
Identifying and Analyzing Pointer Misuses
for Sophisticated

Memory-corruption Exploit Diagnosis

Mingwei Zhang (†)
Aravind Prakash (§)

Xiaolei Li (†)
Zhenkai Liang (†)

Heng Yin (§)

(†) School of Computing, National University of Singapore
(§) Department of Electrical Engineering and Computer
Science, Syracuse University

  An attacker overwrites vulnerable function return
address, which points to shellcode on stack.

  These single step attacks don’t work anymore thanks to:

  ASLR, DEP, NX, etc.

Simple Stack Buffer Overflow

buffer

return address

Only one step

shellcode

2

Exploiting SEH Mechanism

SEH Record

arguments prepared by OS
for exception handler

return address of exception
handler function

S
tack grow

th

exception handler
prev

return address
security cookie

buffer

DispatcherContext
ContextRecord

EstablisherFrame
ExceptionRecord

return address

step 2

step 1

step 3

TIB

3

pop
pop
ret

Insights

  Recent attacks employ multiple steps.
  Pointer misuse is very prominent in

sophisticated attacks.
  Key steps constitute pointer misuses.

4

Our Goal:
Diagnosing pointer misuses in a multi-step attack.

Pointerscope – Attack
Diagnosis Engine
  Type System tailored to diagnose pointer

misuse.
  Eager type inference system to detect

pointer misuses.
  Provide big picture of the misuse through

key steps graph.

5

Overview

Vulnerable	

Program	

(Browser)	

Execu6on	
 Monitor	

(TEMU)	

Execu6on	

Trace	

Type	
 Inference	

Engine	

Diagnosis	
 Engine	

Diagnosis	

Report	

Guest	
 OS	

Exploit
(Malicious
Server)

6

Variable And Variable Type

  A variable is a memory location or a register.
  Simple primitive variable types:

  Integer
  Control Pointer (or code pointer)
  Data Pointer
  Other. (The rest of the types)

7

Type Lattice

8

Eager Dynamic Type Inference

  Type Propagation:
  mov %eax, %ebx

  Inference: eax and ebx have same type

  Type Constraints:
  call %eax

  Inference: %eax contains Control Pointer

9

Example – Type Inference

mov %eax, %ebx

mov %ebx, %ecx

imul $0x05, %ecx, %ecx

mov %ecx, %edx

{eax, ebx} : ANY

{eax, ebx, ecx} : ANY

ecx is an INT
{eax, ebx, ecx}: Integer

{eax, ebx, ecx, edx} : Integer

call *%ecx Used as a pointer. Conflict

Harder than it seems!

10

Challenges
  X86 supports base-index with displacement –

Problem: Compilers don’t follow convention.

movl	
 $0x8(
 	
 	
 	
 ,	
 	
 	
 	
),	
 %ecx	
 %eax	
 %edx	

displacement	
 base	
 register	
 index	
 register	
 address	
 =	
 +	
 +	

Solution: Register closest to result is the base.

11

Challenges… contd.

  Individual instructions not always lead to
accurate type inferences.
  Eg:

  Solution: recognizing the common patterns and
treat them as special cases

not	
 %ebp	

or	
 	
 $0x3,%ebp	

not	
 %ebp	

and	
 $0xfffffffc,%ebp	

12

Challenges… contd.
  LEA designed to load effective address, but

often used in arithmetic.

lea $0x8(%eax,%edx,4), %ecx	
 %ecx＝%eax＋%edx×4＋$0x8	

Solution: Treat lea as an arithmetic operation.

13

Challenges…

  More challenges discussed in the paper!

14

Key Steps Graph – Example

0x42050000:	
 	
 	
 pushfd	

0x08048000:	
 	
 	
 ret	

Mem:	
 0xbfff0000	
 [4]	

Type Origin (INT)

Type Usage (CTR)

Infer: Top of stack,
(0xbfff0000)	

is	
 an	
 INT

Returning to
0xbfff0000	

Where the variable was
initialized

Where the variable was
misused

15

Evaluation

  Implementation
  Execution monitor on TEMU.
  3.6K lines of C code.

  Experimental setup
  Evaluated against real world exploits from Metasploit framework.

