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Abstract 
In this paper we present PAMINA (Privilege Admini-

stration and Management INfrAstructure), a privilege 
management system using authorization certificates. Our 
system supports distributed environments where autono-
mous authorities can manage and delegate privileges in 
accordance with their own policies. We introduce Im-
proved Certification Verification Trees (I-CVTs) that 
guarantee very efficient and trustworthy certificate man-
agement. I-CVTs can provide undeniable proofs for the 
non-existence of a given certificate in contrast to CVTs as 
proposed in [1]. As a result, each authority can store its 
own I-CVT in a central, non-trusted, and replicable data-
base. This database provides authenticated verifiers with 
basically only those certificates that are required to de-
termine whether a user should be granted access to a 
resource or not. Since the system implements the pull 
model, clients need not to be involved in the access control 
decision process. PAMINA handles delegation trees in-
stead of simple delegation chains because authorities can 
delegate privileges in one certificate that were assigned to 
them by several certificates. In the prototype that we de-
scribe here, PAMINA manages certificates based on 
X.509.  

 

1 Introduction 
The increasing use of the Internet for business critical 

transactions since the early 90’s implied the development 
of different security systems and services, which are often 
based on public-key cryptographic techniques. Basically, 
there are two mechanisms that can be used by security 
systems, namely encryption and digital signatures. Nowa-
days, the most important applications for both are secure 
key exchange and integrity and authenticity protection of 
different kinds of data. In general, a certificate is a data 
structure that defines an association between an entity and 
a set of information. A certification authority states its 
belief in the validity of these associations by digitally 
signing the certificate. For example, a public-key certifi-

cate binds a public-key to a set of information that identi-
fies the entity associated with the use of the corresponding 
private key. The aim of a certificate management system is 
to offer services that guarantee the authenticity, validity 
and integrity of security information (keys, user rights, 
etc.) stored in certificates and used by applications for 
authentication and authorization purposes.  

A widely accepted definition of authorization is the 
granting of access rights to a subject. However, there is a 
difference between the administrative act of asserting that 
a subject should be granted access rights (privileges), and 
the operational act of allowing an authenticated subject to 
access a resource after determining that it holds the re-
quired set of privileges. The latter process is also referred 
to as access control decision. 

An authorization certificate (AC) contains information 
that is generated during the authorization and used in the 
access control decision process. ACs have many benefits 
in privilege management due to the fact that they can sup-
port different access control models and privilege delega-
tion schemes, because they are individually protected by 
digital signatures against fraud. Linn et al. give a good 
overview of application scenarios of several types of ACs 
that contain different kinds of authorization information, 
such as privileges or role definitions [2]. 

Surprisingly, only few access control systems exist that 
use authorization certificates. One reason for this fact is 
that both certificate management and verification generate 
additional computational and communicational costs that 
customers and providers have to bear. Widely used certifi-
cate management techniques, like Certificate Revocation 
Lists [3] that have originally been designed for public-key 
infrastructures, are not very attractive for an efficient sys-
tem design, because authorization related information has 
other characteristics than public-keys. Access rights can 
change very frequently, the amount of authorization in-
formation is usually higher, and authorization certificates 
often must be handled confidentially.  

Fortunately, there are several novel approaches with en-
hanced properties that can make certificate management 



and verification less expensive and, in many cases, more 
secure as well. 

In this paper we introduce PAMINA1 (Privilege Ad-
ministration and Management INfrAstructure), a cer-
tificate based system that provides authorization and ac-
cess control in distributed environments. PAMINA is the 
first system that uses Improved Certification Verifica-
tion Trees (I-CVTs) which guarantee very efficient and 
trustworthy certificate management. I-CVTs also provide 
undeniable proofs for the non-existence of a given certifi-
cate statement in contrast to CVTs as proposed in [1]. The 
system supports distributed environments where autono-
mous authorities, so called Privilege Management Au-
thorities (PMAs), can manage and delegate privileges in 
accordance with their own policies. Each PMA can store 
its own I-CVT in the central, non-trusted, and replicable 
Privilege Database (P-DB). This database provides au-
thenticated verifiers with basically only those certificates 
that are required to determine whether a user should be 
granted access to a resource or not.  

The rest of the paper is organized as follows: In the next 
section we summarize the most important requirements 
that PAMINA as a certificate based privilege management 
system has to fulfill. In section 3, we describe and com-
pare different approaches and choose a combination of 
best-fit solutions. We show that CVTs as proposed in [1] 
are qualified for efficient privilege management if the 
underlying data structure is chosen properly. In the follow-
ing section, we describe the concept and the implementa-
tion details of Improved CVTs and certification paths, 
which reduce the required level of trust placed on the da-
tabase storing the certificates. Finally, section 5 deals with 
the design aspects of PAMINA, the components and their 
interactions. The supported delegation model as well as 
some technical details are described. 

2 Requirements for PAMINA 
The aim of a privilege management system is to support 

security critical applications with valid information about 
the current status of the users’ access rights (privileges). 
Digitally signed authorization certificates protecting the 
integrity and authenticity of privileges enable the realiza-
tion of different authorization models in a more secure 
way than conventional systems do. For example, privilege 
delegation chains becomes more secure when using cer-
tificates. The components of a distributed certificate based 
privilege management system must provide proper mecha-
nisms, data structures, and tools for the management and 
verification of certificates. In the following we summarize 
the most important security and performance related re-
quirements that PAMINA has to fulfill, in order to be 
competitive with existing privilege management systems. 
                                                           
1 Pamina is also a beautiful princess in W. A. Mozart’s The 

Magic Flute 

• Efficient certificate lifecycle management: The 
system must handle at least certificate generation, up-
date and revocation. The underlying certificate man-
agement scheme should optimize communication, 
data maintaining and computational costs. High com-
munication costs between a database storing certifi-
cates and the issuing authority can be critical for or-
ganizations that manage a huge number of frequently 
updated/revoked ACs. In order to make PAMINA at-
tractive for access control applications (verifiers) that 
want to verify user rights, communication costs be-
tween the directory and the verifier should also be 
minimized. Optimized computational costs, for exam-
ple by the reduction of the number of required signa-
ture verifications, speed up the access control process.  

