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Abstract

A grand challenge in information protection is how to
preserve the confidentiality of sensitive information under
spyware surveillance. This problem has not been well ad-
dressed by the existing access-control mechanisms which
cannot prevent the spyware already in a system from mon-
itoring an authorized party’s interactions with sensitive
data. Our answer to this challenge is PRECIP, a new se-
curity policy model which takes a first step towards prac-
tical and retrofittable confidential information protection.
This model is designed to offer efficient online protection for
commercial applications and operating systems. It intends
to be retrofitted to these applications and systems without
modifying their code. To this end, PRECIP addresses sev-
eral practical issues critical to containing spyware surveil-
lance, which however are not well handled by the previous
work in access control and information-flow security. Ex-
amples include the models for human input devices such as
keyboard whose sensitivity level must be dynamically deter-
mined, other shared resources such as clipboard and screen
which must be accessed by different processes, and the mul-
titasked processes which work on public and sensitive data
concurrently. We applied PRECIP to Windows XP to protect
the applications for editing or viewing sensitive documents
and browsing sensitive websites. We demonstrate that our
implementation works effectively against a wide spectrum
of spyware, including keyloggers, screen grabbers and file
stealers. We also evaluated the overheads of our technique,
which are shown to be very small.

1 Introduction

Although protecting confidential information has long
been recognized as one of the most important security prob-
lems, never before has the demand for its practical solutions
been so imperative. A recent study by Webroot revealed
that about 89% of computers it scanned were infected with
spyware, with an average of 30 instances per machine [1].
This threat can be mitigated by the techniques which aim at

preventing spyware from being installed [18] or detecting
and disinfecting spyware-riddled hosts [35, 31]. However,
reliance on these techniques as the only defense is risky, as
evasion of them leaves confidential information completely
unprotected. Therefore, it is crucial to enable a host to
contain spyware surveillance, preventing data from being
stolen even after attackers manage to breach other layers
of defense. Unfortunately, this cannot be achieved by the
access control mechanisms running in current commercial
systems: for example, though mainstream word processing
software such as Microsoft Word offers password and
encryption protection to sensitive files, a keylogger can eas-
ily get around such defense by recording the password used
by an authorized party to access these files. Fundamen-
tally, these mechanisms are designed to regulate access to
resources, not to control propagation of the information re-
leased from the resources [6, 10, 58].

Complementary to these mechanisms are the technolo-
gies for information flow security [33, 47]. The idea is to
track and manage sensitive data to prevent them from flow-
ing into unauthorized parties. Research in this area started
with the famous Bell-LaPadula (BLP) model [21, 39]. The
BLP model is designed to regulate the information flows
between subjects (e.g., processes) and objects (e.g., files)
with different sensitivity levels. Informally, the model
forbids a subject from reading objects with higher sensi-
tivity levels, or writing objects with lower sensitivity levels.
However, these properties can be too restrictive for many
commercial systems, in which most applications are mul-
titasked and expected to work concurrently on the objects
with various sensitivity levels. Moreover, BLP does not
model the resources and input devices shared between sen-
sitive subjects and public subjects (e.g., clipboard, screen
and keyboard), which are widely used by spyware to gather
sensitive information from the user. More recent research
on information flow security focuses on tracking and con-
trolling information flows within a program [47, 56, 44].
Many proposals require modifying source code to enhance
it with information-flow policies. However, the source code
of commodity software is usually not publicly available. Al-
ternatively, some approaches instrument the binary code of



an executable [51, 48] or dynamically track its execution
using virtual machines or debugging tools [29, 43]. A prob-
lem is that instruction-level tracing incurs significant per-
formance penalties, which at least triple a program’s run-
ning time [51]. This makes these approaches more suit-
able for offline analysis than online protection of informa-
tion [29, 43, 51].

We believe that information-flow based approach is
promising to achieve confidentiality protection, but its im-
plementation in practical systems can be hard unless the
technical barriers discussed above have been effectively ad-
dressed. Specifically, an information-flow model must fully
reflect the security-related properties of operating systems
and applications, and be efficient enough for using online.
It is also expected to be retrofitted to legacy systems with-
out touching their code and largely preserve the way users
interact with them. As a first step towards these objectives,
we propose PRECIP, a new confidentiality model that aims
at practical and retrofittable confidential information pro-
tection. PRECIP controls the sensitive information flows
among subjects and objects through tracking individual sub-
jects’ outputs which are dependent on their sensitive in-
puts: for example, data transferred from a word processor
to clipboard are deemed dependent upon the program’s in-
puts from the document being edited. Our model prevents
sensitive information from getting into untrusted subjects
and dynamically identifies the new objects which receive
sensitive data. It also explicitly describes shared resources
and user input devices such as screen, shared memory and
keyboard, and specifies the action which changes their sen-
sitivity levels. For example, whenever a user starts running
a word processor to edit a sensitive document, our approach
automatically tracks its input flows from keyboard and its
output flows to screen, shared memory (e.g., clipboard) and
temporary files, and protects them from being accessed by
untrusted subjects through the activities such as intercepting
keystrokes or taking a snapshot of the screen. PRECIP is de-
signed for online operation and can be retrofitted to legacy
operating systems and applications without changing their
code. In our research, we implemented our model to protect
some Windows applications, which demonstrates its effec-
tiveness in preventing information leakage during common
data operations such as viewing or editing documents, and
browsing websites.

The main contributions of the paper are described as fol-
lows:

o Effective and efficient confidentiality protection.
PRECIP can model user inputs, shared resources and
multitasked applications. It is designed to be used on-
line. Our implementation of the model under Win-
dows XP was demonstrated to work effectively against
a large spectrum of spyware, including different types
of keyloggers, screen grabbers and Trojans. Our ex-

perimental study also shows that PRECIP introduces
only small overheads to the operating system and ap-
plications it protects.

o Retrofit to legacy systems and ease of use. The secu-
rity policies of PRECIP can be enforced by system-call
interposition, which can be achieved using the toolkits
such as Wrappers [36], and user-land programs such
as hooks for Windows message-handling mechanism
and applications’ add-ons. This avoids modifying the
source and binary code of operating systems and ap-
plications, and also makes our approach easy to switch
on and off.

e New techniques to trace and control sensitive in-
formation flows. We propose simple but effective
dependency rules to determine the dependency rela-
tions between inputs and outputs of some Windows
applications, including word processing software and
Web browsers. We also designed a novel frame-
work to protect sensitive message traffic within Win-
dows message-handling mechanism, which prevents
untrusted hooks from intercepting sensitive messages
but still allows them to work properly on public mes-
sages.

Developing practical information-flow based confiden-
tiality protection is well recognized to be a challenging task.
PRECIP takes a first step towards this objective. Inevitably,
it contains limitations that need further investigation. First,
our approach generates dependency rules empirically, based
upon application-specific knowledge. Second, those rules
are designed to be general to a category of applications
without modifying their code. However, this property also
makes them less precise: there is no guarantee that all the
sensitive outputs of an application will be captured by the
rules, which may potentially let sensitive data slip into an
unauthorized party. Third, enforcement of PRECIP poli-
cies and dependency rules are also achieved in an empirical
manner, relying on a set of control programs specific to ap-
plications. These problems could be addressed in the future
research by techniques for automatic analysis of applica-
tions and extraction of their dependency rules, and a gen-
eral framework for enforcing these rules and other policies.
Another problem is that PRECIP interferes with the opera-
tion of a legitimate application, which could undermine the
functionality of the applicatoin under some circumstances,
for example, when it is processing both sensitive and pub-
lic data. Finally, PRECIP does not model integrity and re-
lies on additional integrity protection to ensure that it is not
bypassed. While our prototype implementation includes a
basic integrity protector, its protection is not comprehen-
sive, and a practical, comprehensive integrity model will
certainly complement our work.



The rest of the paper is organized as follows: Section 2
presents our model; Section 3 describes a design which ap-
plies the model to protect some data operations under Win-
dows XP; Section 4 gives the details of our proof-of-concept
implementation; Section 5 reports our experimental studies
on the implementation; Section 6 discusses the limitations
of our approach; Section 7 surveys the previous work re-
lated to PRECIP, and Section 8 concludes the paper and en-
visions the future work.

