
PAMINA: A Certificate Based Privilege Management System

Zoltán Nochta, Peter Ebinger and Sebastian Abeck
University of Karlsruhe, Institute for Telematics,

Cooperation and Management IT-Research Group
Zirkel 2, 76128 Karlsruhe, Germany

Email:[nochta|ebinger|abeck]@tm.uka.de

Abstract
In this paper we present PAMINA (Privilege Admini-

stration and Management INfrAstructure), a privilege
management system using authorization certificates. Our
system supports distributed environments where autono-
mous authorities can manage and delegate privileges in
accordance with their own policies. We introduce Im-
proved Certification Verification Trees (I-CVTs) that
guarantee very efficient and trustworthy certificate man-
agement. I-CVTs can provide undeniable proofs for the
non-existence of a given certificate in contrast to CVTs as
proposed in [1]. As a result, each authority can store its
own I-CVT in a central, non-trusted, and replicable data-
base. This database provides authenticated verifiers with
basically only those certificates that are required to de-
termine whether a user should be granted access to a
resource or not. Since the system implements the pull
model, clients need not to be involved in the access control
decision process. PAMINA handles delegation trees in-
stead of simple delegation chains because authorities can
delegate privileges in one certificate that were assigned to
them by several certificates. In the prototype that we de-
scribe here, PAMINA manages certificates based on
X.509.

1 Introduction
The increasing use of the Internet for business critical

transactions since the early 90’s implied the development
of different security systems and services, which are often
based on public-key cryptographic techniques. Basically,
there are two mechanisms that can be used by security
systems, namely encryption and digital signatures. Nowa-
days, the most important applications for both are secure
key exchange and integrity and authenticity protection of
different kinds of data. In general, a certificate is a data
structure that defines an association between an entity and
a set of information. A certification authority states its
belief in the validity of these associations by digitally
signing the certificate. For example, a public-key certifi-

cate binds a public-key to a set of information that identi-
fies the entity associated with the use of the corresponding
private key. The aim of a certificate management system is
to offer services that guarantee the authenticity, validity
and integrity of security information (keys, user rights,
etc.) stored in certificates and used by applications for
authentication and authorization purposes.

A widely accepted definition of authorization is the
granting of access rights to a subject. However, there is a
difference between the administrative act of asserting that
a subject should be granted access rights (privileges), and
the operational act of allowing an authenticated subject to
access a resource after determining that it holds the re-
quired set of privileges. The latter process is also referred
to as access control decision.

An authorization certificate (AC) contains information
that is generated during the authorization and used in the
access control decision process. ACs have many benefits
in privilege management due to the fact that they can sup-
port different access control models and privilege delega-
tion schemes, because they are individually protected by
digital signatures against fraud. Linn et al. give a good
overview of application scenarios of several types of ACs
that contain different kinds of authorization information,
such as privileges or role definitions [2].

Surprisingly, only few access control systems exist that
use authorization certificates. One reason for this fact is
that both certificate management and verification generate
additional computational and communicational costs that
customers and providers have to bear. Widely used certifi-
cate management techniques, like Certificate Revocation
Lists [3] that have originally been designed for public-key
infrastructures, are not very attractive for an efficient sys-
tem design, because authorization related information has
other characteristics than public-keys. Access rights can
change very frequently, the amount of authorization in-
formation is usually higher, and authorization certificates
often must be handled confidentially.

Fortunately, there are several novel approaches with en-
hanced properties that can make certificate management

and verification less expensive and, in many cases, more
secure as well.

In this paper we introduce PAMINA1 (Privilege Ad-
ministration and Management INfrAstructure), a cer-
tificate based system that provides authorization and ac-
cess control in distributed environments. PAMINA is the
first system that uses Improved Certification Verifica-
tion Trees (I-CVTs) which guarantee very efficient and
trustworthy certificate management. I-CVTs also provide
undeniable proofs for the non-existence of a given certifi-
cate statement in contrast to CVTs as proposed in [1]. The
system supports distributed environments where autono-
mous authorities, so called Privilege Management Au-
thorities (PMAs), can manage and delegate privileges in
accordance with their own policies. Each PMA can store
its own I-CVT in the central, non-trusted, and replicable
Privilege Database (P-DB). This database provides au-
thenticated verifiers with basically only those certificates
that are required to determine whether a user should be
granted access to a resource or not.

The rest of the paper is organized as follows: In the next
section we summarize the most important requirements
that PAMINA as a certificate based privilege management
system has to fulfill. In section 3, we describe and com-
pare different approaches and choose a combination of
best-fit solutions. We show that CVTs as proposed in [1]
are qualified for efficient privilege management if the
underlying data structure is chosen properly. In the follow-
ing section, we describe the concept and the implementa-
tion details of Improved CVTs and certification paths,
which reduce the required level of trust placed on the da-
tabase storing the certificates. Finally, section 5 deals with
the design aspects of PAMINA, the components and their
interactions. The supported delegation model as well as
some technical details are described.

2 Requirements for PAMINA
The aim of a privilege management system is to support

security critical applications with valid information about
the current status of the users’ access rights (privileges).
Digitally signed authorization certificates protecting the
integrity and authenticity of privileges enable the realiza-
tion of different authorization models in a more secure
way than conventional systems do. For example, privilege
delegation chains becomes more secure when using cer-
tificates. The components of a distributed certificate based
privilege management system must provide proper mecha-
nisms, data structures, and tools for the management and
verification of certificates. In the following we summarize
the most important security and performance related re-
quirements that PAMINA has to fulfill, in order to be
competitive with existing privilege management systems.

1 Pamina is also a beautiful princess in W. A. Mozart’s The

Magic Flute

• Efficient certificate lifecycle management: The
system must handle at least certificate generation, up-
date and revocation. The underlying certificate man-
agement scheme should optimize communication,
data maintaining and computational costs. High com-
munication costs between a database storing certifi-
cates and the issuing authority can be critical for or-
ganizations that manage a huge number of frequently
updated/revoked ACs. In order to make PAMINA at-
tractive for access control applications (verifiers) that
want to verify user rights, communication costs be-
tween the directory and the verifier should also be
minimized. Optimized computational costs, for exam-
ple by the reduction of the number of required signa-
ture verifications, speed up the access control process.

• Revocation: The system must handle situations, like
the unexpected change of user privileges before the
certificate expiration date or the key compromise of
an issuing authority.
In the first case, the certificate of the affected user has
to be revoked and reissued. Short-lived certificates
can reduce the probability of revocation before expira-
tion or even make revocation unnecessary. This leads
to increased costs of the issuing authority, since it
must sign and distribute certificates very often. There-
fore, the costs caused by certificate signing should be
reduced, in order to use short-lived certificates.
In the second case, the fast and efficient revocation
and re-issuing of all certificates signed by the author-
ity whose key was compromised is required. The sys-
tem has to enable the easy exchange of an authority’s
key pair.