• Revocation: The system must handle situations, like 
the unexpected change of user privileges before the 
certificate expiration date or the key compromise of 
an issuing authority. 
In the first case, the certificate of the affected user has 
to be revoked and reissued. Short-lived certificates 
can reduce the probability of revocation before expira-
tion or even make revocation unnecessary. This leads 
to increased costs of the issuing authority, since it 
must sign and distribute certificates very often. There-
fore, the costs caused by certificate signing should be 
reduced, in order to use short-lived certificates. 
In the second case, the fast and efficient revocation 
and re-issuing of all certificates signed by the author-
ity whose key was compromised is required. The sys-
tem has to enable the easy exchange of an authority’s 
key pair.  

• Freshness of certificates: The system should provide 
recent authorization information. Certificate status in-
formation should be published on a regular basis, even 
if the situation does not change, so verifiers can be 
sure that their data is up to date. 

• Reduced trust on database: From the verifiers’ point 
of view there are two main types of components in a 
distributed certificate management infrastructure. 
Firstly, there are trusted authorities that issue and sign 
certificates. Secondly, there are also components (e.g., 
directories, online responders) that store and distribute 
certificates or information related to certificates (e.g., 
revocation status). The latter type of components can-
not manipulate a certificate, but they can accidentally 
or intentionally provide verifiers with incorrect infor-
mation, e.g. about its revocation status, or they can 
hold back relevant information, e.g. the certificate it-
self or a revocation list. Due to these facts in many ex-
isting systems a verifier must also trust in these com-
ponents, because he is not able to check the correct-
ness of this kind of information. This trust should be 
reduced, and therefore the database should be able to 
prove the non-existence of a certificate if he does 



not deliver it. Naturally, the database always can just 
refuse to respond to a request. 

• Privacy: Public-key certificates used for signature 
verification or for encryption have to be available for 
everyone. On the other hand, ACs storing authoriza-
tion information should be kept private. This means 
that only a fixed set of entities (administrators and 
verifiers) should have controlled access to this infor-
mation. 

• Cryptographic security: In order to protect certifi-
cates against forgery, the system must use secure 
(long) signing keys. Signing keys should be kept in a 
secure environment, which makes it impossible to re-
trieve them. 

• Interoperability: In order to provide interoperability 
and usability, PAMINA should support the manage-
ment of different (standardized) certificate formats. 
For the encoding and representation of certificates 
platform-independent and standardized storage for-
mats should be used. 

• Flexibility: The system must be able to provide dif-
ferent access control models and policy schemes with-
out technical impact. Therefore, the model has to deal 
with various certificate types that allow, for example, 
the construction of abstract groups or delegation of 
permission rights. 

• Availability and robustness: Naturally, the system 
has to make sure that the availability of the certificates 
and their status information is as high as possible. The 
system must be based on a robust model, which does 
not allow any manipulation of authorization informa-
tion, even if the underlying computer systems crash. 
For example, in case of a successful attack against the 
directory that stores the certificates it should not be 
possible for the intruder to make a revoked certificate 
pass as valid. 

• Auditing and non-repudiation: The system has to 
support easy verification of the validity status of a cer-
tificate at any point of time. In order to provide time-
liness of the authorization information, the system has 
to implement (or utilize) time stamp services. Another 
important aspect is the accountability for both author-
ity’s and user’s actions. The system must not allow 
the creation of rogue certificates or the unauthorized 
revocation of certificates without being detected. 

3 Evaluation of certificate management 
approaches for access control purposes 

In this section different competing management tech-
niques are evaluated and compared in order to choose 
from and combine best-fit methods for our purposes.  

3.1 Extended public-key certificates vs. separate 
identity and access control management 

One possible way to manage access control information 
of certified users is the use of extended public-key certifi-
cates (PKC). In this case, one authority is responsible for 
both key (identity) and privilege management. Since there 
is only one authority, the verification process becomes 
simpler, because a single trust path reflects both authenti-
cation and authorization of a user. As a result, fewer 
transactions are needed when verifying requests. This 
approach has benefits in systems where the validity 
periods of certified keys and privilege assignments are 
similar. On the other hand, in most cases user rights should 
not be open to the public. Through obtaining an extended 
PKC, one can learn a lot about the internal structure of an 
organization, since it is, for example, reflected by the roles 
defined in the certificates. In addition, authorization 
certificates (ACs) must be often issued with short validity 
periods (e.g. hours), contrasting with PKCs whose validity 
period is often measured in years.  

Due to these facts, separate access control management 
is required in most environments. Using this concept, 
authorization certificate updates have no impact on longer-
lived identity certificates. This is especially profitable for 
clients storing PKCs for authentication purposes. In addi-
tion, independent authorities issuing their own certificates 
make the system more flexible and this approach is also 
helpful to eliminate many problems caused by a central 
bottleneck. The most important disadvantage of such an 
architecture is the increasing complexity of verification 
and path processing. In the worst case each AC that must 
be verified for an access control decision can be issued 
from a different authority that belongs to a different verifi-
cation path. 

We decided to implement the first prototype of 
PAMINA for separated management of ACs. Therefore, 
the system needs the integration of a PKI, which is respon-
sible for the distribution of PKCs that are used for signa-
ture validation. We believe that the use of appropriate data 
structures and algorithms can compensate many of the 
drawbacks mentioned above. 

3.2 Push model vs. pull model 
In the so-called “push” model, client, server, and the 

certificate management infrastructure are all involved to 
varying degree in the authorization process. A client must 
maintain (e.g., download and store) its certificates and 
present them to the targeted server (verifier) by inserting 
them in its request message. The verifier must make access 
control decisions on the basis of this information. Natu-
rally, the verifier must check the correctness as well as the 
validity of the presented information. The infrastructure 
must implement mechanisms to provide all clients with the 
last updated ACs. This is a very expensive task in envi-



ronments where user rights can change dynamically. Addi-
tionally, users having more than one AC could not know 
which certificate(s) they should send to a verifier to use a 
particular service. As mentioned before, ACs often should 
be kept secret, and there is no guarantee for the issuer that 
(probably unsecured) client machines can protect ACs 
properly. As a result, all clients would need to communi-
cate over an encrypted (and authenticated) channel with 
the database very frequently which would lead to perform-
ance problems in the system. 

In contrast to the push architectures, in systems built on 
the “pull” model, verifiers pull ACs from some online 
network service. This approach simplifies clients, because 
they must no longer care about the management of ACs. 
Additionally, users are not involved in the authorization 
process and they need not even to know which privilege 
sets they have. Since there are usually fewer verifiers than 
clients in a system, this model leads to reduced communi-
cation costs in comparison to the push model. Only verifi-
ers have to pay a higher price, they must not just check the 
validity of certificates but also download them. The main 
disadvantage of this approach is that verifiers totally rely 
on the availability of the infrastructure storing the ACs. 
Moreover, the database must decide which particular ACs 
a given verifier may download. 