16

Summary of Effectiveness
CVE Attack Technique Runtime* Pointer

Misuses Trace Size Slice Size

CVE-2010-0249 Uninitialized memory;
heap spray

18m23s,
8m30s 11 307,987,560 48,404,242

CVE-2009-3672 Incorrect variable
initialization; heap-spray

3m10s,
31s 2 22,759,299 955,325

CVE-2009-0075 Uninitialized memory;
heap spray

25m,
21m16s 6 411,323,083 44,792,770

CVE-2006-0295 Heap overflow; heap
spray 3m5s, 1s 3 808,392 34,883

CVE-2006-1016 Stack overflow; SEH
exploit

4m59s,
1m33s 3 64,355,691 1,334,253

CVE-2006-4777 Integer overflow; heap
spray

1m45s,
40s 3 2,632,241 1,669,751

CVE-2006-1359 Incorrect variable
initialization; heap spray

11m58s,
13s 2 8,336,193 29,520

CVE-2010-3333 Stack overflow
vulnerability; SEH exploit

18m53s,
7m24s 1 236,331,307 814,305

CVE-2010-3962 Incorrect variable
initialization; heap spray

10m36,
15s 2 9,281,019 78,704

*Time taken to generate trace, time taken to generate key steps
17

Case Study: CVE-2009-3672

  This is a real world exploit for vulnerable
version of IE Browser

  This attack is caused by a vulnerability in the
class CDispNode’s member function
SetExpandedClipRect

18

The First Type Conflict

0x749120f2: or $0x2, %eax
I@0x00000000[1](R) R@eax[4](RW)

0x102098@mshtml.dll@CLayout::SizeDispNode

0x7490e854: call *0x2c(%eax)
 M@0x74831546[4] M@0x0013e0d4[4]

0xfe838@mshtml.dll@CLayout::GetFirstContentDispNode

eax (4 bytes)

Type Origin (INT)

Type Usage (CTR)

Infer: Integer

Used as Control Ptr
Violation

or $0x2, %eax

19

The Second Type Conflict

[16940584] 0x7490e854 call *0x2c(%eax)
 M@0x74000006[4] M@0x0013e0d4[4]

0xfe838@mshtml.dll@CLayout::GetFirstContentDispNode

0x74912000: call *0x2c(%eax)
 M@0x74000004[4] M@0x0013e068[4]

0x102098@mshtml.dll@CLayout::SizeDispNode

0x74943a14: call *0x30(%eax)
 M@0x74000008[4] M@0x0013dde4[4]

0x13393f@mshtml.dll@CDispNode::GetNodeClipTransform

M@0x74000004[4]

Type Origin (CTR)

M@0x74000008[4]

Type Origin (CTR)

Type Usage (CTR) Type Usage (CTR)

20

Final Result

21

Reducing False Positives

  What makes it hard?
  Compiler optimizations
  Code obfuscation – even by proprietary code.

  Note: Our goal is NOT to eliminate False
Positives.

22

Related Work

  Attack Diagnosis Techniques
  BackTracker [King, et. al, SOSP’03], Dynamic

Taint Analysis [Newsome, et. al, NDSS’05]
  Type and Data Structure recovery from

binary
  Rewards [Zin, et.al, NDSS’10], Howard

[Slowinska, NDSS’11], Tie [Lee, et.al, NDSS’11]
  Defense and evasion techniques

  CFI [Abadi, et.al, CCS’05], DFI [Castro, et.al,
OSDI’06], WIT [Akritidis, et.al, IEEE S&P’08]

23

Conclusion

  We define a pointer centric type system to
track pointers.

  We design a type inference system to
detect pointer misuses.

  We generate the key steps graph to identify
key steps.

  We evaluate our work by testing our system
on real-world exploits from metasploit.

24

Questions?

25

Challenges… contd.
  Handling memory copy operations

  Memory copy operations may break the integrity of
variables

Variable	
 A	

rep	
 movsb	

Variable	
 B,C,D,E	

depend	
 on	

Variable	
 F	

inherit	
 type	
 information	

Solution: Aggregation.

26

Case Study: SEH Attack