• Freshness of certificates: The system should provide
recent authorization information. Certificate status in-
formation should be published on a regular basis, even
if the situation does not change, so verifiers can be
sure that their data is up to date.

• Reduced trust on database: From the verifiers’ point
of view there are two main types of components in a
distributed certificate management infrastructure.
Firstly, there are trusted authorities that issue and sign
certificates. Secondly, there are also components (e.g.,
directories, online responders) that store and distribute
certificates or information related to certificates (e.g.,
revocation status). The latter type of components can-
not manipulate a certificate, but they can accidentally
or intentionally provide verifiers with incorrect infor-
mation, e.g. about its revocation status, or they can
hold back relevant information, e.g. the certificate it-
self or a revocation list. Due to these facts in many ex-
isting systems a verifier must also trust in these com-
ponents, because he is not able to check the correct-
ness of this kind of information. This trust should be
reduced, and therefore the database should be able to
prove the non-existence of a certificate if he does

not deliver it. Naturally, the database always can just
refuse to respond to a request.

• Privacy: Public-key certificates used for signature
verification or for encryption have to be available for
everyone. On the other hand, ACs storing authoriza-
tion information should be kept private. This means
that only a fixed set of entities (administrators and
verifiers) should have controlled access to this infor-
mation.

• Cryptographic security: In order to protect certifi-
cates against forgery, the system must use secure
(long) signing keys. Signing keys should be kept in a
secure environment, which makes it impossible to re-
trieve them.

• Interoperability: In order to provide interoperability
and usability, PAMINA should support the manage-
ment of different (standardized) certificate formats.
For the encoding and representation of certificates
platform-independent and standardized storage for-
mats should be used.

• Flexibility: The system must be able to provide dif-
ferent access control models and policy schemes with-
out technical impact. Therefore, the model has to deal
with various certificate types that allow, for example,
the construction of abstract groups or delegation of
permission rights.

• Availability and robustness: Naturally, the system
has to make sure that the availability of the certificates
and their status information is as high as possible. The
system must be based on a robust model, which does
not allow any manipulation of authorization informa-
tion, even if the underlying computer systems crash.
For example, in case of a successful attack against the
directory that stores the certificates it should not be
possible for the intruder to make a revoked certificate
pass as valid.

• Auditing and non-repudiation: The system has to
support easy verification of the validity status of a cer-
tificate at any point of time. In order to provide time-
liness of the authorization information, the system has
to implement (or utilize) time stamp services. Another
important aspect is the accountability for both author-
ity’s and user’s actions. The system must not allow
the creation of rogue certificates or the unauthorized
revocation of certificates without being detected.

3 Evaluation of certificate management
approaches for access control purposes

In this section different competing management tech-
niques are evaluated and compared in order to choose
from and combine best-fit methods for our purposes.

3.1 Extended public-key certificates vs. separate
identity and access control management

One possible way to manage access control information
of certified users is the use of extended public-key certifi-
cates (PKC). In this case, one authority is responsible for
both key (identity) and privilege management. Since there
is only one authority, the verification process becomes
simpler, because a single trust path reflects both authenti-
cation and authorization of a user. As a result, fewer
transactions are needed when verifying requests. This
approach has benefits in systems where the validity
periods of certified keys and privilege assignments are
similar. On the other hand, in most cases user rights should
not be open to the public. Through obtaining an extended
PKC, one can learn a lot about the internal structure of an
organization, since it is, for example, reflected by the roles
defined in the certificates. In addition, authorization
certificates (ACs) must be often issued with short validity
periods (e.g. hours), contrasting with PKCs whose validity
period is often measured in years.

Due to these facts, separate access control management
is required in most environments. Using this concept,
authorization certificate updates have no impact on longer-
lived identity certificates. This is especially profitable for
clients storing PKCs for authentication purposes. In addi-
tion, independent authorities issuing their own certificates
make the system more flexible and this approach is also
helpful to eliminate many problems caused by a central
bottleneck. The most important disadvantage of such an
architecture is the increasing complexity of verification
and path processing. In the worst case each AC that must
be verified for an access control decision can be issued
from a different authority that belongs to a different verifi-
cation path.

We decided to implement the first prototype of
PAMINA for separated management of ACs. Therefore,
the system needs the integration of a PKI, which is respon-
sible for the distribution of PKCs that are used for signa-
ture validation. We believe that the use of appropriate data
structures and algorithms can compensate many of the
drawbacks mentioned above.

3.2 Push model vs. pull model
In the so-called “push” model, client, server, and the

certificate management infrastructure are all involved to
varying degree in the authorization process. A client must
maintain (e.g., download and store) its certificates and
present them to the targeted server (verifier) by inserting
them in its request message. The verifier must make access
control decisions on the basis of this information. Natu-
rally, the verifier must check the correctness as well as the
validity of the presented information. The infrastructure
must implement mechanisms to provide all clients with the
last updated ACs. This is a very expensive task in envi-

ronments where user rights can change dynamically. Addi-
tionally, users having more than one AC could not know
which certificate(s) they should send to a verifier to use a
particular service. As mentioned before, ACs often should
be kept secret, and there is no guarantee for the issuer that
(probably unsecured) client machines can protect ACs
properly. As a result, all clients would need to communi-
cate over an encrypted (and authenticated) channel with
the database very frequently which would lead to perform-
ance problems in the system.

In contrast to the push architectures, in systems built on
the “pull” model, verifiers pull ACs from some online
network service. This approach simplifies clients, because
they must no longer care about the management of ACs.
Additionally, users are not involved in the authorization
process and they need not even to know which privilege
sets they have. Since there are usually fewer verifiers than
clients in a system, this model leads to reduced communi-
cation costs in comparison to the push model. Only verifi-
ers have to pay a higher price, they must not just check the
validity of certificates but also download them. The main
disadvantage of this approach is that verifiers totally rely
on the availability of the infrastructure storing the ACs.
Moreover, the database must decide which particular ACs
a given verifier may download.

PAMINA was primarily developed to support the pull
model. All certificates managed by the system are stored
in a central database, which can be replicated to get higher
availability and better performance. This database pro-
vides only authenticated verifiers with those certificates
that are needed to check a given user’s rights.

3.3 Revocation mechanisms vs. freshness
guaranties

Certificate revocation is the mechanism with which an
issuing authority can revoke a stated association before its
documented expiration. An authority may wish to revoke
an authorization certificate, for example, in response to a
change in the owner’s access rights or because of the com-
promise of its own private key. There are many ap-
proaches to solve this important problem, here we analyze
the most important ones of them.