2 The Model

The PRECIP model for confidentiality protection is mo-
tivated by the following issues in modern commercial op-
erating systems (such as Microsoft Windows), which are
not effectively handled in existing confidentiality protection
Mandatory Access Control (MAC) models such as BLP or
non-interference [21, 30].

User Input Objects Existing MAC models label informa-
tion based on their source. For example, a system may have
some files labeled as “high” and some labeled as “low”, and
information derived from “high” files is considered “high”.
While this approach works for information that already ex-
ists in the system, it does not work for information newly
generated from user-input objects, such as the keyboard.
Because the keyboard is shared by applications running at
different levels, the events they generated are also at differ-
ent levels.

Consider the scenario that one downloads and installs an
input method program for inputting in a foreign language.
The program needs to receive keyboard events. However,
since the program could potentially be a keylogger and can-
not be fully trusted, we would want to prevent the program
from receiving keyboard events while one is typing, for
example, passwords for logging into a bank’s website. In
this scenario, given a keyboard event, one has to predict its
sensitivity, based on which application these events will be
eventually sent to. For example, if the events are sent to a
web browser that is accessing the website of the user’s bank,
then these events should be considered sensitive, because
they may include passwords for logging into the user’s ac-
count. On the other hand, if one is typing while posting on
a public forum, then the keyboard should not be considered
to be sensitive.

Therefore, if one assigns a label to the keyboard, then
this label must be dynamic. It depends upon whether the
keyboard will be used as input for high objects in the fu-
ture. This is different from existing models, where the label
of an object is derived from the past history of how this in-
formation is derived. When labeling a new keyboard event,
one has to predict how it will be used.

Other Shared Objects Many objects other than user-input
objects are also shared by multiple subjects. Two examples

are the screen and the clipboard. These objects are critical
in order to have a functional system, and they need pro-
tection. One class of spyware, known as screen grabber,
extracts information from the screen. These shared objects
will also have dynamic labels. While some of the objects
such as the screen can drop its sensitivity level by itself af-
ter an event is terminated, other shared objects may require
an explicit “cleaning” operation to remove the content to
enable its sensitivity level to drop.

Multi-tasked subjects Operating system kernels maintain
protection boundary at the level of processes. Access within
a process’s address space is generally unmediated. How-
ever, in modern operating systems, one process may contain
multiple threads that serve different tasks, often at different
sensitivity levels. For example, a single Word process may
contain multiple threads that are used to edit both sensitive
files and non-sensitive files. Similarly, one browser may be
used to browse websites of different sensitivity.

In the BLP model, one has to either forbid such situation
or declare the subject as “trusted”, so that the subject can
write arbitrarily. A “trusted” subject in BLP is trusted to
perform declassification correctly. However, this treatment
does not work for modern OS such as Windows, in which
most applications are multithreaded and many of them do
not have declassification capability. For example, there is
no obstruction in Word to copying data from a sensitive
document and pasting them to a public document.

2.1 Basic Concepts

We now introduce the basic concepts in PRECIP. Objects
are repositories for information. An object can be either lo-
cal or remote (across the network). Examples include files,
buffers, keyboard, screen, websites (remote), etc. A user-
input object (UIO) is an object through which subjects re-
ceive user inputs. Examples of UIO include keyboard and
mouse. A subject is an information processing unit which
operates on objects. We treat each process as a subject.

A channel connects a subject to subject, a subject to an
object, or an object to a subject. For example, opening a file
for read can be viewed as the operation to open a channel
from the file to the subject. A network connection can be
viewed as a two-way channel between a local subject (pro-
cess) and a remote host (modeled as an object). A path con-
sists of multiple channels that are connected by subjects.
That is, a path has the following form: (ug,u1), (u1,uz),
.+, (ug, ug41), where each (u;, u;+1) is a channel, uo and
ug+1 are either subjects or objects, and uq, . . ., uj are sub-
jects. For example, under Microsoft Windows, multiple
subjects can hook on the delivery of keyboard events. They
form a path through with a keyboard event will be delivered.

Information flows from a subject/object to another sub-
ject/object through channels by messages. Our notion of
message is general. Any communication is viewed as



the passing of a message. Examples of messages include
keyboard events, mouse events, data transferred through a
file writing system call, data transferred through an inter-
process communication call, etc. Each message emitted by
a subject may depend upon a set of input messages received
by the subject. The concept of dependency captures the in-
tuition that information may flow through a subject. This
dependency relation is assumed to be an input to the model.
Our model does not force a particular way of tracing the
dependency and allows the use of any approach for deter-
mining the dependency. In BLP, there are two kinds of sub-
jects. An untrusted subject must satisfy the *-property (i.e.,
no write-down). This can be interpreted as assuming each
output message depends upon all previous input messages.
A trusted subject is not restricted by the *-property restric-
tion. This can be interpreted as assuming each output mes-
sage emitted by the subject depends upon no input message.
The BLP approach is limited by the fact that it treats sub-
jects as blackboxes, and has only the two extreme cases of
dependency. It thus cannot handle multitasked processes.
PRECIP handles multitasked processes by allowing finer-
grained dependency rules to be specified and used. One ex-
ample dependency rule we use in our implementation is as
follows. Under Windows, when one opens multiple files in
one Word process, the subject corresponding to the process
receives messages from all files. However, when the subject
writes, the output message depends only upon the file being
edited by the user (Section 3.3).

Every object has a sensitivity level, which can be an ele-
ment in a lattice. In our implementation, the level is either
high or low. We thus focus our description of PRECIP to
this case, though our model can be extended to the more
general case where the set of all sensitivity levels forms a
lattice. An object is said to be sensitive if its sensitivity
level is high.

An object’s sensitivity level may change. It may raise
from low to high if it receives a sensitive message. It may
also drop from high to low if one performs a “clean” opera-
tion on it. For example, when one overwrites the content of
aclipboard, the system first “cleans” the clipboard, enabling
its sensitivity level to become low. Cleaning ensures that all
future messages will not depend upon previous incoming
messages.

An object may be remote or local. A remote object is
not under the control of the security system. Technically,
a remote object has a sensitivity level (which can be either
high or low) that cannot be changed by the reference moni-
tor. Sensitive information should not be sent to remote ob-
jects with low sensitivity levels, because one cannot control
who can read those objects. For example, a remote website
should be viewed as a remote object. On the other hand, a
file on local hard drive can be viewed as local, because the
protection system can limit which subjects can read the file.

A file on an USB thumb drive should be viewed as remote,
because the drive may be taken away and be used outside
the protection system. Note that an USB thumb drive can
still receive sensitive information if it is labeled as high.

A subject may be trusted or untrusted. A subject is un-
trusted if one has no confidence in controlling information
flow through the subject by controlling its output channels
mediated by the reference monitor. This would be the case
if the program running in the subject is downloaded from
an unknown source and may use covert channels to leak in-
formation. Sensitive information should not be sent to un-
trusted subjects. Note that our notion of trusted subjects is
different from that in, for example, the BLP model. In BLP,
trusted subjects are assumed to be able to correctly declas-
sify information. Our assumption is weaker. In PRECIP,
trusted subjects are assumed to behave in a way such that
one can model information flow through them using the de-
pendency rules. In essence, this implies that trusted subjects
are assumed not to use channels not controlled by the refer-
ence monitor (e.g., covert channel) to leak information.

2.2 Security Objective

Intuitively the security objective is that any information
flow that violates the confidentiality goal is not allowed. For
example, spyware such as keyloggers should not be able to
steal passwords. When we have just two sensitive levels:
sensitive (i.e., “high”) and public (i.e., “low”), the security
objective can be stated as: sensitive information should not
be leaked.

By leaked, we mean that information is delivered either
to an untrusted subject or to a remote object with sensitiv-
ity level “low”. As an untrusted subject may contain covert
channels to leak information, delivering information to an
untrusted subject should be considered leaking. As we can-
not control who read a remote object with “low” sensitivity,
delivering information there is also considered leaking.

By sensitive information, we refer to the information that
is derived from the information in a sensitive object. There
are two cases. One is a message that depends upon (pos-
sibly transitively) a message that comes out of a sensitive
object. The other is a message that depends upon (possi-
bly transitively) a message coming out from a UIO that is
generating sensitive user inputs.