PAMINA was primarily developed to support the pull 
model. All certificates managed by the system are stored 
in a central database, which can be replicated to get higher 
availability and better performance. This database pro-
vides only authenticated verifiers with those certificates 
that are needed to check a given user’s rights. 

3.3 Revocation mechanisms vs. freshness 
guaranties 

Certificate revocation is the mechanism with which an 
issuing authority can revoke a stated association before its 
documented expiration. An authority may wish to revoke 
an authorization certificate, for example, in response to a 
change in the owner’s access rights or because of the com-
promise of its own private key. There are many ap-
proaches to solve this important problem, here we analyze 
the most important ones of them. 

Certificate Revocation List (CRL) is the most com-
monly used revocation mechanism in certificate manage-
ment systems today (e.g., see [3] and [4]). A CRL is a 
continuously growing, digitally signed list of revoked 
certificates, which is published periodically. In order to 
keep the CRL size manageable, certificates are denoted by 
some unique identifier (id), such as a serial number or a 
fingerprint. When a revoked certificate’s validity period 
ends it can be deleted from the CRL. Communication costs 
can be reduced by publishing periodically a delta-CRL, 
which is a differential list to the last CRL update. In order 
to verify the status of a certificate, a verifier first needs to 
obtain the latest CRL (delta-CRL), then verify the signa-

ture on it and search for the ID of the certificate in ques-
tion. CRL-management can be very expensive for both 
issuing authorities as well as verifiers in access control 
systems since user rights change frequently and verifiers 
should obtain and check many certificates in order to ver-
ify delegation chains. In addition, to provide long-term 
non-repudiation issuers (verifiers) would have to store not 
only every AC but also every CRL they have ever issued 
(received). Another disadvantage of CRLs is given by the 
fact that they do not provide non-existence proofs for 
certificates. 

The concept of Certificate Revocation Trees (CRTs) 
was proposed by Paul C. Kocher [5]. A CRT enables veri-
fiers to get a proof that a certificate has not yet been re-
voked. Basically, a CRT is a binary hash tree [6], in which 
each leaf consists of the ID of a single revoked certificate 
and a range of valid IDs all greater than the revoked one. 
During verification the verifier obtains the hash path be-
longing to the ID of the certificate in question, then it 
checks the signature on the root and verifies that the 
hashes correctly bind the leaf to the root. Finally, it checks 
whether the ID is the lowest in the leaf.  

CRTs reduce the communication cost between the veri-
fier and the directory, but increase the authority’s compu-
tational cost, which is straight proportional to the number 
of revoked certificates. This fact makes CRTs not very 
attractive for an access control management system. CRTs 
do as CRLs not support non-existence proofs for certifi-
cates. However, the main drawback of this system is that 
the insertion (deletion) of a new revoked (expired) certifi-
cate might result in the re-computation of the entire tree. 

Naor and Nissim eliminated this problem by replacing 
the suggested binary tree with a more effective B2,3-tree 
[7]. In this case, it is no longer required to change the 
whole tree when inserting or deleting a certificate but just 
one path. 

All the schemes above are constructed to maintain 
revocation information only. Table 1 shows an overview 
of the average computational and communication costs 
that verifiers and the certificate management system have 
to take into account. In addition to the listed costs for 
managing revoked certificates, there are of course the costs 
for generation and management of valid certificates. Using 
revocation mechanisms the verification process is rather 
complicated, especially when more than one AC need to 
be checked, for example for delegation path construction. 

The Online Certificate Status Protocol (OCSP) was 
specified to support the communication between verifiers 
and a trusted entity referred to as an OCSP responder, 
which supports verifiers with information about the revo-
cation status of certificates [8]. The main aim of OCSP is 
to reduce the communicational and computational costs of 
the verification process: Instead of checking the revocation 
status of certificates in question, a verifier sends a simple 
request to the responder containing one or more certificate  



n: avg. total number of certificates per authority lid : length of a certificate identifier (bits) 
r: avg. number of revoked certificates per authority lstat : length of a revocation status number (bits) 
u: avg. number of revoked certs since last update per authority lsig : total length of a signature (bits) 
 

Revocation scheme Authority computational 
costs 

Verifier computational 
costs per query 

Directory update com-
munication costs per 

authority 

Communication costs 
per verifier,  

per directory query 
CRL O(u) O(r) r·lid+lsig r·lid+lsig 

Delta CRL O(u) O(r+u) u·lsn+lsig u·lid+lsig 
CRT worst case O(u·r) O(log(r)) u·lid+2·lsig log(r)+lsig 

Naor/Nissim O(u·log(r)) O(log(r)) u·lid+2·lsig log(r)·lhash+lsig 
 

Table 1: Cost analysis of different certificate revocation schemes 
 

Freshness scheme Authority computational 
costs 

Verifier computational 
costs per query 

Directory update com-
munication costs per 

authority 

Communication costs 
per verifier,  

per directory query 
CRS O(n) O(#updates) n·(lid+lstat) lstat 

CRS2 O(u·log(n)) O(log(n)) u·lid+2·lsig log(n)·lhash+lsig 
CVT O(u·log(n)) O(log(n)) u·lid+2·lsig log(n)·lhash+lsig 

 
Table 2: Cost analysis of different schemes providing freshness information 

 
identifiers. In its response the OCSP responder sends the 
revocation status of those certificates back to the verifier. 
Naturally, to generate such a response the OCSP responder 
has to gather revocation information from some backend 
system that has to maintain revocation status information, 
for example with the use of a CRL or a CRT. OCSP does 
not specify or enhance a particular revocation scheme but 
it just defines a protocol for retrieving revocation status 
information. The main problem with this approach is that 
the verifier must trust the responder, he must believe that 
the revocation status information he gets is correct and up-
to-date. A signed and time-stamped OCSP response might 
be a real-time generated message, but the verifier cannot 
check when the included information was actually gener-
ated by the issuing authority. Furthermore, since OCSP 
responses have to be signed, there must be also a public-
key certificate issued for the responder itself which must 
be known to the verifier. The verifier should be able to 
check the current status of this certificate, too. This can of 
course not be done with the help of the OCSP responder, 
therefore some additional mechanism is needed. Since 
online responders (not only OCSP responders) do not 
improve the underlying revocation scheme and would 
raise additional problems, they seem not to be qualified for 
our purposes. 

