analyze 
• IDS/IPS vendor wanted to provide signature coverage 
• Software consumer concerned with application security 
• Third-party interoperation 

• Software developers regularly incorrectly use the static_cast 
operator 
• No compiler warning from most modern compilers 
• C++ standard only requires “cv-check” 
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Root of the problem 

• This code compiles without 
warning with Visual Studio 
and g++ (< 4.6) 

• Running this code causes a 
call to arbitrary memory 
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class class1 { 
public: 

class1(); 
~class1(); 
virtual void addRef(); 
virtual void print(); 

}; 

class class2 : public class1 { 
public: 

class2(); 
~class2(); 
virtual void voidFunc1() {}; 
virtual void debug(); 

}; 

int tmain(int argc, TCHAR* argv[]) 
{ 

class1 C1; 
C1.addRef(); 
C1.print(); 
static cast<class2*>(&C1)->debug(); 
return 0; 

} 
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Same problem 

• In the previous slide, the 
problem should be obvious 
to a developer 

• Consider this code.  _tmain() 
and internalFunction() may 
be “miles apart” 
• Separate libraries 

• Not caught by g++ 4.6 

• Very common code 
construct in MS COM 
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int internalFunction(void *pv)  
{ 
  static_cast<class1*>(pv)->addRef(); 
  static_cast<class1*>(pv)->print(); 
  static_cast<class1*>(pv)->debug(); 
  return 0; 
} 

int _tmain(int argc, _TCHAR* argv[]) 
{ 
  class1 *C1 = new class1; 
  class2 *C2 = new class2; 
  internalFunction((void *)C1); 
  internalFunction((void *)C2); 
  return 0; 
} 
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Structure of a C++ object after compilation 

00402138 off 402138 dd offset sub 4010D0 

0040213C dd offset sub 4010A0 

00402140 dd offset nullsub 1 

00402144 dd offset sub 4010B0 

00402148 dd offset dword 402274 

0040214C off 40214C dd offset sub 4010D0 

00402150 dd offset sub 4010A0 

00402154 align 8 

00402158 db 48h ; H 

00402159 db 0 

0040215A db 0 

0040215B db 0 

0040215C db 0 
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Class2 

ptr to VTable 

prop1 

prop2 

… 

VTable 

void (Class1::*AddRef)() 

void (Class1::*print)() 

void (Class2::*voidFunc1)
() 

void (Class2::*debug)() 

void Class1::AddRef() 
{ 
    prop1++; 

    return; 
} 

void Class1::print() 
{ 
    cout << “I’m in 
Class1” <<          endl; 

    return; 
} 

void Class2::voidFunc1
() 
{ 
    return; 
} 

void Class2::debug() 
{ 
    cout<<“In       
            debug”<<endl; 

    return; 
} 
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RECALL 

• Reconstruct C++ objects from binary code 

• Perform reaching definition analysis on object definitions to 
determine which object is being referenced at a given use 
point (make reverse engineering easier) 

• Perform a “congruence check” to determine the safety of the 
use of a given object (detects vtable escape vulnerabilities) 
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High-level architecture of RECALL 
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IDA Pro 

llvm-bcwriter 

x86 Machine Code 

Assembly 

LLVM bitcode opt 

ClassTracker 

LLVM IR 

Resolved Methods 

Type Mismatches 
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x86 to SSA 

• First, we translate x86 machine code into an SSA-based IR 
• We chose an SSA-based IR to make translation simpler 

• x86 assembly is mostly triple-based 
• Use-def chains are implicit (core requirement for reaching definitions) 
• Problems with going to higher-level IR 

• Chose the LLVM IR due to the robustness of the LLVM 
analysis framework 

• LLVM is attractive from a licensing perspective 
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Object reaching definition analysis 

Where: 
 GEN is the set of objects that are 
 instantiated in a given basic block 

 KILL is the set of objects that are 
 deleted in a given basic block 

 For interprocedural analysis, 
 REACHIN  at the entry of a function 
 F is equal to REACH[c] at the call 
 to F from a call site c 
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Indentifying object instantiation 