2.3 Policies Achieving the Objective

We now describe a collection of policies that together
achieve the security objective identified above. These poli-
cies are divided into those that trace sensitivity levels of
messages and objects and those controlling the delivery of
messages.

A. Tracing sensitivity levels of messages and objects:

e Each message has a sensitivity level. When a message
is generated, it is set to high if one of the following is



true: (1) the message is emitted from a sensitive object,
(2) the message is emitted from a subject, and among
the set of messages that the message depends on, at
least one message is sensitive.

e Whenever an object receives a sensitive message, the
object’s sensitivity level is set to high.

e A UIO object is set to high if and only if there is a path
connecting an UIO to a sensitive object.

e When an object is cleaned, then the object’s sensitivity
is set to low.

These policies trace sensitivity levels of objects and mes-
sages. Note that in our model, subjects do not have sensi-
tivity levels; only objects and messages do. (A subject has
a trust level; it can be trusted or untrusted.) This is because
a subject may be operating on data of multiple sensitivity
levels. Also note that the sensitivity level of a message gen-
erated by a subject is determined by the sensitivity levels of
the messages it depends on.

B. Controlling: Message delivery is controlled according
to the follow two policies: (1) If a sensitive message is be-
ing sent to an untrusted subject or remote object with lower
sensitivity level, then the message is blocked. (2) If a sensi-
tive message is being sent to a local object with lower sen-
sitivity level, we have two choices: block the message, or
deliver the message and mark the object as sensitive.

We now show that these policies achieve the security ob-
jective in Section 2.2, under two assumptions. First, when-
ever a message is outputted by an UIO, if there is no path
connecting the UIO to an object, then the message (or other
messages depending on it) will never be delivered to the ob-
ject. Second, the cleaning operation is performed correctly,
that is, no message sent after the cleaning depends upon any
message received before the cleaning. Under the above two
assumptions, a straightforward induction shows that the two
kinds sensitive information identified in the security objec-
tive (Section 2.2) will be both correctly labeled as sensitive
by the tracing policies above. The message delivery control
then ensures that sensitive information is not leaked.

Additional policies can be introduced in an actual imple-
mentation, so long as the security objective are met. For
example, when implementing the PRECIP model, we intro-
duce a policy that blocks information delivered to a trusted
subject, when the subject is communicating with a remote
object labeled as “low” and we want to avoid blocking that
communication.

3 Protecting Confidential Information in
Windows XP

In this section, we present a design which applies the
PRECIP model to Windows XP. Our objective is to protect

the sensitive information related to two common data opera-
tions: viewing or editing sensitive documents and browsing
sensitive websites. We first illustrate the general idea behind
our design and then elaborate on its components.

3.1 Overview

Our design includes four major components: a classifier,
a tracer, a controller and an integrity protector. The classi-
fier identifies sensitive documents and trusted applications.
The tracer detects the sensitive outputs of a trusted applica-
tion and labels these outputs according to the tracing poli-
cies described in Section 2.3. The control policies of PRE-
CIP (Section 2.3) are enforced by the controller through
a kernel driver that regulates system calls and a userland
hooking management mechanism that controls the informa-
tion flow within Windows message-handling mechanism.
The integrity of all these components is protected by the
integrity protector. Figure 1 illustrates the design.
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Figure 1. PRECIP on Windows XP.

Example. The general idea of our approach can be de-
scribed with the following example. After the PRECIP
mechanism has been installed, the classifier automatically
labels trusted executables according to the presence of de-
pendency rules, and identifies sensitive files. Suppose
Microsoft Word has been labeled as a trusted applica-
tion. Whenever it is launched, the classifier marks its pro-
cess as a trusted subject. Once the process opens a sensitive
file, the tracer employs dependency rules to identify the in-
formation emitted from the process which is deemed depen-
dent upon the sensitive inputs from the file and raises the
sensitivity levels of the objects receiving such information.
These objects include screen on which an editing window
displays the contents of the file, clipboard that contains the
data copied from the file and temporary files which Word
creates for the file. In addition, the tracer also sets keyboard
and mouse as sensitive objects when the editing window



for the sensitive file is receiving data from these periph-
erals. The controller blocks the attempts from untrusted
processes to read sensitive information, and cleans shared
resources containing sensitive data. For example, when a
sensitive editing window awaits keystroke inputs, the con-
troller uses the hooking management mechanism to deliver
keystroke messages without going through untrusted hooks;
once the sensitive window stops receiving inputs, the con-
troller purges clipboard and the key status of keyboard to
lower down their sensitivity levels. At the meantime, the
user’s interactions with the editing window for a public doc-
ument are allowed to proceed as normal. The integrity pro-
tector protects the Word process against the untrusted pro-
cesses that attempt to interfere with its operations or instru-
ment its executables.

Adversary model. We assume that no spyware is inside
the kernel at the time our mechanism is installed. Our im-
plementation is mainly at the kernel level and therefore can-
not protect sensitive information if spyware is already inside
the kernel. However, our integrity protector can prevent un-
trusted code from being loaded into the kernel through sys-
tem calls (Section 3.5).

PRECIP is not designed for preventing exploit of soft-
ware vulnerabilities, such as control-flow hijacking through
buffer overrun. We rely on existing approaches such as the
techniques for memory protection [26, 22, 53] to defend
trusted applications and drivers against such attacks.

3.2 C(lassification and Labeling

The classifier is designed for labeling executables with
trust levels and other objects with sensitivity levels.

Trust levels. In the PRECIP model, a subject is deemed
trusted if we have the knowledge about its input/output de-
pendency relations. Such knowledge is described in our de-
sign as a set of dependency rules, which we discuss in Sec-
tion 3.3. Once installed, the PRECIP mechanism runs the
classifier to locate all the executables of which dependency
rules can be found from a database. These executables are
labeled as trusted subjects after their integrity has been ver-
ified!. An authorized party (such as a system administrator)
is also allowed to add new dependency rules® or modify ex-
isting rules through a security administrative tool.

The classifier labels an executable using its file
stream [9]. Under an NTFS file system, a file can have
multiple streams of data, of which the main stream is di-
rectly retrievable through the file name, and other streams
are accessed through both the file name and stream names.
For example, the main stream of a file “myfile.ext”

'For example, we can check their hash fingerprints against those of
known legitimate programs.

2Those rules can be constructed by analyzing an application or a cate-
gory of applications.

is associated with its file name while its other streams are
opened, read and written through the names in the format
“myfile.ext:stream-name”. Our classifier creates a
stream “trust-level” for every executable file to label
its trust level. This stream is protected against unauthorized
modification by the integrity protector. A process is consid-
ered to be trusted if all the executables it is generated from
are trusted. We label the trust level of a process using an
unused byte in the KPROCESS structure of that process.
The byte locates at offset 0x33. The KPROCESS struc-
ture is inside the Windows kernel, and therefore cannot be
accessed by userland code.

Sensitivity levels. The classifier also creates for every
nonexecutable file a stream “sensitivity-level”.
Similar to the t rust-1level stream, this stream can only
be changed by the classifier. File labeling is a process that
needs user intervention. However, automatic tools can be
used there to reduce the burden of manually annotating in-
dividual files. An approach is inferring the sensitivity level
of a file according to its discretionary access control (DAC)
information. Windows XP allows the user to set access po-
lices of her files, including the actions such as “modify”,
“read”, “write” and “execute” other users are permitted to
take on the files. In addition, it can also encrypt the files on
the user’s request. Our classifier can automatically label the
files which are encrypted or only accessible by its owner
and the system administrator as sensitive objects. It also
utilizes heuristics to identify sensitive files. For example, a
“.pst” file is deemed sensitive. The user is also allowed to
change a file’s sensitive level and even designate a label to a
newly created file through an interface provided by the clas-
sifier. The interface offers a list of windows through which
the user can determine the sensitivity level of a yet-to-save
file.

Besides files, other types of objects also have sensitivity
levels. For example, windows, screen, keyboard and clip-
board can be labeled with various sensitivity levels accord-
ing to tracing policies (Section 2.3). These sensitivity levels
are recorded in an array shared by the classifier, the tracer
and the controller. Remote resources such as websites also
have sensitivity levels. Our mechanism maintains a list of
sensitive Internet domain names such as those of banks and
other financial institutions and a set of sensitive IP prefixes.