Fortunately, there are also certificate management 
schemes that can provide the revocation status of a certifi-
cate and freshness information at once. This combination 
reduces data maintaining costs, since there is no more need 
to manage two separate databases.  

The Certificate Revocation System (CRS), which was 
the first system maintaining freshness information for both 

valid and revoked certificates at once, was invented by 
Silvio Micali [9]. In the CRS the issuing authority periodi-
cally sends a signed (and time-stamped) message for every 
certificate stating whether the certificate was revoked or 
not since the last update. For this purpose an off-line/on-
line signature scheme is used which reduces computational 
costs. CRS uses a one-way hash-function h. Before storing 
a certificate in the directory the authority chooses two 
random values R0 and R1 and then it computes and pub-
lishes the hash-values h(R1) and h(…(h(h(R0))…) or more 
precisely hk(R0), where k is the expected number of update 
periods. When the freshness of a still valid certificate 
should be stated the authority must compute hi(R0) and 
send it to the directory, where i is the total number of pos-
sible future updates. If a certificate must be revoked the 
authority simply sends R1. In order to verify that a certifi-
cate is valid, a verifier has to query the directory for a copy 
of the most recent update value. As one can see in Table 2 
the authority-to-directory communication costs are high 
because a new hash value for every certificate must be 
sent. An improvement (CRS2) that solves this problem is 
based on binary hash trees. In this scheme the current 
status of a given certificate is indicated by two bits. These 
bits, typically 128 are stored in the leaves of the tree. 
Nodes of the tree are computed from the hash of their 
children. Only the root of the tree must be signed by the 
authority. This modification speeds up the system, verifi-
cation becomes cheaper and also communication costs 
decrease, as shown in Table 2. In addition, if the Merkle 
tree is constructed carefully, CRS2 can also provide proofs 
for non-existence of certificates. Unfortunately, this sys-
tem provides information about the current status and 



existence of many neighboring certificates, which conflicts 
with confidentiality requirements.  

Alternatively, revocation could be accomplished by 
simply removing revoked authorization certificates from 
the directory. This approach would allow authorizations to 
be changed in a very responsive manner, without estab-
lishing any kind of revocation infrastructure. The problems 
to solve are how verifiers can be sure that the directory 
contains all valid certificates and that all certificates in the 
directory are still valid.  

Certification Verification Trees (CVTs) recently pro-
posed in [1] can solve these problems elegantly. The basic 
idea is that it is not necessary to sign every single certifi-
cate issued by an authority. Instead, the authors suggest to 
store the unsigned certificates (certificate statements) plus 
a hash value in the leaves of a hash-tree [6]. Only the root 
of the tree must be signed and time-stamped. In order to 
check the validity of a given certificate, the verifier must 
obtain the certificate and the certification path belonging 
to this certificate. The certification path is given by the set 
of hash values of all siblings of the nodes along the path 
from the leaf containing the certificate statement in ques-
tion to the root. This scheme allows very frequent fresh-
ness updates of all certificates at once. The authority does 
not need to maintain any extra information about revoked 
certificates. It can just delete a revoked certificate from the 
tree and then sign the root of the new tree. There are many 
other advantages of CVTs; but the most important one is 
the enhanced security: The exchange of the root key is 
easier and in the case of key compromise an adversary 
cannot manipulate single certificates, he always changes 
the signed root, which can be easier detected. Finally, 
longer and therefore probably stronger keys can be used. 
An effective CVT implementation can be based on a B2,3-
tree, for example. Some experimental results on this topic 
can be found in [10]. Table 2 compares the average costs 
of the different freshness schemes. As one can see the 
costs of CVT and CRS2 are very similar.  

The very good performance, the enhanced security and 
the simplicity of implementation convinced us to realize 
PAMINA on the basis of CVTs. However, there are some 
problems with this CVT design that are discussed in the 
next section. 

4 Improved Certification Verification Tree 
A problem with the proposed CVTs described above is 

the following: When a verifier requests some set of certifi-
cates, for example all certificates issued for a particular 
user, the directory storing the CVT can not prove that it 
actually delivers all of those certificates. Processing the 
certification paths a verifier can easily check the validity 
of received certificates, but he cannot know whether he got 
all valid certificates. In other words, a malicious directory 
could disclaim the existence of a certificate. This means in 
the case of authorization certificates that a user might not 

be able to utilize all privileges that he or she was actually 
assigned by the issuing authority. Buldas et al. showed in 
[11] that one can not generate an undeniable non-existence 
proof using the proposed CVTs. The issuing authority 
could construct an incorrectly sorted tree and provide one 
verifier with a certificate and a second verifier with a con-
tradicting “proof” for the non-existence of the same cer-
tificate. Therefore the structure of a CVT should be im-
proved in such a way that it is possible to provide an un-
deniable proof of non-existence if the directory does not 
deliver a requested certificate.  

Therefore, we construct Improved Certification Veri-
fication Trees (I-CVTs) that are very efficient and more 
trustworthy. The underlying data structure of an I-CVT is 
a variant of a balanced search tree (B-tree), a so called B+-
tree. A B+-tree differs in that way from a B-tree that all 
data is stored in the leaves (see Fig. 1). A B+-tree of order 
m satisfies the following properties [12]. Every internal 
node of the tree has at least �m/2� and at most m children. 
The root node has at least 2 children. A non-leaf node with 
k children contains k-1 keys. Leaves of the tree contain at 
least �m/2�-1 and at most m-1 keys and as many pointers 
to data records (e.g., certificate statements). The leaves of 
the tree are linked which optimizes sequential access to the 
data records. In order to store certificates in a B+-tree, an 
order of the certificates must be defined, e.g. a unique 
serial number or a certificate hash value can be used (s. 
below). B+-trees have the following advantageous proper-
ties for certificate management: 
• Each path from a certificate to the root has the same 

length. Therefore, the certification paths have the 
same size and the communicational and computational 
costs are similar for all certificates stored in the tree.  

• The operations insertion, deletion and searching are 
very efficient in a B+-tree, because they can be done in 
O(log�m/2� n) where n is the number of records (certifi-
cates) in the tree [13]. 

• B+-trees can be optimized for search, insertion, dele-
tion and also certification path length by choosing the 
parameter m properly. 

• Easy and efficient search and sequential access to the 
certificates.  

For certificate management purposes we extend the B+-
tree to a Merkle hash-tree. The signature on the root along 
with a properly constructed hash-path attests that a given 
certificate is stored in the tree and therefore valid. 