• Stack-allocated 
  Implement object structure heuristics 

•  Inline constructor    
•  Explicit constructor 

• Heap-allocated – new() operator 
  Call to YAPAXI(uint size) 

•  Inline constructor 
•  Explicit constructor 
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Tracking object types 
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Class2 

ptr to VTable 

prop1 

prop2 

… 

VTable 

void (Class1::*AddRef)() 

void (Class1::*print)() 

void (Class2::*voidFunc1)
() 

void (Class2::*debug)() 

void Class1::AddRef() 
{ 
    prop1++; 

    return; 
} 

void Class1::print() 
{ 
    cout << “I’m in 
Class1” <<          endl; 

    return; 
} 

void Class2::voidFunc1
() 
{ 
    return; 
} 

void Class2::debug() 
{ 
    cout<<“In       
            debug”<<endl; 

    return; 
} 

• For each object, create a structure mapping the structure of 
the object 

• Tag each object type with the virtual address of the 
constructor 
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Congruence Check 
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ClassY 

ptr to VTable 

prop1 

prop2 

… 

VTable 

void (Class1::*AddRef)() 

void (Class1::*print)() 

void (Class2::*voidFunc1)() 

void (Class2::*debug)() 

void Class1::AddRef() 
{ 
    prop1++; 

    return; 
} 

void Class1::print() 
{ 
    cout << “I’m in Class1” 
<<          endl; 

    return; 
} 

void Class2::voidFunc1() 
{ 
    return; 
} 

void Class2::debug() 
{ 
    cout<<“In       
            debug”<<endl; 

    return; 
} 

Class X 

ptr to VTable 

prop1 

prop2 

… 

VTable 

void (Class1::*AddRef)() 

void (Class1::*print)() 

void (Class2::*voidFunc1)() 

void (Class2::*debug)() 

void Class1::AddRef() 
{ 
    prop1++; 

    return; 
} 

void Class1::print() 
{ 
    cout << “I’m in Class1” 
<<          endl; 

    return; 
} 

void Class2::voidFunc1() 
{ 
    return; 
} 

void Class2::debug() 
{ 
    cout<<“In       
            debug”<<endl; 

    return; 
} 

Do 
these 
align? 

Do 
these 
align? 
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Caveats 

• Not designed for the analysis of malware or obfuscated code 
• Does not require RTTI or debug symbols 
• Focus is on code compiled with Visual Studio, but techniques 
can be generalized to other compilers 

• If an object is allocated and the class pointer is stored in a 
collection, when the pointer is retrieved, we cannot track the 
type (future work) 
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Results 

• Able to reconstruct and analyze objects from sample code 
that models: 

 [stack-allocated, heap-allocated] x [inlined ctor, explicit ctor] 

• Able to identify vulnerabilities in microbenchmarks designed 
to simulate real vulnerabilities: 
• Simulated CVE-2011-0611(Adobe Reader) 
• Simulated CVE-2010-0258 (Microsoft Excel) 
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Why microbenchmarks? 
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Function_A: 

… 
%3 = new() 
… 
%6 = new() 
… 
delete(%6) 
… 
call Function_B(%3) 

Function_B(void* a): 

… 
%2 = new() 
… 
%5 = new() 
… 
delete(%2) 
… 
Call [a+0x4] 

REACHIN: 
{} 
REACH: 
{x} REACH: {x,y} 

REACH: 
{x} 

REACHIN: 
{x} 
REACH: {x,z} 

REACH: 
{x,z,w} 
REACH: {x,w} 

•  Analysis is performed interprocedurally 
•  Procedures can be analyzed 
independent of their location in the 
binary 
•  “Moving” procedures does not impact 
the correctness of the analysis 
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Conclusion 

• In our paper, we make the following contributions: 
• Resolve vtable dispatch calls in compiled binaries 
• Programmatically identify vtable escape vulnerabilities introduced by C++ 
developers 

• Construct a general C++ decompilation framework for use in other analyses 
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Questions? 
ddewey@gatech.edu 

giffin@gatech.edu 
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