Certificate Revocation List (CRL) is the most com-
monly used revocation mechanism in certificate manage-
ment systems today (e.g., see [3] and [4]). A CRL is a
continuously growing, digitally signed list of revoked
certificates, which is published periodically. In order to
keep the CRL size manageable, certificates are denoted by
some unique identifier (id), such as a serial number or a
fingerprint. When a revoked certificate’s validity period
ends it can be deleted from the CRL. Communication costs
can be reduced by publishing periodically a delta-CRL,
which is a differential list to the last CRL update. In order
to verify the status of a certificate, a verifier first needs to
obtain the latest CRL (delta-CRL), then verify the signa-

ture on it and search for the ID of the certificate in ques-
tion. CRL-management can be very expensive for both
issuing authorities as well as verifiers in access control
systems since user rights change frequently and verifiers
should obtain and check many certificates in order to ver-
ify delegation chains. In addition, to provide long-term
non-repudiation issuers (verifiers) would have to store not
only every AC but also every CRL they have ever issued
(received). Another disadvantage of CRLs is given by the
fact that they do not provide non-existence proofs for
certificates.

The concept of Certificate Revocation Trees (CRTs)
was proposed by Paul C. Kocher [5]. A CRT enables veri-
fiers to get a proof that a certificate has not yet been re-
voked. Basically, a CRT is a binary hash tree [6], in which
each leaf consists of the ID of a single revoked certificate
and a range of valid IDs all greater than the revoked one.
During verification the verifier obtains the hash path be-
longing to the ID of the certificate in question, then it
checks the signature on the root and verifies that the
hashes correctly bind the leaf to the root. Finally, it checks
whether the ID is the lowest in the leaf.

CRTs reduce the communication cost between the veri-
fier and the directory, but increase the authority’s compu-
tational cost, which is straight proportional to the number
of revoked certificates. This fact makes CRTs not very
attractive for an access control management system. CRTs
do as CRLs not support non-existence proofs for certifi-
cates. However, the main drawback of this system is that
the insertion (deletion) of a new revoked (expired) certifi-
cate might result in the re-computation of the entire tree.

Naor and Nissim eliminated this problem by replacing
the suggested binary tree with a more effective B2,3-tree
[7]. In this case, it is no longer required to change the
whole tree when inserting or deleting a certificate but just
one path.

All the schemes above are constructed to maintain
revocation information only. Table 1 shows an overview
of the average computational and communication costs
that verifiers and the certificate management system have
to take into account. In addition to the listed costs for
managing revoked certificates, there are of course the costs
for generation and management of valid certificates. Using
revocation mechanisms the verification process is rather
complicated, especially when more than one AC need to
be checked, for example for delegation path construction.

The Online Certificate Status Protocol (OCSP) was
specified to support the communication between verifiers
and a trusted entity referred to as an OCSP responder,
which supports verifiers with information about the revo-
cation status of certificates [8]. The main aim of OCSP is
to reduce the communicational and computational costs of
the verification process: Instead of checking the revocation
status of certificates in question, a verifier sends a simple
request to the responder containing one or more certificate

n: avg. total number of certificates per authority lid : length of a certificate identifier (bits)
r: avg. number of revoked certificates per authority lstat : length of a revocation status number (bits)
u: avg. number of revoked certs since last update per authority lsig : total length of a signature (bits)

Revocation scheme Authority computational
costs

Verifier computational
costs per query

Directory update com-
munication costs per

authority

Communication costs
per verifier,

per directory query
CRL O(u) O(r) r·lid+lsig r·lid+lsig

Delta CRL O(u) O(r+u) u·lsn+lsig u·lid+lsig
CRT worst case O(u·r) O(log(r)) u·lid+2·lsig log(r)+lsig

Naor/Nissim O(u·log(r)) O(log(r)) u·lid+2·lsig log(r)·lhash+lsig

Table 1: Cost analysis of different certificate revocation schemes

Freshness scheme Authority computational
costs

Verifier computational
costs per query

Directory update com-
munication costs per

authority

Communication costs
per verifier,

per directory query
CRS O(n) O(#updates) n·(lid+lstat) lstat

CRS2 O(u·log(n)) O(log(n)) u·lid+2·lsig log(n)·lhash+lsig
CVT O(u·log(n)) O(log(n)) u·lid+2·lsig log(n)·lhash+lsig

Table 2: Cost analysis of different schemes providing freshness information

identifiers. In its response the OCSP responder sends the
revocation status of those certificates back to the verifier.
Naturally, to generate such a response the OCSP responder
has to gather revocation information from some backend
system that has to maintain revocation status information,
for example with the use of a CRL or a CRT. OCSP does
not specify or enhance a particular revocation scheme but
it just defines a protocol for retrieving revocation status
information. The main problem with this approach is that
the verifier must trust the responder, he must believe that
the revocation status information he gets is correct and up-
to-date. A signed and time-stamped OCSP response might
be a real-time generated message, but the verifier cannot
check when the included information was actually gener-
ated by the issuing authority. Furthermore, since OCSP
responses have to be signed, there must be also a public-
key certificate issued for the responder itself which must
be known to the verifier. The verifier should be able to
check the current status of this certificate, too. This can of
course not be done with the help of the OCSP responder,
therefore some additional mechanism is needed. Since
online responders (not only OCSP responders) do not
improve the underlying revocation scheme and would
raise additional problems, they seem not to be qualified for
our purposes.

Fortunately, there are also certificate management
schemes that can provide the revocation status of a certifi-
cate and freshness information at once. This combination
reduces data maintaining costs, since there is no more need
to manage two separate databases.

The Certificate Revocation System (CRS), which was
the first system maintaining freshness information for both

valid and revoked certificates at once, was invented by
Silvio Micali [9]. In the CRS the issuing authority periodi-
cally sends a signed (and time-stamped) message for every
certificate stating whether the certificate was revoked or
not since the last update. For this purpose an off-line/on-
line signature scheme is used which reduces computational
costs. CRS uses a one-way hash-function h. Before storing
a certificate in the directory the authority chooses two
random values R0 and R1 and then it computes and pub-
lishes the hash-values h(R1) and h(…(h(h(R0))…) or more
precisely hk(R0), where k is the expected number of update
periods. When the freshness of a still valid certificate
should be stated the authority must compute hi(R0) and
send it to the directory, where i is the total number of pos-
sible future updates. If a certificate must be revoked the
authority simply sends R1. In order to verify that a certifi-
cate is valid, a verifier has to query the directory for a copy
of the most recent update value. As one can see in Table 2
the authority-to-directory communication costs are high
because a new hash value for every certificate must be
sent. An improvement (CRS2) that solves this problem is
based on binary hash trees. In this scheme the current
status of a given certificate is indicated by two bits. These
bits, typically 128 are stored in the leaves of the tree.
Nodes of the tree are computed from the hash of their
children. Only the root of the tree must be signed by the
authority. This modification speeds up the system, verifi-
cation becomes cheaper and also communication costs
decrease, as shown in Table 2. In addition, if the Merkle
tree is constructed carefully, CRS2 can also provide proofs
for non-existence of certificates. Unfortunately, this sys-
tem provides information about the current status and

existence of many neighboring certificates, which conflicts
with confidentiality requirements.