In [1] the so-called certification path is defined as “the 
path from the leaf containing the certificate statement to 
the root, along with the hash values necessary to verify 
that path. This includes the hash values for all siblings of 
nodes along that path”. If the certification path and the 
signature on the root hash value are both valid, it is shown 
that the certificate is stored in the CVT and thus valid.  
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Figure 1: Improved CVT based on a B+-tree (here m=3) 

 
Since trust placed on the database storing and publishing 

the certificates should be minimized, it is important that 
the database must deliver also a proof of non-existence if it 
does not deliver a requested certificate. Otherwise the 
database could simply deny the existence of a certificate as 
mentioned above. If the system also provides non-
existence proofs, the verifier does not have to “blindly” 
trust in the database. The results of Buldas et al. show that 
in order to provide an undeniable proof for the non-
existence of a certificate, information about the order and 
internal structure of the tree has to be added to the hash-
path. They have also pointed out that in CVTs as proposed 
in [1] this kind of information is missing.  

Therefore we add information about the structure and 
the order of the a B+-tree to construct I-CVT (see Fig. 1). 
The values H[i] are the hash values that are stored in the 
nodes of the tree. Each hash-value is computed from the 
search keys of the particular node and the hash values of 
its children. For example, the value H[1], which is stored 
in the leftmost leaf of the I-CVT in Fig. 1, is computed as 
follows: H[1] = h(13, 27, h(CS1), h(CS2)), where h must be 
a collision resistant hash function. 

Also the search keys - that are stored in the nodes on the 
path from the leaf with the certificate to the root - are in-
cluded in our certification path as follows:  

 
Certification path cp = sequence of (sequence of keys, 
sequence of sibling hash values) + signature on root of the 
tree  
cp = (l0, l1, ... , ln-1) + root signature,  
where li = ((ki0, ki1, … kit), (hi0, hi1, ... hit)) 
 
Example 1: certification path for the certificate statement 
with ID 27 (see Fig. 1) 
cp(27) = ((13, 27; h(CS1), h(CS2)); (27,34; H[2], H[3]); 
               (63; H[7])) + signature on H[8]. 
 
The proof of non-existence of a certificate is simply the 
certification path for the leaf that would contain the certifi-
cate if it were in the I-CVT.  

Example 2: Non-existence proof for the certificate state-
ment with ID 42 (see Fig. 1)  
cp(42) = ((41,63; h(CS4), h(CS5)); (27,34; H[1], H[2]); 
               (63; H[7])) + signature on H[8] 
 
Note that the latter certification path can also be used as a 
certification path for the certificates with ID 41 and ID 63. 

The hash value of the nodes on the path to the root and 
the positions within their siblings can be omitted, since the 
hash value of a node is determined by the hash values of 
its children and its position within its siblings by the 
search keys of its parent node. Fig. 2 shows the algorithm 
for creating certification paths.  

 
Input: Identifier ID of a certificate, I-CVT 
Output: Certification path or proof for the non-existence 
of certificate ID in the I-CVT 
cp ← empty certification path 
n ← leaf node which (should) contain(s) certificate id 
 
finished ← false 
while not finished 
 k ← sequence of keys that are stored in n 
 h ← sequence of hashes that are stored in n 
 if n is not a leaf 
  pos ← position of ID in k 
   (such that ki (pos-1) < ID ≤ ki pos) 
  delete hash value at position pos in h 
 add (k,h) to cp 
 
 if n is not the root node 

 n ← parent node of n 
else 
 finished ← true 

 
return cp and the signature on hash(k, h) (=hash value of 
the root node) 

 

Fig. 2: Algorithm for creating a certification path 
 



One can show that this certification path is an undeni-
able attester as defined in [11]. This way the problems of 
CVTs we described above are solved. It can also be shown 
that we get the minimal certification path length for a B+-
tree with m=3 (i.e. a B+

2,3-tree), but we expect to get faster 
search, insertion and deletion times for bigger m. This 
leaves some scope to optimize the data structure for a 
specific implementation.  

In order to make the system flexible and suitable for dif-
ferent scenarios, we want to enable that an authority can 
issue more than one certificate for a particular user and 
store them in its I-CVT. A verifier should be able to check 
that he gets all certificates issued for this user, to make 
sure that access is not denied if the user has the required 
privileges. Therefore the certificates in the I-CVT are 
sorted by the pair (user–ID, serial number) which is unique 
since the serial number has to be unique in an I-CVT. The 
user-ID is the more significant part and the serial number 
is the less significant part, i.e. all certificates are sorted by 
user-ID and all certificates of a specific user are sorted by 
their serial numbers. This way all certificate statements of 
a particular user are adjacent and form a closed sequence. 
Verifiers get the certification paths for each certificate of 
this sequence and additionally for the certificates directly 
before and after it. As a result, the verifier can be sure that 
he got all certificates issued for a particular user.  

5 Architecture of PAMINA 
Due to the requirements that we defined and the results 

of the analysis of different competing approaches, we have 
decided to design PAMINA to support the pull model and 
to use separate certificates for privilege management. The 
cost analysis shows that CVTs guarantee a very good 
performance. In addition, this scheme has enhanced secu-
rity properties. In order to reduce the trust placed on the 
database storing CVTs and to make the scheme more effi-
cient, we developed I-CVTs. We believe that I-CVT is an 
enabling technology for the realization of open directories 
storing certificates issued by one authority. However, 
PAMINA is basically designed for environments where 
delegation of privileges as well as confidential manage-
ment of ACs are needed. Enabling privilege delegation 
implies the coexistence of many I-CVTs that should be 
accessible for applications. Due to this fact we develop a 
central database storing all I-CVTs of the system. Of 
course, the system can support simpler scenarios, too. 

At first, we describe the components of PAMINA and 
their relationships. Fig. 3 shows the subjects and compo-
nents of the system including the most important data 
flows. 
• Resource: Like any other privilege management sys-

tem PAMINA maintains authorization information 
used for controlling access to different objects, the re-
sources. Each resource is owned by one or more 
PMAs, and each PMA can own one or more re-

sources. For example, PMA2 owns resource RB and 
RC (see Fig. 3). 

• User: From PAMINAs point of view, users are hold-
ers of one or more ACs. Users cannot issue ACs. We 
assume that each user has a unique identifier (name, 
public-key) which associates her/him with the privi-
leges stored in her/his ACs.  