3.3 Sensitive Information Tracing

The tracer first detects information flows coming out of
sensitive objects, and then employs a set of dependency
rules to identify the sensitive outputs of a process that re-
ceives these flows. In our research, we implemented the
tracer in a kernel driver to intercept system calls, and user-
land programs to help identify sensitive information. Such
userland programs include an add-on for enforcing the de-



pendency rule for web browser and a hooking management
mechanism for tracking the information within Windows
message-handling mechanism. The latter is described in
Section 3.4 as it is also a part of the controller.

Identifying and tracing sensitive information. The tracer
monitors the operations performed by processes on sensi-
tive objects to detect sensitive information flows. Examples
of such operations include reading from a sensitive file and
navigating to a sensitive URL. In addition, the tracer au-
tomatically marks input peripherals such as keyboard and
mouse as sensitive objects whenever input focus [3] is set on
a window processing sensitive information, which indicates
it awaiting inputs from these devices. In this case, the infor-
mation flows produced by these devices such as keystrokes
and mouse movements are also deemed sensitive.

A dependency rule for editing or viewing applications.
Many Windows-based editing/viewing applications do not
support multiple processes: for example, Word maintains
a single process to serve all documents. This prevents us
from utilizing process boundary to separate information in
these applications without altering their code. Therefore,
our current design tracks sensitive outputs of these applica-
tions using a heuristic dependency rule based on an intuition
described below.

Editing or viewing applications aim at providing the user
with interfaces and tools to process her documents. There-
fore, most of their outputs are directly triggered by human
inputs. Under Windows XP, these applications use a graphic
user interface called window to visualize a document to the
user and let her edit its contents. We call such a window
the hosting window of the document. A top-level window
in Windows is called an application window, which has no
owner window and appears on Windows taskbar. A window
can further spawn child windows to handle various tasks
such as interactions with file system and the user. The con-
tents of a document are displayed by an application win-
dow in some applications, such as Word, and by its child
window in others?, such as Excel. A window is treated
as an object by PRECIP. Its sensitivity level becomes high
when it hosts a sensitive document or it is a child window
of a sensitive window. A process of a Windows-based edit-
ing/viewing application can create multiple windows, each
hosting a document. However, at any moment, only one
window has the input focus on it for receiving user inputs.
Such a window is called active window. From that window,
we can identify which document the user is working on and
then correlate the outputs of the application with it*. This

3Such a child window usually has unique characteristics for editing
and viewing purposes. In our experiments, we observed a window style
parameter 0x46CF 0000 associated with it in several applications.

4As mentioned before, most outputs of an editing/viewing application
are triggered by human inputs. This allows us to establish such a corre-
lation. However, there are exceptions. A prominent example is automatic

observation is described by Rule 1 in Table 1.

Rule 1 can serve as a default rule for an editing/viewing
application. In Section 5.1, we demonstrate that this
rule works effectively on the commodity software such as
Microsoft Office,Adobe Reader and Notepad.
An important issue here is that our dependency rules are
only meant to be applied to legitimate software, as tracing
information flows of malware, even on the instruction level,
is always subject to evasion by a cunning adversary. To
tackle untrusted subjects, PRECIP adopts a pragmatic strat-
egy which prevents sensitive information from getting into
them in the first place.

To enforce Rule 1, we need to identify a sensitive win-
dow from the sensitive inputs generated by the operations
such as opening and reading a sensitive file. For many
Windows-based editing/viewing applications, this can be
achieved through a simple technique described as follows.
To allow the user to work on a sensitive file, such an appli-
cation must display the contents of the file in an active win-
dow. Such a window can be created after the file is opened
and read, or before these operations. In either case, the
application will immediately update the window associated
with the file. Our approach tracks the system calls follow-
ing the calls for opening and reading a sensitive file. If a call
for creating a new window (NtUserCreateWindowEx)
is first observed, we label that window as a sensitive ob-
ject. Otherwise, a call for updating the current active win-
dow (NtUserRedrawWindow) will occur, which allows
us to mark it as a sensitive window. The outputs generated
between observation of the sensitive inputs and identifica-
tion of the sensitive window are all deemed sensitive. This
treatment works for many Windows-based editing/viewing
applications such as Office and Notepad. However, it
is empirical and application-specific. A more precise ap-
proach could be tracking the file handler a window uses to
retrieve the contents of the file. This needs to track Win-
dows API calls, as such a process may not involve system
calls.

Following the sensitive outputs of a process, the tracer
identifies and labels new sensitive objects, such as tempo-
rary files’, screen and clipboard. Our approach applies a set
of exception rules to avoid raising the sensitivity levels of
some share objects that do not contain sensitive data. Ex-
amples of such objects include “index.dat” that records
the shortcuts of recently opened file and the registries which

saving, which could happen even when a document’s hosting window is in
the background. These outputs can be identified using application-specific
exception rules. For example, many Windows-based applications create a
temporary file for a document as soon as it is opened, which allows us to
identify such a file and set an exception rule to keep its label consistent
with that of the document.

SMany Windows applications tend to create temporary files for a doc-
ument right after it has been opened. Some of them are used for automati-
cally saving the contents of the document.



Name Rule

Comments

Rule 1: editing | ActiveWnd(P) .sensitivity =
or viewing ap- | ‘high’

——Output (P) .sensitivity

A process P generates sensitive outputs and receives sensitive in-
puts from user input objects (UIO) when its active window is sen-

plications ‘high’ && UIO.sensitivity = ‘high’ sitive. ActiveWnd is a function to identify P’s active window and
Output is a function to determine P’s outputs.

Rule 2: Web | ActivePrc(P) = ‘sensitive process’ The sensitive process for a web browser P generates sensitive out-

browsers ——Output (P) .sensitivity = puts and receives sensitive inputs from UIOs. ActivePrc is a

‘high’ && UIO.sensitivity = ‘high’

function which determines whether the process hosting the current
active window is the sensitive process.

Table 1. Dependency Rules.

can be written to modify application settings.

Many Windows processes may also communicate
with two system service processes, svchost.exe and
lsass.exe. svchost .exe is a generic host process for
the services running from Dynamic-link Libraries (DLLs).
lsass.exe is a system process of the Windows security
mechanisms. These processes usually provide services to
applications through pipes. For simplicity, we do not trace
these two processes for the time being. Instead, we label
them as trusted subjects after checking the legitimacy and
integrity of their executables (which includes, for example,
all the DLLs svchost . exe hosts), and set a dependency
rule which treats their replies to an application’s service
requests as the only outputs. Analysis of the information
flows within these processes is left as our future research.

A potential problem for Rule 1 is that theoretically, ac-
tive window may change between a process receiving an
input from the user and the completion of the operation in-
voked by the input. This does not happen frequently in prac-
tice: the operations in editing/viewing applications which
produce outputs (e.g., saving a file) are usually simple and
finish quickly, while switch of windows usually does not
happen promptly in these applications because it is driven
by human interventions, which are slow.

However, Rule 1 is only meant to identify the common
outputs associated with a document. Given its empirical na-
ture and the complexity of an application’s behavior, there is
no guarantee that every sensitive output will be captured by
the rule. Moreover, the rule may also cause false positive,
labeling some public outputs as sensitive. This will happen
when an output turns out to be correlated with a background
window.

A tracing mechanism and a dependency rule for
web browsers. Web browsers such as Microsoft
Internet Explorer (IE) and Mozilla Firefox
are also multithreaded applications. They provide tabs to
allow the user to concurrently surf multiple websites. Tabs
and browser windows can be accommodated in a single
process. Different from editing/viewing applications, web
browsers usually continue to serve a tab or a window even
when it is not in the foreground. This is because web pages
may take time to download and usually contain executable

contents such as scripts. Therefore, Rule 1 cannot be di-
rectly applied to trace these applications.