Alternatively, revocation could be accomplished by
simply removing revoked authorization certificates from
the directory. This approach would allow authorizations to
be changed in a very responsive manner, without estab-
lishing any kind of revocation infrastructure. The problems
to solve are how verifiers can be sure that the directory
contains all valid certificates and that all certificates in the
directory are still valid.

Certification Verification Trees (CVTs) recently pro-
posed in [1] can solve these problems elegantly. The basic
idea is that it is not necessary to sign every single certifi-
cate issued by an authority. Instead, the authors suggest to
store the unsigned certificates (certificate statements) plus
a hash value in the leaves of a hash-tree [6]. Only the root
of the tree must be signed and time-stamped. In order to
check the validity of a given certificate, the verifier must
obtain the certificate and the certification path belonging
to this certificate. The certification path is given by the set
of hash values of all siblings of the nodes along the path
from the leaf containing the certificate statement in ques-
tion to the root. This scheme allows very frequent fresh-
ness updates of all certificates at once. The authority does
not need to maintain any extra information about revoked
certificates. It can just delete a revoked certificate from the
tree and then sign the root of the new tree. There are many
other advantages of CVTs; but the most important one is
the enhanced security: The exchange of the root key is
easier and in the case of key compromise an adversary
cannot manipulate single certificates, he always changes
the signed root, which can be easier detected. Finally,
longer and therefore probably stronger keys can be used.
An effective CVT implementation can be based on a B2,3-
tree, for example. Some experimental results on this topic
can be found in [10]. Table 2 compares the average costs
of the different freshness schemes. As one can see the
costs of CVT and CRS2 are very similar.

The very good performance, the enhanced security and
the simplicity of implementation convinced us to realize
PAMINA on the basis of CVTs. However, there are some
problems with this CVT design that are discussed in the
next section.

4 Improved Certification Verification Tree
A problem with the proposed CVTs described above is

the following: When a verifier requests some set of certifi-
cates, for example all certificates issued for a particular
user, the directory storing the CVT can not prove that it
actually delivers all of those certificates. Processing the
certification paths a verifier can easily check the validity
of received certificates, but he cannot know whether he got
all valid certificates. In other words, a malicious directory
could disclaim the existence of a certificate. This means in
the case of authorization certificates that a user might not

be able to utilize all privileges that he or she was actually
assigned by the issuing authority. Buldas et al. showed in
[11] that one can not generate an undeniable non-existence
proof using the proposed CVTs. The issuing authority
could construct an incorrectly sorted tree and provide one
verifier with a certificate and a second verifier with a con-
tradicting “proof” for the non-existence of the same cer-
tificate. Therefore the structure of a CVT should be im-
proved in such a way that it is possible to provide an un-
deniable proof of non-existence if the directory does not
deliver a requested certificate.

Therefore, we construct Improved Certification Veri-
fication Trees (I-CVTs) that are very efficient and more
trustworthy. The underlying data structure of an I-CVT is
a variant of a balanced search tree (B-tree), a so called B+-
tree. A B+-tree differs in that way from a B-tree that all
data is stored in the leaves (see Fig. 1). A B+-tree of order
m satisfies the following properties [12]. Every internal
node of the tree has at least �m/2� and at most m children.
The root node has at least 2 children. A non-leaf node with
k children contains k-1 keys. Leaves of the tree contain at
least �m/2�-1 and at most m-1 keys and as many pointers
to data records (e.g., certificate statements). The leaves of
the tree are linked which optimizes sequential access to the
data records. In order to store certificates in a B+-tree, an
order of the certificates must be defined, e.g. a unique
serial number or a certificate hash value can be used (s.
below). B+-trees have the following advantageous proper-
ties for certificate management:
• Each path from a certificate to the root has the same

length. Therefore, the certification paths have the
same size and the communicational and computational
costs are similar for all certificates stored in the tree.

• The operations insertion, deletion and searching are
very efficient in a B+-tree, because they can be done in
O(log�m/2� n) where n is the number of records (certifi-
cates) in the tree [13].

• B+-trees can be optimized for search, insertion, dele-
tion and also certification path length by choosing the
parameter m properly.

• Easy and efficient search and sequential access to the
certificates.

For certificate management purposes we extend the B+-
tree to a Merkle hash-tree. The signature on the root along
with a properly constructed hash-path attests that a given
certificate is stored in the tree and therefore valid.

In [1] the so-called certification path is defined as “the
path from the leaf containing the certificate statement to
the root, along with the hash values necessary to verify
that path. This includes the hash values for all siblings of
nodes along that path”. If the certification path and the
signature on the root hash value are both valid, it is shown
that the certificate is stored in the CVT and thus valid.

H[2] H[5]H[4]

H[7]

H[8]

H[3]H[1]

H[6]
71

63

13 27 34

27 34

41 63 64 71 78 82

CS1 CS2 CS3 CS4 CS5 CS6 CS7 CS8 CS9

Figure 1: Improved CVT based on a B+-tree (here m=3)

Since trust placed on the database storing and publishing

the certificates should be minimized, it is important that
the database must deliver also a proof of non-existence if it
does not deliver a requested certificate. Otherwise the
database could simply deny the existence of a certificate as
mentioned above. If the system also provides non-
existence proofs, the verifier does not have to “blindly”
trust in the database. The results of Buldas et al. show that
in order to provide an undeniable proof for the non-
existence of a certificate, information about the order and
internal structure of the tree has to be added to the hash-
path. They have also pointed out that in CVTs as proposed
in [1] this kind of information is missing.

Therefore we add information about the structure and
the order of the a B+-tree to construct I-CVT (see Fig. 1).
The values H[i] are the hash values that are stored in the
nodes of the tree. Each hash-value is computed from the
search keys of the particular node and the hash values of
its children. For example, the value H[1], which is stored
in the leftmost leaf of the I-CVT in Fig. 1, is computed as
follows: H[1] = h(13, 27, h(CS1), h(CS2)), where h must be
a collision resistant hash function.

Also the search keys - that are stored in the nodes on the
path from the leaf with the certificate to the root - are in-
cluded in our certification path as follows:

Certification path cp = sequence of (sequence of keys,
sequence of sibling hash values) + signature on root of the
tree
cp = (l0, l1, ... , ln-1) + root signature,
where li = ((ki0, ki1, … kit), (hi0, hi1, ... hit))

Example 1: certification path for the certificate statement
with ID 27 (see Fig. 1)
cp(27) = ((13, 27; h(CS1), h(CS2)); (27,34; H[2], H[3]);
 (63; H[7])) + signature on H[8].

The proof of non-existence of a certificate is simply the
certification path for the leaf that would contain the certifi-
cate if it were in the I-CVT.