• Client: In our approach a client is an application that 
represents a remote user. Since access control deci-
sions can only be made if the requesting user’s iden-
tity is available, the client system has to insert identi-
fication information of the authenticated user in its re-
quest messages. 

• Privilege Management Authority (PMA): PMAs 
are basically issuers of ACs, they represent organiza-
tional units, such as companies or divisions of a com-
pany. Each PMA owns and/or controls one or more 
resources. PMAs are autonomous; they can manage 
privileges in accordance to their own policies. PMAs 
can delegate privileges to other PMAs in a controlled 
manner (see below in section 5.2). As shown in Fig. 3 
resource RC is owned by PMA2, which has delegated 
some of its privileges to PMA3. One can see that 
PMA3 itself does not own any resources, but this way 
it can authorize its users to access RC. Each PMA 
maintains exactly one signed I-CVT in which all cer-
tificates issued by that particular PMA are stored. We 
assume that the public (signing) key of the PMA is 
managed by an external PKI. 

• Privilege Database (P-DB): The P-DB is a central, 
non-trusted database storing the I-CVTs of registered 
PMAs. In this context non-trusted means that a veri-
fier obtaining ACs can always be sure that the P-DB 
can neither manipulate the ACs, nor it can disclaim 
the existence of a given AC. These properties are 
guaranteed by the digitally signed I-CVTs. PMAs 
must periodically send updated I-CVTs to the P-DB, 
according to their own update policy. The P-DB con-
trols neither the validity, nor the freshness of the I-
CVTs; it just stores them. ACs can be downloaded by 
verifiers, which are owned by registered PMAs. In or-
der to avoid performance and availability problems 
the P-DB can be replicated. 

• Verifier: In PAMINA a verifier is owned by at least 
one PMA. Verifiers control only access to resources 
that are owned by their owner PMAs. For example, 
VPMA2 is owned by PMA2 as shown in Fig. 3. PMAs 
state this ownership with so called policy certificates 
(see below in section 5.1). Verifiers make access con-
trol decisions on the basis of the ACs downloaded 
from the P-DB. A verifier is a program which runs di-
rectly on the targeted system itself, or it is an external 
service used by server-sided applications, for exam-
ple. In Fig. 3 client C, that was authorized by PMA3, 
wants to use resource RC controlled by verifier VPMA2. 
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Figure 3: Architecture scheme of PAMINA 

 
In this case, the verifier downloads the delegation 
chain, which states the privileges of the user that are 
needed to execute the requested action, then it verifies 
the chain, and finally, it allows or denies the access to 
RC.  

• Administrators: Administrators, who are typically 
employed by a particular PMA, do daily management 
work. A framework consisting of management tools 
supports the two main types of administration related 
tasks, namely privilege management and certificate 
management. Only administrators of a PMA have ac-
cess to the private (signing) key of this PMA. 

5.1 Managing certificates based on X.509 with 
PAMINA 

Theoretically, any type of (standardized) ACs can be 
managed using I-CVTs, because the construction of these 
trees is independent from the information stored in the 
leaves. However, due to the fact that single ACs need not 
to be signed, certificate fields holding signature specific 
information become needless when using PAMINA. Since 
certificate formats often reflect special authorization 
mechanisms, like delegation, access control model and 
properties of the revocation scheme, other changes could 
also be needed in some cases. The first practical scenario 
for PAMINA was to manage access control on the basis of 
ACs as defined in the X.509 standard [4], in order to sup-
port compatibility with existing X.509 PKI products. The 
“Attribute Certificate Framework” of X.509 basically 
specifies an AC format and recommends the (optional) use 
of CRLs for revocation purposes. This standard also de-
fines a delegation scheme and deals with major aspects of 
role based access control management. Unfortunately, 
practical aspects of the realization of a privilege manage-
ment infrastructure, like confidential management of ACs, 
are out of the scope of this framework.  

In the following we describe how ACs as defined in 
X.509 can be modified in order to manage them with I-
CVTs. An X.509 based certificate statement stored in the 
leaf of an I-CVT can consist of the following fields (com-
pared to AttributeCertificateInfo in [4], the signature field 
is missing):  

 
version, holder, issuer, serialNumber, attrCertValid-
ityPeriod, attributes, issuerUniqueID, extensions 

 
The type, format and meaning of these fields remain ba-

sically unchanged. Assuming that an I-CVT stored in the 
P-DB consists only of valid (not yet revoked) ACs, one 
could think that the field attrCertValidityPeriod is unnec-
essary. This could be true from the verifier’s point of view, 
but this would make the administration of the system very 
complicated, because administrators would not know 
when they had to delete an expired AC from the I-CVT. 
The field serialNumber must uniquely identify an AC 
within the I-CVT signed by the issuer. The attributes field 
contains the privileges associated with the holder of the 
authorization certificate.  

X.509 supports privilege management on the basis of 
role-based access control policies. There are several other 
known approaches competing with role-based models, in 
which users or privileges can be grouped according to 
other strategies. From the certificate managements point of 
view, there is no significant difference between these 
models (see also [14]). A privilege management system 
has to be able to handle ACs that hold privilege collections 
that are not issued for a single subject. PAMINA also 
supports this mechanism; the management of role certifi-
cates with I-CVTs and their verification do not present any 
additional difficulty. 

As mentioned before, each verifier holds so-called pol-
icy certificates issued by its owner PMA. A policy certifi-
cate is a special AC that is mainly used for the configura-



tion of verifiers. The attributes field of a PC can consist of 
information about the caching or access control strategy 
which the verifier has to follow. A PC also has a field that 
lists each PMA known to the issuer that has ever delegated 
any of its privileges. This way the verifier knows from 
which I-CVTs he needs either the certificates for the given 
user or a proof for the non-existence of any certificates of 
this user. The issuer PMA of a policy certificate states 
with its signature that it owns the given verifier. This 
statement is used by the P-DB to control access to the I-
CVTs. See section 5.3 for more details. 

5.2 Supporting delegation 
As mentioned earlier, an important feature of PAMINA 

is the support of privilege delegation. The basic properties 
of the delegation model provided by the system are listed 
here: 
• Multiple ACs and therefore multiple delegation chains 

can exist for each subject (user or PMA).  
• PMAs are autonomous, that means that each PMA 

may delegate all of its privileges to each other subject. 
• PMAs can delegate privileges in one certificate that 

were assigned to them by several certificates. This 
implies that delegation chains are paths of a directed 
tree, a delegation tree. 