To trace browsers’ sensitive outputs, we developed a
technique which leverages the fact that IE and Firefox,
two most widely-used browsers, support multiple pro-
cesses. Our approach uses an add-on to monitor the web-
sites a browser is visiting. Whenever the browser tries to
enter a sensitive website such as www.citibank.com,
the add-on blocks that attempt, and instead creates a new
process and directs the process to that site. We call the
new process sensitive process and the original process pub-
lic process. The add-on also notifies the tracer of the sensi-
tive process’s identifier for tracing its outputs to detect new
sensitive objects such as temporary files and cookies. The
tracer labels the UIOs as sensitive objects whenever input
focus is on a window in the sensitive process. This is de-
scribed by Rule 2 in Table 1. The sensitive process is not
allowed to visit a website with a low sensitivity level. This
is enforced by the add-on: it blocks the attempt from the
sensitive process to navigate to a public URL and instead
creates a tab or a window in the public process to accom-
modate that link.

This approach can be attacked by malicious add-ons,
which stay in the same address space of a browser process
and therefore could directly steal sensitive information from
the process or prevent our add-on from generating a new
process. These attacks can be contained by SpyShield, a
technique proposed in our prior work [40], which employs a
proxy to control the interactions between add-ons and their
host applications.

Discussion. In this section, we present two dependency
rules for editing/viewing applications and Web browsers,
and describe their enforcement mechanisms. Those rules
and mechanisms are developed empirically, heavily relying
on application-specific knowledge. However, we argue that
given the diversity of Windows applications, application-
specific treatment could be an inevitable expense for fine-
grained information-flow tracing in these applications with-
out undermining their usability and changing their code. To
make our approach less empirical, a potential solution could
be automatic analysis of an application offline to identify
its dependency rule. We may also need to dynamically in-



strument part of the application’s executables, such as the
mechanism for multithread communications, to implement
a more precise rule. Research on this direction is left as our
future work.

3.4 Sensitive Information Control

The controller works closely with the tracer to protect
the sensitive information flowing out of applications, files
and peripherals. It enforces the control policies of PRECIP
(Section 2.3), which prevents sensitive information from
flowing into untrusted subjects and the remote objects with
low sensitivity levels.

Dissemination control. The controller intercepts sys-
tem calls to enforce security policies. It protects a sen-
sitive object from being accessed by an untrusted sub-
ject.  Specifically, the controller blocks the calls such
as NtReadFile from an untrusted process to read a
sensitive file. It also stops untrusted code from tak-
ing a snapshot of screen through the calls such as
NtGdiStretchBlt or directly reading from keyboard
using Nt UserGetAsyncKeyState® whenever these pe-
ripherals are marked as sensitive objects. For simplicity,
we treat the whole screen as sensitive if a sensitive win-
dow is both visible and not minimized’, which can be iden-
tified from the window’s properties using two API calls
IsWindowVisible and IsIconic. The controller also
prevents an untrusted process from reading the virtual mem-
ory of a trusted process through the system call such as
NtReadVirtualMemory whenever the latter is working
on sensitive data. Another responsibility of the controller
is to clean sensitive shared sources before they can be used
by other parties. For example, it purges all the data inside
a clipboard and the key status of a keyboard once the in-
put focus is switched from a sensitive window to a public
window.

The controller is also responsible for preventing sensi-
tive information from being leaked to a remote object with
a low sensitivity level, even through a trusted subject. To
this end, it controls the network connections of a subject
which are deemed dependent on a sensitive input. For ex-
ample, a trusted FTP client is only allowed to have con-
nections with sensitive domains after reading from a sen-
sitive file. This rule, however, is hard to directly apply to
web browsers: a sensitive website could host the web pages
which require downloading resources such as images from
many other websites. To solve this problem, we only control
the websites that a browser’s sensitive process is allowed to
visit, not the network connections it generates during that

OThis function reads the key status to determine whether a key is up or down at
the time it is invoked and whether the key has been pressed since the previous call.
After that, it resets the key status.

TThat is, the window can be observed from screen and is not in the form
of an icon on task bar.

visit, which could be highly diverse. In addition, only the
sensitive process is allowed to read from sensitive files, as
the public process is deemed to send the information it reads
to public Internet domains.

Management of untrusted hooks. A hook is a point in
Windows message-handling mechanism where an applica-
tion can install a callback function to monitor and process
some types of messages before they reach their target win-
dow. These messages carry information such as inputs from
keyboard and mouse. Windows supports many types of
hooks including keyboard, mouse, debug and others. Hooks
of the same type are maintained by a hook chain, which en-
sures a message goes through all these hooks one by one.
Windows hooks have been widely applied to enrich soft-
ware’s functionalities, for example, adding in new hotkeys.
However, they are also intensively used by spyware to steal
sensitive information. For example, many Windows-based
keyloggers install keyboard hooks to intercept the user’s
keystrokes.

Effective management of hooks is essential to tracing
and controlling message traffic. This objective, however,
cannot be achieved without addressing two key challenges:
first, a hook, once installed, is triggered by the kernel di-
rectly, without going through any system calls; second, a
hook can be injected into the address spaces of all user-
land processes, which potentially allows it to touch their
resources directly. We solved these problems using a frame-
work which deploys a proxy to regulate the communication
between untrusted hooks and the message-handling mech-
anism (Figure 2). This framework effectively protects sen-
sitive information from untrusted hooks at a small perfor-
mance overhead, as demonstrated in our experimental study
(Section 5.3). We describe our approach below.

Original Message- . . CLECCICEN | Trusted | > App
handling = Hook Hook
Message-handling . >| Proxy Hook Trusted Sensitive msg N
in PRECIP e R = Hook ‘Pubh'c‘msg“*l EE
- Accesf Control
“ ~ L
Untrusted
Hook

Figure 2. Management of untrusted hooks.

A hook is usually in the form of a DLL which in-
cludes a callback function. To install such a hook, a
userland process must first make a system call such as
NtUserSetWindowsHookEx to specify the location of
the function and load the DLL into the message-handling
mechanism. Our approach intercepts such a call from an
untrusted process, blocks its attempt to hook an untrusted
DLL and instead hooks a proxy DLL from another process



which is trusted®. The untrusted DLL is loaded by a ser-
vice process called hook host. Whenever a new message
comes, the kernel first passes it to the proxy DLL within the
context of the process receiving that message, and the proxy
then decides whether to pass it to hook host according to the
control policies. Specifically, if input focus is on a sensitive
window, the proxy DLL bypasses hook host; otherwise, it
sends the message to hook host that invokes the untrusted
hook using the message as an input.

3.5 Integrity Protection

Without integrity protection, PRECIP is subject to a va-
riety of attacks. For example, spyware may tamper with the
trust levels of executables, the sensitivity levels of files, pro-
cess images, dependency rules and security policies. Such
a threat is countered by the integrity protector which offers
kernel-level protection to PRECIP components.

The integrity protector regulates the system calls re-
lated to file systems (e.g., NtWriteFile), registry
keys and other auto-start extensibility points (ASEP) [54]
(e.g., NtSetValueKey) and processes (e.g., NtWrite
VirtualMemory) to block unauthorized access to PRE-
CIP components and critical system components. Specif-
ically, it enforces the following integrity polices: (1) only
the classifier can change trust-level streams and sensitivity-
level streams; (2) a trusted application’s files and process
cannot be modified by an untrusted process; (3) dependency
rules and security policies can only be accessed by a ded-
icated process that authenticates the user using passwords
and offers an authorized party an interface protected by the
tracer and the controller to change policy settings; (4) the
dedicated process is also the only party that is permitted to
change the ASEPs used for bootstrapping PRECIP; (5) an
untrusted process is not allowed to change the registry en-
tries used by svchost . exe to identify service DLLs; (6)
an untrusted process cannot read or write Windows page
file [14]; (7) only trusted kernel drivers are allowed to be
loaded into the kernel.

The policies described above could be incomplete, miss-
ing some avenues the attacker can exploit to bypass our
mechanism. However, a right policy setting will be suffi-
cient for the integrity protector to fend off all such attacks

8In Windows, a global hook resides in a global DLL and is mapped
into individual processes independently [2]. When the message handling
mechanism receives a message towards a process, it activates an instance of
the hook on the stack of the recipient process. This architecture may give
a malicious process a chance to tamper with the data of the proxy instance
within its address space. However, it cannot directly access the instance
within the address space of a trusted process. Therefore, the proxy can
protect sensitive keystrokes forwarding to trusted processes. It does not
protect the keystrokes towards an untrusted process, as they are deemed to
be public according to PRECIP policies (Section 2.3).

from userland. Our design cannot handle kernel-land spy-
ware. This threat is mitigated through regulating system
calls so that only trusted kernel drivers can be loaded into
the kernel. A trusted driver can be identified by comparing
its hash fingerprint with those of known legitimate code, or
verifying a trusted third party’s signature it carries. Win-
dows Vista and Windows XP for x64-based systems [16]
also adopt a similar protection strategy.

