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  An attacker overwrites vulnerable function return 
address, which points to shellcode on stack. 

  These single step attacks don’t work anymore thanks to: 

  ASLR, DEP, NX, etc. 

Simple Stack Buffer Overflow 
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Exploiting SEH Mechanism 
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Insights 

  Recent attacks employ multiple steps. 
  Pointer misuse is very prominent in 

sophisticated attacks. 
  Key steps constitute pointer misuses. 
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Our Goal: 
Diagnosing pointer misuses in a multi-step attack. 



Pointerscope – Attack 
Diagnosis Engine 
  Type System tailored to diagnose pointer 

misuse. 
  Eager type inference system to detect 

pointer misuses. 
  Provide big picture of the misuse through 

key steps graph. 
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Overview 
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Variable And Variable Type 

  A variable is a memory location or a register. 
  Simple primitive variable types: 

  Integer 
  Control Pointer (or code pointer) 
  Data Pointer 
  Other. (The rest of the types) 
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Type Lattice 

8 



Eager Dynamic Type Inference 

  Type Propagation: 
  mov %eax, %ebx 

  Inference: eax and ebx have same type 

  Type Constraints: 
  call %eax  

  Inference: %eax contains Control Pointer 
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Example – Type Inference 

mov %eax, %ebx 

mov %ebx, %ecx 

imul $0x05, %ecx, %ecx 

mov %ecx, %edx 

{eax, ebx} : ANY 

{eax, ebx, ecx} : ANY 

ecx is an INT 
{eax, ebx, ecx}: Integer 

{eax, ebx, ecx, edx} :  Integer 

call *%ecx Used as a pointer. Conflict 

Harder than it seems! 
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Challenges 
  X86 supports base-index with displacement – 

Problem: Compilers don’t follow convention. 

movl	
  $0x8(	
  	
  	
  	
  ,	
  	
  	
  	
  ),	
  %ecx	
  %eax	
  %edx	
  

displacement	
   base	
  register	
   index	
  register	
  address	
   =	
   +	
   +	
  

Solution: Register closest to result is the base. 
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Challenges… contd. 

  Individual instructions not always lead to 
accurate type inferences. 
  Eg: 

  Solution: recognizing the common patterns and 
treat them as special cases 

not	
  %ebp	
  
or	
  	
  $0x3,%ebp	
  
not	
  %ebp	
  

and	
  $0xfffffffc,%ebp	
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Challenges… contd. 
  LEA designed to load effective address, but 

often used in arithmetic.   

lea $0x8(%eax,%edx,4), %ecx	
   %ecx＝%eax＋%edx×4＋$0x8	
  

Solution: Treat lea as an arithmetic operation. 

13 



Challenges… 

  More challenges discussed in the paper! 
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Key Steps Graph – Example 

0x42050000:	
  	
  	
  pushfd	
  

0x08048000:	
  	
  	
  ret	
  

Mem:	
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  [4]	
  

Type Origin (INT) 

Type Usage (CTR) 

Infer: Top of stack, 
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is	
  an	
  INT 

Returning to 
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Where the variable was  
initialized 

Where the variable was 
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Evaluation 

  Implementation 
  Execution monitor on TEMU. 
  3.6K lines of C code. 

  Experimental setup 
  Evaluated against real world exploits from Metasploit framework. 
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Summary of Effectiveness 
CVE Attack Technique Runtime* Pointer 

Misuses Trace Size Slice Size 

CVE-2010-0249 Uninitialized memory; 
heap spray 

18m23s, 
8m30s 11 307,987,560 48,404,242 

CVE-2009-3672 Incorrect variable 
initialization; heap-spray 

3m10s, 
31s 2 22,759,299 955,325 

CVE-2009-0075 Uninitialized memory; 
heap spray 

25m, 
21m16s 6 411,323,083 44,792,770 

CVE-2006-0295 Heap overflow; heap 
spray 3m5s, 1s 3 808,392 34,883 

CVE-2006-1016 Stack overflow; SEH 
exploit 

4m59s, 
1m33s 3 64,355,691 1,334,253 

CVE-2006-4777 Integer overflow; heap 
spray 

1m45s, 
40s 3 2,632,241 1,669,751 

CVE-2006-1359 Incorrect variable 
initialization; heap spray 

11m58s, 
13s 2 8,336,193 29,520 

CVE-2010-3333 Stack overflow 
vulnerability; SEH exploit 

18m53s, 
7m24s 1 236,331,307 814,305 

CVE-2010-3962 Incorrect variable 
initialization; heap spray 

10m36, 
15s 2 9,281,019 78,704 

*Time taken to generate trace, time taken to generate key steps 
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Case Study: CVE-2009-3672 

  This is a real world exploit for vulnerable 
version of IE Browser 

  This attack is caused by a vulnerability in the 
class CDispNode’s member function 
SetExpandedClipRect 
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The First Type Conflict 

0x749120f2:          or $0x2, %eax 
I@0x00000000[1](R) R@eax[4](RW) 

0x102098@mshtml.dll@CLayout::SizeDispNode 

0x7490e854:          call *0x2c(%eax) 
       M@0x74831546[4]  M@0x0013e0d4[4]  

0xfe838@mshtml.dll@CLayout::GetFirstContentDispNode 

eax (4 bytes) 

Type Origin (INT) 

Type Usage (CTR) 

Infer: Integer 

Used as Control Ptr 
Violation 

or $0x2, %eax 
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The Second Type Conflict 

[16940584] 0x7490e854 call *0x2c(%eax) 
       M@0x74000006[4]  M@0x0013e0d4[4]  

0xfe838@mshtml.dll@CLayout::GetFirstContentDispNode 

0x74912000:         call *0x2c(%eax) 
       M@0x74000004[4]  M@0x0013e068[4]   

0x102098@mshtml.dll@CLayout::SizeDispNode 

0x74943a14:         call *0x30(%eax) 
       M@0x74000008[4]  M@0x0013dde4[4] 

0x13393f@mshtml.dll@CDispNode::GetNodeClipTransform 

M@0x74000004[4] 

Type Origin (CTR) 

M@0x74000008[4] 

Type Origin (CTR) 

Type Usage (CTR) Type Usage (CTR) 
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Final Result 

21 



Reducing False Positives 

  What makes it hard? 
  Compiler optimizations 
  Code obfuscation – even by proprietary code. 

  Note: Our goal is NOT to eliminate False 
Positives. 

22 



Related Work 

  Attack Diagnosis Techniques 
  BackTracker [King, et. al, SOSP’03], Dynamic 

Taint Analysis [Newsome, et. al, NDSS’05] 
  Type and Data Structure recovery from 

binary 
  Rewards [Zin, et.al, NDSS’10], Howard 

[Slowinska, NDSS’11], Tie [Lee, et.al, NDSS’11] 
  Defense and evasion techniques 

  CFI [Abadi, et.al, CCS’05], DFI [Castro, et.al, 
OSDI’06], WIT [Akritidis, et.al, IEEE S&P’08] 
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Conclusion 

  We define a pointer centric type system to 
track pointers. 

  We design a type inference system to 
detect pointer misuses. 

  We generate the key steps graph to identify 
key steps. 

  We evaluate our work by testing our system 
on real-world exploits from metasploit. 

24 



Questions? 
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Challenges… contd. 
  Handling memory copy operations 

  Memory copy operations may break the integrity of 
variables 

Variable	
  A	
  

rep	
  movsb	
  

Variable	
  B,C,D,E	
  

depend	
  on	
  

Variable	
  F	
  

inherit	
  type	
  information	
  

Solution: Aggregation. 
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Case Study: SEH Attack  