Example 2: Non-existence proof for the certificate state-
ment with ID 42 (see Fig. 1)
cp(42) = ((41,63; h(CS4), h(CS5)); (27,34; H[1], H[2]);
 (63; H[7])) + signature on H[8]

Note that the latter certification path can also be used as a
certification path for the certificates with ID 41 and ID 63.

The hash value of the nodes on the path to the root and
the positions within their siblings can be omitted, since the
hash value of a node is determined by the hash values of
its children and its position within its siblings by the
search keys of its parent node. Fig. 2 shows the algorithm
for creating certification paths.

Input: Identifier ID of a certificate, I-CVT
Output: Certification path or proof for the non-existence
of certificate ID in the I-CVT
cp ← empty certification path
n ← leaf node which (should) contain(s) certificate id

finished ← false
while not finished
 k ← sequence of keys that are stored in n
 h ← sequence of hashes that are stored in n
 if n is not a leaf
 pos ← position of ID in k
 (such that ki (pos-1) < ID ≤ ki pos)
 delete hash value at position pos in h
 add (k,h) to cp

 if n is not the root node

 n ← parent node of n
else
 finished ← true

return cp and the signature on hash(k, h) (=hash value of
the root node)

Fig. 2: Algorithm for creating a certification path

One can show that this certification path is an undeni-
able attester as defined in [11]. This way the problems of
CVTs we described above are solved. It can also be shown
that we get the minimal certification path length for a B+-
tree with m=3 (i.e. a B+

2,3-tree), but we expect to get faster
search, insertion and deletion times for bigger m. This
leaves some scope to optimize the data structure for a
specific implementation.

In order to make the system flexible and suitable for dif-
ferent scenarios, we want to enable that an authority can
issue more than one certificate for a particular user and
store them in its I-CVT. A verifier should be able to check
that he gets all certificates issued for this user, to make
sure that access is not denied if the user has the required
privileges. Therefore the certificates in the I-CVT are
sorted by the pair (user–ID, serial number) which is unique
since the serial number has to be unique in an I-CVT. The
user-ID is the more significant part and the serial number
is the less significant part, i.e. all certificates are sorted by
user-ID and all certificates of a specific user are sorted by
their serial numbers. This way all certificate statements of
a particular user are adjacent and form a closed sequence.
Verifiers get the certification paths for each certificate of
this sequence and additionally for the certificates directly
before and after it. As a result, the verifier can be sure that
he got all certificates issued for a particular user.

5 Architecture of PAMINA
Due to the requirements that we defined and the results

of the analysis of different competing approaches, we have
decided to design PAMINA to support the pull model and
to use separate certificates for privilege management. The
cost analysis shows that CVTs guarantee a very good
performance. In addition, this scheme has enhanced secu-
rity properties. In order to reduce the trust placed on the
database storing CVTs and to make the scheme more effi-
cient, we developed I-CVTs. We believe that I-CVT is an
enabling technology for the realization of open directories
storing certificates issued by one authority. However,
PAMINA is basically designed for environments where
delegation of privileges as well as confidential manage-
ment of ACs are needed. Enabling privilege delegation
implies the coexistence of many I-CVTs that should be
accessible for applications. Due to this fact we develop a
central database storing all I-CVTs of the system. Of
course, the system can support simpler scenarios, too.

At first, we describe the components of PAMINA and
their relationships. Fig. 3 shows the subjects and compo-
nents of the system including the most important data
flows.
• Resource: Like any other privilege management sys-

tem PAMINA maintains authorization information
used for controlling access to different objects, the re-
sources. Each resource is owned by one or more
PMAs, and each PMA can own one or more re-

sources. For example, PMA2 owns resource RB and
RC (see Fig. 3).

• User: From PAMINAs point of view, users are hold-
ers of one or more ACs. Users cannot issue ACs. We
assume that each user has a unique identifier (name,
public-key) which associates her/him with the privi-
leges stored in her/his ACs.

• Client: In our approach a client is an application that
represents a remote user. Since access control deci-
sions can only be made if the requesting user’s iden-
tity is available, the client system has to insert identi-
fication information of the authenticated user in its re-
quest messages.

• Privilege Management Authority (PMA): PMAs
are basically issuers of ACs, they represent organiza-
tional units, such as companies or divisions of a com-
pany. Each PMA owns and/or controls one or more
resources. PMAs are autonomous; they can manage
privileges in accordance to their own policies. PMAs
can delegate privileges to other PMAs in a controlled
manner (see below in section 5.2). As shown in Fig. 3
resource RC is owned by PMA2, which has delegated
some of its privileges to PMA3. One can see that
PMA3 itself does not own any resources, but this way
it can authorize its users to access RC. Each PMA
maintains exactly one signed I-CVT in which all cer-
tificates issued by that particular PMA are stored. We
assume that the public (signing) key of the PMA is
managed by an external PKI.

• Privilege Database (P-DB): The P-DB is a central,
non-trusted database storing the I-CVTs of registered
PMAs. In this context non-trusted means that a veri-
fier obtaining ACs can always be sure that the P-DB
can neither manipulate the ACs, nor it can disclaim
the existence of a given AC. These properties are
guaranteed by the digitally signed I-CVTs. PMAs
must periodically send updated I-CVTs to the P-DB,
according to their own update policy. The P-DB con-
trols neither the validity, nor the freshness of the I-
CVTs; it just stores them. ACs can be downloaded by
verifiers, which are owned by registered PMAs. In or-
der to avoid performance and availability problems
the P-DB can be replicated.

• Verifier: In PAMINA a verifier is owned by at least
one PMA. Verifiers control only access to resources
that are owned by their owner PMAs. For example,
VPMA2 is owned by PMA2 as shown in Fig. 3. PMAs
state this ownership with so called policy certificates
(see below in section 5.1). Verifiers make access con-
trol decisions on the basis of the ACs downloaded
from the P-DB. A verifier is a program which runs di-
rectly on the targeted system itself, or it is an external
service used by server-sided applications, for exam-
ple. In Fig. 3 client C, that was authorized by PMA3,
wants to use resource RC controlled by verifier VPMA2.

RCRA

PMA: Privilege Management Authority
R: Resource owned by a PMA
P-DB: Privilege Database
C: Client
ID: User-ID
f(R): Operation on resource R
VPMAx

: Verifier owned by PMAx

PMA1

P-DB

PMA2 PMA3

RB

VPMA2
C

Request {f(RC), ID}

owns
delegates

AC download

updated I-CVT

Response {f(RC), ID, Y/N}

controls

RCRA

PMA: Privilege Management Authority
R: Resource owned by a PMA
P-DB: Privilege Database
C: Client
ID: User-ID
f(R): Operation on resource R
VPMAx

: Verifier owned by PMAx

PMA1

P-DB

PMA2 PMA3

RB

VPMA2
C

Request {f(RC), ID}

owns
delegates

AC download

updated I-CVT

Response {f(RC), ID, Y/N}

controls

Figure 3: Architecture scheme of PAMINA

In this case, the verifier downloads the delegation
chain, which states the privileges of the user that are
needed to execute the requested action, then it verifies
the chain, and finally, it allows or denies the access to
RC.