4 Implementation

We implemented a prototype system to evaluate our de-
sign. Our prototype contains a kernel driver and several
userland programs. The kernel driver modifies the system
service dispatch table (SSDT) to wrap the system calls
in Kernel32.DLL and Win32.DLL. This technique is
called API hooking. Table 2 lists all the system calls hooked
in our implementation.

The classifier was mainly implemented in the kernel
driver. It uses the functions such as NtWriteFile to
label the file streams for trust levels and sensitivity lev-
els. The kernel driver maintains a 1KB array for stor-
ing four-byte identifiers of sensitive windows and an ad-
ditional byte for the sensitivity levels of screen, keyboard,
mouse and clipboard, each of which takes one bit. Our
approach also includes a user-land program for the autho-
rized user to modify file streams and policies. It authenti-
cates the user using password and employs the tracer and
the controller to protect itself against surveillance. User in-
puts are delivered to the kernel driver through the system
call NtDeviceIoControlFile.

The tracer has a component in the kernel driver which in-
tercepts the system calls (Table 2) related to the major out-
put channels in Windows. These channels include shared
memory, named pipes, Windows messages, files and net-
work connections. The tracer also uses plug-ins (a tool-
bar in our prototype) to automatically separate the sensi-
tive IE process from the public one: the plug-in in one
process registers the IE event BeforeNavigate?2 to get
the URL to be visited; it also communicates with its coun-
terpart in the other process through named pipe and calls
COM function IWebBrowser2—Navigate () to redi-
rect a browser window or a tab to a website.

The controller regulates the output channels by permit-
ting or denying relevant system calls. It also cleans the
shared resources whenever input focus moves away from a
sensitive windows: specifically it purges clipboard using the
system call NtUserEmptyClipboard, and the key sta-
tus of keyboard through NtUserGetAsyncKeyState.
In addition, the controller controls Windows message
traffic using the framework described in Section 3.4.
To implement this framework, we used the kernel
driver to block the system call for installing a hook



CATEGORY SYSTEM CALL

File system NtOpenFile,NtCreateFile, NtWriteFile, NtCreateSection, NtClose,

Shared memory NtUserGetClipboardData, NtUserSetClipboardData, NtReadVirtualMemory, NtWriteVirtualMemory
Messages NtUserPostMessage, NtUserPostThreadMessage

Named Pipe NtCreateNamedPipeFile, NtClose

Keyboard inputs NtUserGetKeyboardState, NtUserGetKeyState, NtUserGetAsyncKeyState

Message Hooks NtUserSetWindowsHookEx, NtUserUnhookWindowsHookEx, NtUserCallNext HookEx

Networking NtDeviceIoControlFilel

Kernel driver NtLoadDriver

Registry keys

NtRenameKey, NtReplaceKey, NtRestoreKey, Set InformationKey, NtSetValueKey, NtDeleteValueKey

Process, thread

NtTerminateProcess, NtTerminateThread

Windows

NtUserCreateWindowEx, NtUserDestroyWindowEx, NtUserRedrawWindow

Screen NtGDIStretchBlt, NtGDIBitBlt

Table 2. System calls hooked in the kernel driver. 'In Windows XP, all network API calls (e.g., send,
recv, sendto) use the device type FILE_DEVICE_NETWORK to communicate with the TCP/IP stack
in the kernel land. The parameters of NtDeviceIoControlFile can be parsed to get networking
information such as IP addresses, port numbers and socket actions.

(NtUserSetWindowsHookEx) from an untrusted pro-
cess and send a request to a trusted user-land process to
install a proxy hook. The trusted process further asks
hook host, which is deemed untrusted, to load the orig-
inal DLL. These two processes communicate with each
other through named file-mapping mechanism. The kernel
driver also blocks the untrusted hook’s system calls such
as NtUserCallNextHookEx which are used to transfer
messages within a hook chain.

The integrity protector was completely implemented in
the kernel driver. It controls the system calls in Table 2 to
enforce integrity control described in Section 3.5.

5 Evaluation

In this section, we report our empirical evaluations of
PRECIP using our prototype. Our purpose is to understand
three major issues of our technique: (1) the accuracy of the
dependency rules used in our prototype, (2) the effective-
ness of our policy model in containing various types of spy-
ware, and (3) the performance overheads of our implemen-
tation.

5.1 Dependency rules

The accuracy of dependency rules is important to the ef-
ficacy of PRECIP. Our prototype system adopts two rules,
one for editing/viewing applications and the other for web
browsers. The second rule is designed for monitoring a pro-
cess that works entirely on the sensitive inputs. This allows
us to trace all its outputs, as the BLP model does, with-
out causing too many false positives. By comparison, the
accuracy of the first rule raises more concern, as it is for
identifying the sensitive outputs of a process working on
both sensitive and public inputs. Therefore, we focused our

attentions on the effectiveness of the first rule in the experi-
ment. Our findings are described below.

We tested 5 common editing or viewing applications un-
der our prototype, using Rule 1 as the default dependency
rule. These applications include Microsoft Word 2003,
PowerPoint 2003, Excel 2003, Adobe Acrobat
Reader 8.0 and Microsoft Notepad. The accuracy
of the rule was evaluated by its false positives that take
non-sensitive outputs as sensitive ones, and false negatives
that miss some sensitive outputs. In the experiment, we
commanded each application to open two files: one was
sensitive and the other was public. False positives of the
rule were reported once the outputs of the application were
found to be related to the public file when the sensitive win-
dow was in the foreground receiving inputs. False negatives
were identified once we captured the outputs from the sen-
sitive file when the public window was active.

Microsoft Word always maintains a single process
to serve all the files being edited. In our experiment, we
monitored and analyzed all the outputs of that process,
including messages and operations to create and write to
pipes and temporary files. The message traffic we ob-
served was within the process, between threads and internal
objects such as windows, and therefore was not of inter-
est to us. There were three pipes connecting the process
with 1sass and svchost. Since we did not trace these
programs, these pipes may potentially constitute a source
of false negatives. The process also wrote to an existing
file (index.dat) and created temporary files and several
. LNK shortcut files. This all happened when the process
opened the file to be edited, created its editing window and
put the window in the foreground. Our tracer captured these
files and associated them with the file being edited in the ac-
tive window. We also found that all the temporary files cre-
ated when an editing window was in the foreground were
automatically removed after that window was closed. This



indicates that these files were only related to the active win-
dow, not to the editing window in the background. Other
outputs from Word were purely driven by human inputs,
such as “save” and “cut and paste”. Our prototype success-
fully captured all those outputs generated by the sensitive
window.

Like Word, PowerPoint, Excel and Acrobat
Reader all run in single-process mode. PowerPoint
and Excel created .LNK shortcuts for files when these
files were just opened and their application windows were
active. The shortcuts related to sensitive files were cor-
rectly identified by our prototype. PowerPoint and Acro-
bat Reader also had pipes with 1sass, which could cause
false negatives. Most other outputs of these applications
were directly driven by the human inputs and well modeled
by Rule 1. Notepad generated a new process to serve an
editing window. The process did not produce any outputs
when its editing window was in the background. This al-
lowed our prototype to catch all the outputs related to the
sensitive file.

This study is still preliminary: more conclusive results
should come out of evaluation of our implementation un-
der practical settings. For example, we can distribute it
to a number of work computers to study its false posi-
tive/negative rates during day-to-day operations. Another
possibility is to evaluate the implementation using a com-
prehensive test suite which automatically checks most of
functionality of an application’. These measures will defi-
nitely help us better understand the accuracy of our depen-
dency rule. In addition, we labeled the files in the exper-
iment manually. Future research will study the accuracy
of the automatic classification techniques described in Sec-
tion 3.2.