• PMAs that delegated privileges must inform the re-
source owners about this act. Resource owners are al-
ways known since each AC consists of its delegation 
history (see below). This supports billing in commer-
cial application scenarios. 

• PMAs that delegated privileges must have at least the 
same privilege at the time of verification. PMAs can 
delegate privileges for a specific period of time. The 
beginning of this period can be in the future. 

• A PMA can determine whether all privileges con-
tained in a particular AC can be delegated to other 
subjects or not. The model does not allow the prohibi-
tion of the delegation of single privileges. If a PMA 
wants to allow the delegation of a subset of privileges, 
it should issue a separate AC containing only these 
privileges. 

• If a PMA allows the delegation of the privileges listed 
in an AC, it can define the maximal length of delega-
tion chains starting with this AC. 

• PAMINA does not support ACs issued by multiple 
PMAs. When multiple privileges controlled by differ-
ent PMAs are needed to perform a particular action on 
a resource, separate ACs must be issued by each of 
these PMAs.  

There are two important technical problems with privi-
lege delegation, namely to find and to verify ACs that 
build a delegation tree. Each AC that belongs to a delega-
tion tree must include back pointers to the ACs in which 
the issuer was assigned the corresponding privileges. 

These pointers can be used during the verification process 
to ensure that the grantor has sufficient privileges. For this 
purpose [4] recommends the use of the optional field au-
thorityAttributeIdentifier, which is a sequence of IssuerSe-
rial fields. The IssuerSerial field is specified as a pair 
<issuer, serialNumber>. An AC that contains authorityAt-
tributeIdentifier may include multiple privileges delegated 
to the certificate holder by multiple authorities. The au-
thorityAttributeIdentifier field can include more than one 
IssuerSerial field if the assignment of the delegated privi-
leges to the issuer authority was done in more than one 
AC.  

Assume that a user has more than one ACs issued by 
different PMAs. In order to answer the requests of a veri-
fier for the certificates of this user, the P-DB has to find 
those certificates that include privileges that origin from 
the verifier’s owner PMA. Before responding, the P-DB 
had to compose all possible delegation trees ending with 
the user’s ACs, in order to find those that contain an AC 
issued by a PMA that owns the verifier. This could lead to 
performance problems in systems where delegation is 
practiced frequently and delegation chains are long. Natu-
rally, the P-DB could just send all certificates issued for 
the user inclusive delegation trees to the verifier. In this 
case the verifier would also get ACs that have been issued 
for the user by other PMAs and therefore should be hidden 
from this verifier. 

In order to make the search for certificates that should 
be delivered to a verifier more efficient, each AC that 
belongs to a delegation tree stores information about all 
ACs in the same tree down to the resource owner. In con-
trast to X.509 the complete delegation tree is stored in the 
certificates, instead of inserting only the IssuerSerials of 
the direct predecessor certificates. The root of such a dele-
gation tree is the AC itself and the leaves are ACs issued 
by resource owners. This way the database can easier 
decide which certificates should be made available to the 
verifier in a given situation. Note that this structure also 
supports the verification of parts of a delegation tree by 
verifiers that are not owned by a PMA which issued one of 
the ACs in a leaf of this tree. One drawback of this solu-
tion is that the size of ACs depends on the height of the 
delegation trees.  

Fig. 4 shows an example situation, where user UA gets 
the privilege P4 through delegation. Role1 holding privi-
lege P4 has originally been associated with C. As you can 
see the certificate issued for C by A consists of an empty 
delegation tree. Then C delegated privilege P2 (that it got 
from B) together with privilege P4 to D. Therefore, the 
delegation tree of D’s certificate consists of two <issuer, 
serialNumber> pairs. Finally, D delegates privilege P4 to 
user UA by issuing the certificate with the serial number 4. 
As shown in Fig. 4., the included delegation tree has two 
leaves. Leaf A,1 points to the originator (A) of the privi-
lege P4.  
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Figure 4: Certificates and delegation trees in PAMINA 
 

5.3 Concept of the Privilege Database 
As mentioned earlier the Privilege Database (P-DB) 

stores all I-CVTs, which are periodically updated by the 
PMAs. The main benefit of this solution is that verifiers 
checking delegation trees do not have to connect to differ-
ent databases in order to download certificates issued by 
different PMAs. Furthermore, PMAs need not to imple-
ment services providing verifiers; they just have to main-
tain their own I-CVTs. 

PMAs that want to use the database must be registered 
before by the P-DB. Registered PMAs may send their 
updated I-CVTs periodically over an encrypted channel to 
the P-DB. The P-DB does not maintain older versions of I-
CVTs. This task remains in the responsibility of the 
PMAs. PMAs can either send complete updated I-CVTs, 
or only the changes (e.g., new signed root) since the last I-
CVT update.  
As described above, the P-DB provides verifiers basically 
only with those certificate statements and corresponding 
certification paths that are needed for a given access con-
trol decision. This makes the P-DB more trustworthy for 
PMAs. An informal description of the protocol for obtain-
ing ACs is given here: 
1. Verifier V, which is not necessarily known to the P-

DB, establishes a mutual authenticated connection 
with the P-DB. During the authentication process they 
agree on the use of a shared key, which will be used to 
encrypt the whole communication. At the moment we 
use SSL and the services of the external PKI for this 
purpose. 

2. After that, V sends the name of its owner PMA 
(PMAV) to the P-DB. 

3. If there is an I-CVT signed by PMAV and a valid 
policy certificate issued for V by PMAV the P-DB 

sends the policy certificate to the verifier and contin-
ues the process. If there is no policy certificate stored 
in PMAV’s I-CVT the P-DB sends the certification 
path for the leaf that would contain the certificate and 
disconnects from V. If the verifier does not receive 
this non-existence proof it can assume that the P-DB 
was compromised. 

4. In its later requests to the P-DB V sends the identifier 
(ID) of the user in question or if possible an authenti-
cated (e.g., signed) request of the client. 

5. The P-DB searches for all certificates issued for the 
user by those PMAs listed in the policy certificate of 
V and returns for each a delegation tree consisting of 
certificate statements incl. certification paths, where 
recursively,  
issueri = holdersi+1 , for each level i in the tree 
and where holder0 = ID and for some ACs issuer = 
PMAV. 
The P-DB includes also referenced role certificates. 
If a certificate was not found the P-DB gives the certi-
fication path to the leaf that would contain that AC if 
it were in the particular I-CVT. This path proves for 
the verifier that the AC does not exist. 