• Administrators: Administrators, who are typically
employed by a particular PMA, do daily management
work. A framework consisting of management tools
supports the two main types of administration related
tasks, namely privilege management and certificate
management. Only administrators of a PMA have ac-
cess to the private (signing) key of this PMA.

5.1 Managing certificates based on X.509 with
PAMINA

Theoretically, any type of (standardized) ACs can be
managed using I-CVTs, because the construction of these
trees is independent from the information stored in the
leaves. However, due to the fact that single ACs need not
to be signed, certificate fields holding signature specific
information become needless when using PAMINA. Since
certificate formats often reflect special authorization
mechanisms, like delegation, access control model and
properties of the revocation scheme, other changes could
also be needed in some cases. The first practical scenario
for PAMINA was to manage access control on the basis of
ACs as defined in the X.509 standard [4], in order to sup-
port compatibility with existing X.509 PKI products. The
“Attribute Certificate Framework” of X.509 basically
specifies an AC format and recommends the (optional) use
of CRLs for revocation purposes. This standard also de-
fines a delegation scheme and deals with major aspects of
role based access control management. Unfortunately,
practical aspects of the realization of a privilege manage-
ment infrastructure, like confidential management of ACs,
are out of the scope of this framework.

In the following we describe how ACs as defined in
X.509 can be modified in order to manage them with I-
CVTs. An X.509 based certificate statement stored in the
leaf of an I-CVT can consist of the following fields (com-
pared to AttributeCertificateInfo in [4], the signature field
is missing):

version, holder, issuer, serialNumber, attrCertValid-
ityPeriod, attributes, issuerUniqueID, extensions

The type, format and meaning of these fields remain ba-

sically unchanged. Assuming that an I-CVT stored in the
P-DB consists only of valid (not yet revoked) ACs, one
could think that the field attrCertValidityPeriod is unnec-
essary. This could be true from the verifier’s point of view,
but this would make the administration of the system very
complicated, because administrators would not know
when they had to delete an expired AC from the I-CVT.
The field serialNumber must uniquely identify an AC
within the I-CVT signed by the issuer. The attributes field
contains the privileges associated with the holder of the
authorization certificate.

X.509 supports privilege management on the basis of
role-based access control policies. There are several other
known approaches competing with role-based models, in
which users or privileges can be grouped according to
other strategies. From the certificate managements point of
view, there is no significant difference between these
models (see also [14]). A privilege management system
has to be able to handle ACs that hold privilege collections
that are not issued for a single subject. PAMINA also
supports this mechanism; the management of role certifi-
cates with I-CVTs and their verification do not present any
additional difficulty.

As mentioned before, each verifier holds so-called pol-
icy certificates issued by its owner PMA. A policy certifi-
cate is a special AC that is mainly used for the configura-

tion of verifiers. The attributes field of a PC can consist of
information about the caching or access control strategy
which the verifier has to follow. A PC also has a field that
lists each PMA known to the issuer that has ever delegated
any of its privileges. This way the verifier knows from
which I-CVTs he needs either the certificates for the given
user or a proof for the non-existence of any certificates of
this user. The issuer PMA of a policy certificate states
with its signature that it owns the given verifier. This
statement is used by the P-DB to control access to the I-
CVTs. See section 5.3 for more details.

5.2 Supporting delegation
As mentioned earlier, an important feature of PAMINA

is the support of privilege delegation. The basic properties
of the delegation model provided by the system are listed
here:
• Multiple ACs and therefore multiple delegation chains

can exist for each subject (user or PMA).
• PMAs are autonomous, that means that each PMA

may delegate all of its privileges to each other subject.
• PMAs can delegate privileges in one certificate that

were assigned to them by several certificates. This
implies that delegation chains are paths of a directed
tree, a delegation tree.

• PMAs that delegated privileges must inform the re-
source owners about this act. Resource owners are al-
ways known since each AC consists of its delegation
history (see below). This supports billing in commer-
cial application scenarios.

• PMAs that delegated privileges must have at least the
same privilege at the time of verification. PMAs can
delegate privileges for a specific period of time. The
beginning of this period can be in the future.

• A PMA can determine whether all privileges con-
tained in a particular AC can be delegated to other
subjects or not. The model does not allow the prohibi-
tion of the delegation of single privileges. If a PMA
wants to allow the delegation of a subset of privileges,
it should issue a separate AC containing only these
privileges.

• If a PMA allows the delegation of the privileges listed
in an AC, it can define the maximal length of delega-
tion chains starting with this AC.

• PAMINA does not support ACs issued by multiple
PMAs. When multiple privileges controlled by differ-
ent PMAs are needed to perform a particular action on
a resource, separate ACs must be issued by each of
these PMAs.

There are two important technical problems with privi-
lege delegation, namely to find and to verify ACs that
build a delegation tree. Each AC that belongs to a delega-
tion tree must include back pointers to the ACs in which
the issuer was assigned the corresponding privileges.

These pointers can be used during the verification process
to ensure that the grantor has sufficient privileges. For this
purpose [4] recommends the use of the optional field au-
thorityAttributeIdentifier, which is a sequence of IssuerSe-
rial fields. The IssuerSerial field is specified as a pair
<issuer, serialNumber>. An AC that contains authorityAt-
tributeIdentifier may include multiple privileges delegated
to the certificate holder by multiple authorities. The au-
thorityAttributeIdentifier field can include more than one
IssuerSerial field if the assignment of the delegated privi-
leges to the issuer authority was done in more than one
AC.

Assume that a user has more than one ACs issued by
different PMAs. In order to answer the requests of a veri-
fier for the certificates of this user, the P-DB has to find
those certificates that include privileges that origin from
the verifier’s owner PMA. Before responding, the P-DB
had to compose all possible delegation trees ending with
the user’s ACs, in order to find those that contain an AC
issued by a PMA that owns the verifier. This could lead to
performance problems in systems where delegation is
practiced frequently and delegation chains are long. Natu-
rally, the P-DB could just send all certificates issued for
the user inclusive delegation trees to the verifier. In this
case the verifier would also get ACs that have been issued
for the user by other PMAs and therefore should be hidden
from this verifier.

In order to make the search for certificates that should
be delivered to a verifier more efficient, each AC that
belongs to a delegation tree stores information about all
ACs in the same tree down to the resource owner. In con-
trast to X.509 the complete delegation tree is stored in the
certificates, instead of inserting only the IssuerSerials of
the direct predecessor certificates. The root of such a dele-
gation tree is the AC itself and the leaves are ACs issued
by resource owners. This way the database can easier
decide which certificates should be made available to the
verifier in a given situation. Note that this structure also
supports the verification of parts of a delegation tree by
verifiers that are not owned by a PMA which issued one of
the ACs in a leaf of this tree. One drawback of this solu-
tion is that the size of ACs depends on the height of the
delegation trees.