5.2 Effectiveness

We tested the PRECIP mechanism against 10 strains
of spyware, including keyloggers, screen grabbers and file
stealers. The results of this study are summarized in Table 3
and elaborated below.

Keyloggers. Most in-the-wild keyloggers for Windows use
hooks to intercept keystrokes. Specifically, they need to
load a DLL into the message-handling mechanism so as
to access the messages transporting keystrokes to applica-
tion windows. In our experiments, we tested 3 keyloggers
of this type: Spyware.KidLogger [50], Home KeyLogger
v1.60 [8] and RunHook [19]. Spyware.KidLogger is a fa-
mous spyware, which has been rated as high risk impact by
Symantec [50]. This spyware hooks the message queues for
both keyboard (WH_KEYBOARD) and mouse (WH_MOUSE),

9We are not aware of any publically-available test suite that can be used
for this purpose. This is the major reason that prevents us from conducting
a more comprehensive test of the rule.

and maintains a record for every application. Home Key-
Logger hooks two types of messages: WH_.GETMESSAGE
and WH_KEYBOARD. RunHook works in a similar fashion
as these two keyloggers, but only intercepts keyboard mes-
sages. Our prototype uses a proxy to regulate these un-
trusted hooks’ access to message traffic. This turned out
to be very effective: in our experiment, we used Word to
edit a sensitive file and a public file in the presence of these
keyloggers; from their log files, we only found keystroke
records for the public file.

Besides keyboard hooking, there are other ways to log
keystrokes. Pranay Kanwar described a keylogging tech-
nique using GetAsyncKeyState [34]. A thread periodi-
cally polling the keyboard with this function can capture the
keys just being pressed. Kanwar also provided part of the
source code for this technique. Another hookless approach
takes advantage of the Win32 call AttachThreadInput
to synchronize the input processing of spyware with that
of the thread hosting the active window, and then
calls GetKeyboardState to acquire the window’s
keystroke inputs [27]. Both these techniques require
making system calls (NtUserGetAysncKeyState,
NtUserGetKeyState,NtUserGetKeyboardState)
to read from keyboard, which can be blocked when key-
board is sensitive. In our experiment, we implemented both
approaches and ran them against our prototype. Although
they could successfully record keys when we were editing
a public file, none of them were found to be able to do that
when input focus was on a sensitive window.

Screen grabbers. We tested our prototype against 3
real screen grabbers: GhostlyEye v1.0 [7], Any Capture
v3.12 [4] and OleanSoft Hidden Recorder v1.9 [12]. All of
them are capable of periodically dumping the image from
the screen to a log file. OleanSoft even disguises the file as
a DLL. To capture the screen, these screen grabbers made
system calls NtGDIStretchBlt and NtGDIBitBlt,
which was intercepted by the kernel driver. The control
policies of our prototype forbid an untrusted process to read
from screen whenever a sensitive window is both visible
and not minimized, even when the window is not active. In
the experiment, we edited a sensitive file and then closed it
in the presence of the spyware. From the images exported
by these grabbers, we found that none of them contained the
editing window for the sensitive file.

File stealers. We also evaluated our technique using 2
file stealing tools: Backdoor.Sub7 [15] and Cerberus FTP
Server v2.45 [5]. Sub7 is a famous backdoor which con-
tains a server and a client. The server is running on the
victim’s system and the client provides a graphic user inter-
face for controlling the server. Through the client, one can
run a keylogger on an infected system or directly download
files from the system. The keylogger used by Sub7 is based
on keyboard hooking, which can be easily contained by our



Name Type Control Actions

KidLogger [50] Key Logger bypass the hook host.

Home KeyLogger [8] Key Logger bypass the hook host.

RunHook [19] Key Logger bypass the hook host.

Synthesized-1[27] Key Logger block two system calls: Nt UserGetKeyboardState and NtUserGetKeyState.
Synthesized-2[34] Key Logger block one system call: NtUserGetAsyncKeyState.

GhostlyEye[7] Screen Grabber

block one system call: NtGDIStretchBlt

Any Capture[4] Screen Grabber

block two system calls: NtGDIStretchBlt and NtGDIBitBlt

Hidden Recorder[12] Screen Grabber

block one system call: NtGDIBitB1t.

Sub7[15] File Stealer

untrusted process does not allow to open sensitive files.

—[ O] 0o A O\ | & W| B —

0 | Cerberus[5] Lightweight ftpd

untrusted process does not allow to open sensitive files.

Table 3. Effectiveness Evaluation of our PRECIP Prototype.

Benchmark Baseline | with PRECIP Overhead
Office XP SP2 784 s 838 s 6.89%
Photoshop 7.0.1 | 647 s 675 s 4.33%
Mozilla 1.4 1122's 1265 s 12.75%

Table 4. Overhead of the Kernel Driver.

prototype. Therefore, we are more interested in its file steal-
ing functionality. Cerberus is essentially a lightweight FTP
server which allows an FTP client to access the file system
of the host it is running on. Choosing Cerberus is motivated
by the observation that one can use such a lightweight server
to steal files remotely. In our experiment, we installed both
of these programs in a system protected by our prototype
and ran their remote clients to download files from the sys-
tem. In both cases, we successfully downloaded files with
low sensitive levels but could not touch sensitive files. This
is because our kernel driver prevents untrusted processes
from reading sensitive files through system calls such as
NtOpenFile and NtCreateFile.

5.3 Performance

We evaluated the performance of the kernel driver and
the hooking management mechanism, two major compo-
nents of our prototype. The experiments were conducted
in a VMware workstation hosted by a desktop with Intel
Pentium 2.53GHz CPU. The virtual machine has 780MB
memory and 16GB disk space at its disposal. Its operating
system is Windows XP with Service Pack 2. The experi-
mental results are described below.

Performance of the kernel driver. We used WorldBench
5.0 [13] to measure the performance impacts of our ker-
nel driver. WorldBench is an industry-standard benchmark-
ing application which has been widely used to measure the
performance of personal computers. It automatically exe-
cutes several common applications using artificial tasks to
determine a system’s performance. In our experiment, we
ran WorldBench in the virtual machine to get baseline per-
formance, and then ran it again after installing the kernel
driver. Table 4 presents the results, which are averaged over
three tests.

From the table, we can see the overhead of the ker-
nel driver is small, always below 13%. In particular, it
only brought 6.89% performance impact to Microsoft of-
fice, which it is meant to protect.

Performance of the hooking management mechanism.
Legitimate freeware can also install a hook to the message-
handling mechanism to provide services such as hotkeys.
The performance of such a hook will be affected by our
hooking management mechanism. In addition, a hook slows
down the performance of the whole system. A question is
whether our framework makes the situation much worse.
To understand how serious the problem is, we empirically
studied the performance of our mechanism and report our
findings here.

In the experiment, we first installed a test hook (the DLL
of KidLogger), ran a program called keystroke generator to
produce keystrokes, and delivered them to another program
called receiver. Keystroke generator and receiver coordi-
nated to measure the delay caused by delivering keystroke
messages, which was used as a baseline. Then, we enabled
our prototype that hooked a proxy DLL to the message-
handling mechanism and employed hook host to load the
test hook. Running the keystroke generator again, we mea-
sured the delay and compared it with the baseline. In the
experiment, 1000 keystrokes were generated and delivered
in both settings. The experiment results are the average de-
lays for transiting these keystrokes. The baseline is 691.015
microseconds and the average delay caused by our proto-
type is 784.809 microseconds. This gives a performance
overhead of 13.57%.

6 Discussion

A limitation of the PRECIP model is that it has only two
sensitivity levels and does not consider compartmentaliza-
tion of information. These issues are left out in the current
design for the simplicity of the model. In addition, it is also
desired to have a policy language that translates the high-
level policies specified by PRECIP to the policies enforce-
able by a general policy enforcer for an operating system.
These limitations are expected to be addressed in our future
research.