6. The P-DB sends the ACs to V over the encrypted 
channel. It also sends certification paths from each I-
CVT of PMAs listed in the verifier’s policy certificate 
proving that the user with ID has no ACs issued by 
other PMAs.  

5.4 Specification of a verifier using PAMINA 
Verifiers as specified in this section can typically be in-

tegrated into an application server or an application gate-
way. The main responsibility of a verifier is to decide if an 
authenticated user either has access to a particular resource 
or not. It is in the responsibility of the application to de-



termine the identity of the user (ID) and to correctly for-
mulate a request. 
The main tasks that the verifier has to implement are:  
• Establishing a secure authenticated connection to the 

Privilege Database. 
• Requesting the relevant certificate(s) from the P-DB. 

The P-DB delivers all relevant ACs of the user with 
the attached roles and delegation trees. 

• Verification of each certificate.  
• Evaluating the delegation trees and roles to determine 

the set of privileges the user holds. 
• Deciding if the approved privileges are sufficient.  
 
Input:  Certificate identifier ID and certification path as 
specified in section 4: 
Certification path cp = (l0, l1, ... , ln-1) + root signature, 
where li = ( (ki0, ki1, ... kit), (hi0, hi1, ... hi(t-1)) 
Output: Validity of the certification path for this certifi-
cate 
i ← 0 
k ← (ki0, ki1, ... kit) 
h ← (hi0, hi1, ... hit) 
min_id = min(minj(kij),id) 
max_id = max(maxj(kij),id) 
d ← hash(k||h) 
 
i ← i + 1 
while i < n 
 k ← (ki0, ki1, ... kit) 
 h ← (hi0, hi1, ... hit) 
 pos ← position of ID in k 
  (such that ki (pos-1) < ID ≤ ki pos) 
 
 if (kij in k are not sorted) 
    or (pos>0 and min_id ≤ ki (pos-1)) 
    or (pos<t and max_id > ki pos) 
  output "Invalid certification path." 
 
 min_id = min(minj(kij),min_id) 
 max_id = max(maxj(kij),max_id) 
 
 insert d in h at position pos 
 d ← hash(k||h) 
 i ← i + 1 
 
if root signature is NOT valid signature for d 
 output "Invalid certification path." 
else 
 if (ki0, ki1, ... kit) contains ID 

 output "Certificate ID is in I-CVT." 
else 
 output “Certificate ID is NOT in I-CVT” 

 

Figure 5: Algorithm for validating a cert. path 
 

Every single AC is verified using the algorithm above 
(see Fig. 5). If an AC references a role definition certifi-
cate, the verifier must process the AC defining the speci-
fied role. The privileges assigned to the role are implicitly 
assigned to the user and are therefore included among his 
privileges. If the privileges are delegated to the user by an 
intermediary PMA, the verifier must ensure that all ACs 
that belong to the delegation tree are valid. Furthermore, 
the verifier must check whether the delegation trees follow 
the rules defined in section 5.2. The verifier must check 
for example if each PMA that issued a certificate in the 
delegation tree was authorized to do so and that no PMA 
delegation privilege is greater than the privilege held by 
that PMA.  

The policies that the verifier follows during these proc-
esses are assigned with the policy certificate. The verifier 
must also check the certificate validity periods. Finally, the 
verifier checks if the union of all user privileges is suffi-
cient for the context of use. 

5.5 Prototypical implementation details 
The first prototype of PAMINA is implemented in Java. 

Java enables to run the system on different platforms, but 
many components, such as the P-DB, would need much 
better performance. The PKI we use for the management 
of PKCs and for the verification of signatures is the En-
trust/PKI v. 4.0 Developer Edition. The services of this 
PKI are integrated into the system with the use of proprie-
tary developer toolkits. In PAMINA each AC is stored as 
an XML document. We decided to use XML due to its 
benefits: 
• Platform independent standard, 
• Many tools for converting and processing XML 

documents are available, 
• Human readable data representation, XML files can 

be viewed with any text editor. 
We have also implemented an administration framework 

which provides daily management tasks. This framework 
contains tools that support I-CVT related operations, like 
creation, signing and updating of the tree and the parsing, 
modification or deletion (revocation) of single ACs. 

Conclusions and future work 
In this paper we introduced PAMINA, a system which 

manages authorization certificates in distributed environ-
ments. The system utilizes the high performance and en-
hanced security of I-CVT, an improvement of a novel 
certificate management scheme, that has been proposed in 
[1]. PAMINA can handle multiple I-CVTs each managed 
by a so-called Privilege Management Authority (PMA). 
Since the system implements the pull model, it can be 
integrated in back-end architectures in which (remote) 
clients need not to be involved in the access control deci-
sion process.  



An important feature of PAMINA is the support of 
privilege delegation. Verifiers become more complex in 
delegation networks, and a large amount of information 
about the user’s relevant privileges has to be collected 
from a lot of different PMAs. This could lead to large 
communication costs and has motivated the development 
of a central database which stores all I-CVTs issued by 
different PMAs. The database provides only authenticated 
verifiers with those certificates that they need to check a 
user’s privileges. In our flexible model a PMA can dele-
gate privileges within one certificate that were assigned 
before by several certificates. Therefore, a certificate be-
longs to a delegation tree instead of a simple delegation 
chain. Storing complete delegation trees in certificates is 
helpful to implement confidential access to certificates in 
an efficient manner. 

Due to the fact that I-CVTs provide proofs for the non-
existence of certificates, verifiers can always be sure that 
they get all existing certificates with relevant privileges of 
a given user. However, the database storing multiple I-
CVTs would be able to hide complete I-CVTs storing 
relevant certificates from the verifier. In order to solve this 
problem, all PMAs that delegate privileges inform the 
PMA(s) that own the resource in question about this act. 

This way PMAs can configure their verifiers with the use 
of so-called policy certificates to demand all certificates of 
a specific user from a limited set of I-CVTs.  

Our results show that due to the properties of I-CVTs, 
this scheme is qualified for privilege management. The 
first prototype of PAMINA states that the integration of I-
CVTs in an operational architecture is possible despite the 
special requirements that have not originally been consid-
ered when this scheme was constructed. 

At the moment PAMINA uses the services of an exter-
nal PKI since digital signatures are needed for the protec-
tion of integrity and authenticity of I-CVTs. In the next 
future approach, we will extend the system and add key 
management functionality. Furthermore, we plan to im-
plement a version of PAMINA which can manage authori-
zation information based on SDSI/SPKI.  
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