Fig. 4 shows an example situation, where user UA gets
the privilege P4 through delegation. Role1 holding privi-
lege P4 has originally been associated with C. As you can
see the certificate issued for C by A consists of an empty
delegation tree. Then C delegated privilege P2 (that it got
from B) together with privilege P4 to D. Therefore, the
delegation tree of D’s certificate consists of two <issuer,
serialNumber> pairs. Finally, D delegates privilege P4 to
user UA by issuing the certificate with the serial number 4.
As shown in Fig. 4., the included delegation tree has two
leaves. Leaf A,1 points to the originator (A) of the privi-
lege P4.

holder: C
issuer: A
ser.no: 1
privileges:
P1, Role1
del. tree:
[]

holder: C
issuer: B
ser.no: 2
privileges:
P2
del. tree:
[]

holder: D
issuer: C
ser.no: 3
privileges:
P2, P4
del. tree:
[A, 1; B, 2]

holder: UA
issuer: D
ser.no: 4
privileges:
P4

del. tree:
[C, 3;
[A, 1; B,2]]

holder: UA
issuer: B
ser.no: 6
privileges:
P5
del. tree:
[]

holder: Role1
issuer: A
ser.no: 5
privileges:
P3, P4
del. tree:
[]

B

D

A

UAC

P1, Role1(P3, P4)

P2

P4

P5

P2, P4

holder: C
issuer: A
ser.no: 1
privileges:
P1, Role1
del. tree:
[]

holder: C
issuer: B
ser.no: 2
privileges:
P2
del. tree:
[]

holder: D
issuer: C
ser.no: 3
privileges:
P2, P4
del. tree:
[A, 1; B, 2]

holder: UA
issuer: D
ser.no: 4
privileges:
P4

del. tree:
[C, 3;
[A, 1; B,2]]

holder: UA
issuer: B
ser.no: 6
privileges:
P5
del. tree:
[]

holder: Role1
issuer: A
ser.no: 5
privileges:
P3, P4
del. tree:
[]

B

D

A

UAC

P1, Role1(P3, P4)

P2

P4

P5

P2, P4

Figure 4: Certificates and delegation trees in PAMINA

5.3 Concept of the Privilege Database
As mentioned earlier the Privilege Database (P-DB)

stores all I-CVTs, which are periodically updated by the
PMAs. The main benefit of this solution is that verifiers
checking delegation trees do not have to connect to differ-
ent databases in order to download certificates issued by
different PMAs. Furthermore, PMAs need not to imple-
ment services providing verifiers; they just have to main-
tain their own I-CVTs.

PMAs that want to use the database must be registered
before by the P-DB. Registered PMAs may send their
updated I-CVTs periodically over an encrypted channel to
the P-DB. The P-DB does not maintain older versions of I-
CVTs. This task remains in the responsibility of the
PMAs. PMAs can either send complete updated I-CVTs,
or only the changes (e.g., new signed root) since the last I-
CVT update.
As described above, the P-DB provides verifiers basically
only with those certificate statements and corresponding
certification paths that are needed for a given access con-
trol decision. This makes the P-DB more trustworthy for
PMAs. An informal description of the protocol for obtain-
ing ACs is given here:
1. Verifier V, which is not necessarily known to the P-

DB, establishes a mutual authenticated connection
with the P-DB. During the authentication process they
agree on the use of a shared key, which will be used to
encrypt the whole communication. At the moment we
use SSL and the services of the external PKI for this
purpose.

2. After that, V sends the name of its owner PMA
(PMAV) to the P-DB.

3. If there is an I-CVT signed by PMAV and a valid
policy certificate issued for V by PMAV the P-DB

sends the policy certificate to the verifier and contin-
ues the process. If there is no policy certificate stored
in PMAV’s I-CVT the P-DB sends the certification
path for the leaf that would contain the certificate and
disconnects from V. If the verifier does not receive
this non-existence proof it can assume that the P-DB
was compromised.

4. In its later requests to the P-DB V sends the identifier
(ID) of the user in question or if possible an authenti-
cated (e.g., signed) request of the client.

5. The P-DB searches for all certificates issued for the
user by those PMAs listed in the policy certificate of
V and returns for each a delegation tree consisting of
certificate statements incl. certification paths, where
recursively,
issueri = holdersi+1 , for each level i in the tree
and where holder0 = ID and for some ACs issuer =
PMAV.
The P-DB includes also referenced role certificates.
If a certificate was not found the P-DB gives the certi-
fication path to the leaf that would contain that AC if
it were in the particular I-CVT. This path proves for
the verifier that the AC does not exist.

6. The P-DB sends the ACs to V over the encrypted
channel. It also sends certification paths from each I-
CVT of PMAs listed in the verifier’s policy certificate
proving that the user with ID has no ACs issued by
other PMAs.

5.4 Specification of a verifier using PAMINA
Verifiers as specified in this section can typically be in-

tegrated into an application server or an application gate-
way. The main responsibility of a verifier is to decide if an
authenticated user either has access to a particular resource
or not. It is in the responsibility of the application to de-

termine the identity of the user (ID) and to correctly for-
mulate a request.
The main tasks that the verifier has to implement are:
• Establishing a secure authenticated connection to the

Privilege Database.
• Requesting the relevant certificate(s) from the P-DB.

The P-DB delivers all relevant ACs of the user with
the attached roles and delegation trees.

• Verification of each certificate.
• Evaluating the delegation trees and roles to determine

the set of privileges the user holds.
• Deciding if the approved privileges are sufficient.

Input: Certificate identifier ID and certification path as
specified in section 4:
Certification path cp = (l0, l1, ... , ln-1) + root signature,
where li = ((ki0, ki1, ... kit), (hi0, hi1, ... hi(t-1))
Output: Validity of the certification path for this certifi-
cate
i ← 0
k ← (ki0, ki1, ... kit)
h ← (hi0, hi1, ... hit)
min_id = min(minj(kij),id)
max_id = max(maxj(kij),id)
d ← hash(k||h)

i ← i + 1
while i < n
 k ← (ki0, ki1, ... kit)
 h ← (hi0, hi1, ... hit)
 pos ← position of ID in k
 (such that ki (pos-1) < ID ≤ ki pos)

 if (kij in k are not sorted)
 or (pos>0 and min_id ≤ ki (pos-1))
 or (pos<t and max_id > ki pos)
 output "Invalid certification path."

 min_id = min(minj(kij),min_id)
 max_id = max(maxj(kij),max_id)

 insert d in h at position pos
 d ← hash(k||h)
 i ← i + 1

if root signature is NOT valid signature for d
 output "Invalid certification path."
else
 if (ki0, ki1, ... kit) contains ID

 output "Certificate ID is in I-CVT."
else
 output “Certificate ID is NOT in I-CVT”

Figure 5: Algorithm for validating a cert. path

Every single AC is verified using the algorithm above
(see Fig. 5). If an AC references a role definition certifi-
cate, the verifier must process the AC defining the speci-
fied role. The privileges assigned to the role are implicitly
assigned to the user and are therefore included among his
privileges. If the privileges are delegated to the user by an
intermediary PMA, the verifier must ensure that all ACs
that belong to the delegation tree are valid. Furthermore,
the verifier must check whether the delegation trees follow
the rules defined in section 5.2. The verifier must check
for example if each PMA that issued a certificate in the
delegation tree was authorized to do so and that no PMA
delegation privilege is greater than the privilege held by
that PMA.