The dependency rules we present in the paper are em-
pirical. When applying them to a real application, it is
likely that they miss some sensitive outputs. The prob-
lem is aggravated by the fact that even the applications
from a renowned software vendor may contain hidden chan-
nels. A famous example is Sony BMG copy protection
scandal [17]. However, in most cases, legitimate applica-
tions themselves do not steal the user’s confidential data and
therefore failing to monitor some of their outputs will not
automatically cause information leakage, though this gives
a knowledgeable adversary chances to do so'. On the other
hand, we can always patch our dependency rules to fix such
holes as soon as we know them. Essentially, our intention
to retrofit existing systems decides that we have to step back
from the ambition of achieving perfect security. Pragmati-
cally, we just want to raise the bar through controlling the
major channels the adversary uses to compromise system
confidentiality.

The proposed dependency rules are also limited in their
applicable scope which only includes editing/viewing ap-
plications and web browsers. An open research question is
how to find efficient, accurate and general policies for other
types of applications. In general, tracing a multitasked pro-
cess is hard because of its nondeterministic behaviors. We
are developing the technique for automatically analyzing a
commodity application offline to generate its dependency
rule that can be enforced online through dynamic instru-
mentation.

The controller we implemented regulates system calls
and the message-handling mechanism. There are other
channels through which sensitive information can be leaked
out. An example is the channel between an application and
its DLLs. To control such a channel, we may separate an
untrusted DLL from its host application and use a proxy to
manage the information flows between them. The controller
is also limited by its capability to clean shared resources.
Our prototype only cleans clipboard and keyboard, which is
far from sufficient: previous research shows that sensitive
data could be scattered in the operating system, being left
in the places such as stack and heap [24]. Therefore, an im-
portant question is how to thoroughly clean a process once
it finishes a task involving sensitive data. An existing so-
lution to this problem requires modifying OS source code,
which may not be suitable for retrofitting a commercial sys-
tem [25]. We plan to seek other solutions in the follow-up
research.

Although we implemented our prototype under Win-
dows XP, our model can also be applied to Linux using the
techniques such as LSM hooking [55]. Actually, identifying
dependency rules for Linux applications should be easier, as

10For example, Sony BMG’s extended copy protection (XCP) does not
steal the user’s password. However, it contains security holes which might
be exploited by other malware [17].

many of them are not multithreaded. Windows XP for x64-
based systems and Windows Vista include a mechanism for
kernel patch protection that disallows system-call intercep-
tion through unauthorized modification of kernel resources
such as hooking system-call dispatch table. However, Mi-
crosoft does provide alternatives to kernel patching, which
allow a third-party program to monitor and control network
traffic, operations on file systems and registry entries, and
others [16]. This could make it possible to enforce PRECIP
policies in userland. Further investigation of this problem is
left as our future research.

The PRECIP mechanism does not interfere with the op-
erations of other malware defense programs such as Syman-
tec AntiVirus. We can label these programs as trusted and
allow them to directly hook the message-handling mecha-
nism or load the kernel driver, which are necessary for ac-
complishing their missions.

7 Related Work

One of the earliest security policy model aiming at pre-
venting sensitive information to leak is the Bell-LaPadula
model [21]. The BLP model suffers from several limita-
tions. First, it is unsuitable for modeling a multitasked
process which works concurrently on public and sensitive
information. Application of the model to a practical sys-
tem usually requires declaring a large number of subjects to
be trusted. This does not work well in a modern operating
system such as Windows in which almost all the programs
are multitasked. Second, the BLP model does not describe
shared resources, in particular, the user input objects which
are essential to the confidentiality assurance of a modern
OS. The PRECIP model is designed to solve these prob-
lems, towards the goal of providing practical confidentiality
protection for commercial systems.

There is a large body of work on precisely defining in-
formation flow properties. One prominent example is non-
interference property which requires that secret information
not affect publicly observable behavior of a system [30].
A system with this property does not leak out any sensi-
tive information through even covert channels. However,
such a property is shown to be too restricted for many prac-
tical systems [49, 38]. Language-based information-flow
security [47] seeks to develop programming-language tech-
niques for specifying and enforcing information flow poli-
cies. These techniques are meant to be used for writing
new programs, while PRECIP is designed for retrofitting
the existing applications and systems without access to their
source code. PRECIP takes the definition of dependency re-
lation as an input to the model, and focuses on tracing infor-
mation flows using that notion. This gives it sufficient flex-
ibility to be applied to many practical systems. Language-
based information-flow techniques can be complementary



to PRECIP in that they can be used to more precisely de-
termine dependency relation within one program. Recently,
effort has been made to dynamically trace the information
flow in an executable using binary instrumentation [51, 46]
or virtual machines [29, 43]. These approaches are gener-
ally too slow to use online. Actually, some of them are de-
veloped for offline analysis of vulnerable programs or mal-
ware [29, 43].

Some prototype operating systems have built-in
information-flow security. For example, Asbestos [28]
provides a kernel-enforced labeling mechanism; IX [42]
modifies UNIX kernel to implement multilevel security.
PRECIP differs from them in its objective to retrofit
existing systems. In addition, PRECIP also deals with
some practical issues unaddressed in these systems. A
prominent example is the policy to identify the sensitivity
level of a user input object such as keyboard.

Sandboxing techniques have also been applied to achieve
multilevel security. For example, WindowBox [20] virtu-
ally divides a Windows workstation into multiple desktops,
each of which is sealed off from the others. Another ex-
ample is the NetTop project [11] which uses VMware for
multilevel security. These approaches have two major lim-
itations. First, they tend to introduce heavy performance
overheads, as a result of using virtual machines and in-
stalling the same software within different compartments.
Second, they require users to correctly partition their activi-
ties to different security levels, whereas many activities may
span multiple levels, e.g., reading and handling emails. By
comparison, PRECIP incurs small overheads and is capable
of allowing the users to work in one unified environment:
for example, our model allows one subject to handle data
with different sensitivity levels.

Wrappers is a toolkit that wraps commodity software at
the system-call level to enhance the software’s security and
reliability [36]. It can serve as a platform for partially en-
forcing the new policy model we propose here, in particu-
lar when sensitive information flows are observable through
system calls. However, the PRECIP model may not be fully
enforceable using Wrappers, as some information flows do
not go through system calls: an example is the message-
handling mechanism which allows the OS kernel to directly
invoke a user-defined callback function. Actually, in our
research, we developed our own kernel module to inter-
cept system calls because the current prototype of Wrappers
does not support Windows XP [36, 45].

Flume is a model for decentralized information flow con-
trol, which works on the granularity of processes [37]. The
model can be used to protect both integrity and confidential-
ity, and therefore is more general than PRECIP. However,
it does not describe user input objects and multithreaded
subjects, two long-standing problems for process-level in-
formation flow models. In contrast, PRECIP is designed to

address these issues. Another difference is that Flume re-
quires modifying the source code of operating systems and
applications, while PRECIP does not.

Many spyware detection techniques have been proposed
recently. Examples include Panorama [57], Siren [23],
NetSpy [52] and others [29]. Different from these ap-
proaches, the focus of PRECIP is containment, which of-
fers another layer of confidentiality protection even after
spyware evades detection. Existing containment techniques
are limited to protecting certain type of information such
as passwords. Bump in the Ether [41] offers a mechanism
to bypass common avenues of attacks on keystroke inputs
through a trusted tunnel implemented using a mobile de-
vice. SpyBlock [32] evades the surveillance of the key-
loggers inside a virtual machine by directly injecting users’
passwords into the network traffic intercepted by the host.
These approaches are ineffective against other types of spy-
ware such as screen grabbers and file stealers. In addi-
tion, they need either additional hardware (mobile device)
or heavyweight software (a virtual machine). PRECIP is
designed to offer general protection against multiple types
of spyware and has no special requirements for hardware
and software settings.

8 Conclusions and Future Work

In this paper, we propose PRECIP, a new confidentiality
model, as a first step towards practical and retrofittable con-
fidential information protection. This model is designed to
be used in practical systems, offering an efficient online pro-
tection against spyware surveillance without touching the
source code of these systems. To this end, PRECIP ad-
dresses several important practical issues which have not
been modeled in previous research, including models for
human input objects, shared objects and multitasked sub-
jects.  We applied the PRECIP model to Windows XP to
protect the commercial applications for editing or viewing
sensitive documents and browsing sensitive websites, and
evaluated its efficacy using our prototype. Future research
includes extending the model to describe the sensitivity lev-
els in lattice and developing general, accurate and efficient
tracing techniques.
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