The policies that the verifier follows during these proc-
esses are assigned with the policy certificate. The verifier
must also check the certificate validity periods. Finally, the
verifier checks if the union of all user privileges is suffi-
cient for the context of use.

5.5 Prototypical implementation details
The first prototype of PAMINA is implemented in Java.

Java enables to run the system on different platforms, but
many components, such as the P-DB, would need much
better performance. The PKI we use for the management
of PKCs and for the verification of signatures is the En-
trust/PKI v. 4.0 Developer Edition. The services of this
PKI are integrated into the system with the use of proprie-
tary developer toolkits. In PAMINA each AC is stored as
an XML document. We decided to use XML due to its
benefits:
• Platform independent standard,
• Many tools for converting and processing XML

documents are available,
• Human readable data representation, XML files can

be viewed with any text editor.
We have also implemented an administration framework

which provides daily management tasks. This framework
contains tools that support I-CVT related operations, like
creation, signing and updating of the tree and the parsing,
modification or deletion (revocation) of single ACs.

Conclusions and future work
In this paper we introduced PAMINA, a system which

manages authorization certificates in distributed environ-
ments. The system utilizes the high performance and en-
hanced security of I-CVT, an improvement of a novel
certificate management scheme, that has been proposed in
[1]. PAMINA can handle multiple I-CVTs each managed
by a so-called Privilege Management Authority (PMA).
Since the system implements the pull model, it can be
integrated in back-end architectures in which (remote)
clients need not to be involved in the access control deci-
sion process.

An important feature of PAMINA is the support of
privilege delegation. Verifiers become more complex in
delegation networks, and a large amount of information
about the user’s relevant privileges has to be collected
from a lot of different PMAs. This could lead to large
communication costs and has motivated the development
of a central database which stores all I-CVTs issued by
different PMAs. The database provides only authenticated
verifiers with those certificates that they need to check a
user’s privileges. In our flexible model a PMA can dele-
gate privileges within one certificate that were assigned
before by several certificates. Therefore, a certificate be-
longs to a delegation tree instead of a simple delegation
chain. Storing complete delegation trees in certificates is
helpful to implement confidential access to certificates in
an efficient manner.

Due to the fact that I-CVTs provide proofs for the non-
existence of certificates, verifiers can always be sure that
they get all existing certificates with relevant privileges of
a given user. However, the database storing multiple I-
CVTs would be able to hide complete I-CVTs storing
relevant certificates from the verifier. In order to solve this
problem, all PMAs that delegate privileges inform the
PMA(s) that own the resource in question about this act.

This way PMAs can configure their verifiers with the use
of so-called policy certificates to demand all certificates of
a specific user from a limited set of I-CVTs.

Our results show that due to the properties of I-CVTs,
this scheme is qualified for privilege management. The
first prototype of PAMINA states that the integration of I-
CVTs in an operational architecture is possible despite the
special requirements that have not originally been consid-
ered when this scheme was constructed.

At the moment PAMINA uses the services of an exter-
nal PKI since digital signatures are needed for the protec-
tion of integrity and authenticity of I-CVTs. In the next
future approach, we will extend the system and add key
management functionality. Furthermore, we plan to im-
plement a version of PAMINA which can manage authori-
zation information based on SDSI/SPKI.

Acknowledgments
This research work was supported by the German Re-

search Foundation (Deutsche Forschungsgemeinschaft,
DFG). The authors would like to thank to Günther Au-
gustin and David Garces for numerous discussions and
useful comments that helped to improve PAMINA.

References
[1] I. Gassko, P. S. Gemmell and P. MacKenzie: Efficient and Fresh Certification, Proceedings of the Conference Public Key Cryp-

tography 2000, v. 1751 of LNCS, pp. 342–353, Springer, 2000
[2] J. Linn and M. Nyström: Attribute Certification: An Enabling Technology for Delegation and Role-Based Controls in Distributed

Environments, Proc. of the 4th ACM Workshop on RBAC, pp. 121-130, Fairfax, USA, 1999
[3] R. Housley, W. Ford, W. Polk, D. Solo: Internet X.509 Public Key Infrastructure Certificate and CRL Profile, IETF Request for

Comments 2459, January 1999
[4] ITU-T Recommendation X.509: Information Technology – Open Systems Interconnection – The directory: Public-Key and At-

tribute Certificate Frameworks, February 2001
[5] P. C. Kocher: On Certificate Revocation and Validation, Proceedings of the 2nd International Conference Financial Cryptography,

1465 of LNCS, pp. 172-177, Springer, 1998
[6] R. C. Merkle, A Certified Digital Signature, Advances in Cryptology: CRYPTO '89, 0435 of LNCS, pp. 218-238, Springer, 1989
[7] M. Naor, K. Nissim: Certificate Revocation and Certificate Update, Proceedings of the 7th USENIX Security Symposium, pp. 217-

228, San Antonio, USA, 1998
[8] M. Myers, R. Ankney, A. Malpani, S. Galperin and C. Adams: X.509 Internet Public Key Infrastructure On-line Certificate Status

Protocol – OCSP, IETF Request for Comments 2560, June 1999
[9] S. Micali: Efficient Certificate Revocation, Technical Report, Massachusetts Institute of Technology, 1996
[10] I. Nestlerode: Implementing EFECT, Master Thesis, Massachusetts Institute of Technology, 2000
[11] A. Buldas, P. Laud, H. Lipmaa: Accountable Certificate Management using Undeniable Attestations, Proceedings of the 7th ACM

Conference on Computer and Communication Security, pp. 9-17, Athens, Greece, November 2000
[12] D. E. Knuth: The Art Of Computer Programming, Volume 3, Sorting and Searching, Second Edition. Addison-Wesley, 1998
[13] D. Comer: The Ubiquitous B-Tree, Computing Surveys, Vol. 11., No 2., pp. 121-137, ACM, June 1979
[14] S. Osborn, R. and Q. Munawer: Configuring Role-Based Access Control to Enforce Mandatory and Discretionary Access Control

Policies, ACM Transactions on Information and System Security, Vol. 3, No. 2, pp. 85–106, May 2000

