
PRECIP: Towards Practical and Retrofittable
Confidential Information Protection

XiaoFeng Wang (IUB), Zhuowei Li (IUB), Ninghui Li (Purdue) and
Jong Youl Choi (IUB)

How to protect your information from spyware?

Prevent it !

Detect it !

However…
However…

The last defense line

Contain unauthorized surveillance

Spyware containment

Existing access control mechanisms are insufficient
Spyware can watch authorized party’s access to a secret

Alternative: information flow security
Track sensitive data
Prevent them from flowing into unauthorized parties

Information flow security

The Bell-LaPadula model

sensitive

sensitive

highly
sensitive

public

However, this is insufficient for a modern OS

User input object
keyboard, mouse…
When does it become sensitive?

Other shared object
screen, clipboard …
sensitive? public?

Multitasked subject
Work concurrently on public and sensitive data
Which output is sensitive?

Requirements for a usable IF model

Work on a modern OS

Efficient enough for online operation
Instruction-level tracking can be too slow

Retrofittable to legacy systems
Avoid modifying the source code of app, of OS

PRECIP

A first step towards practical and retrofittable confidential
information protection

Track an application’s input/output dependence

Model input object and shared object

Designed for online operations

Retrofittable to legacy applications and OS

The model

Subjects and objects
Local objects (files, buffers, keyboard, screen,…)
Remote objects (website…)
User input objects (UIO): objects for transferring inputs (keyboard)

Channels
Connect subject to subject, subject to object, object to subject
A path is composed of multiple channels

Messages
Information on a channel in the form of “messages”
Examples: keyboard events, mouse events, data through a “read” call

The model (cont’d)

Dependency relation
Output messages depend on some input messages
An input to the PRECIP model

Sensitivity levels
high: “sensitive”, low: “public”

Trusted and untrusted subjects
Untrusted: unknown dependency relations
Trusted: all dependency relations are known

Security objective

Information is sensitive if
it depends (directly or transitively) upon a message from an
sensitive object, or sensitive inputs from an UIO

Information leakage happens if
Sensitive info gets into an untrusted subject or a remote
public object

Objective: Sensitive information shouldn’t be leaked

Policies achieving the objective

Tracing rules
Sensitive msg: either from a sensitive obj or dependent upon a sensitive
msg
Obj ⇒ sensitive if it receives a sensitive msg
UIO ⇒ sensitive iff a path connects it to a sensitive obj
Obj ⇒ public if it is cleaned

Control rules
Block sensitive msg to public remote obj and untrusted sub
Sensitive info to a local obj ⇒ block the msg or mark the obj sensitive

Application of PRECIP to Windows XP

Adversary model

Spyware is not inside the kernel when PRECIP is installed
However, our integrity protector can preventspyware to be
installed through system calls

PRECIP is not designed for preventing exploit of software
vulnerabilities

We use existing tools to do the job

Classification and labeling

Trust levels
Classify applications according to dependency rules
Mark an executable using its NTFS file stream

Sensitivity levels
Automatic classification: using a file’s DAC

Dependency rules for editing/viewing App

Sensitive

Sensitive

Sensitive

Sensitive

Sensitive

Public

Public

Sensitive

Public

Public

Dependency rules for web browsers

Management of hooks

Integrity protection

Prevent unauthorized access of subject’s and object’s
labels, contents and PRECIP settings

Regulate calls related to file system, auto-start extensibility
points and process

Only allow signed kernel drivers to be loaded
A policy also used in Windows Vista

Evaluation

Dependency rules
Test dependency rules on Microsoft office, Adobe Acrobat
and Notepad
Quite effective in most cases

Effectiveness

Performance

Effectiveness

Performance

Performance of hook management
Baseline (no proxy): 691.015 microseconds
PRECIP: 784.809 microseconds
Overhead: 13.57%

Performance of the kernel driver
Evaluated using WorldBench 5.0

Limitations

Dependency rules are empirical
Research: automatic analysis of an application to generate
rules

Integrity model as a complementary

Model is incomplete
Multiple sensitivity levels
Compartmentalization

Related research

Language-based information flow security
For design of a new program

Instruction-level tracking
Hard to use online without hardware support

New systems such as Abestos, IX, Flume,…
Need to modify OS

Sandboxing techniques
Too coarse-grained

Conclusions

Propose a new confidentiality model for practical and
retrofittable IF protection

Application of the model to Windows XP

Future research
Improve the model
Improve the techniques for enforcing the model

	PRECIP: Towards Practical and Retrofittable Confidential Information Protection
	How to protect your information from spyware?
	The last defense line
	Spyware containment
	Information flow security
	However, this is insufficient for a modern OS
	Requirements for a usable IF model
	PRECIP
	The model
	The model (cont’d)
	Security objective
	Policies achieving the objective
	Application of PRECIP to Windows XP
	Adversary model
	Classification and labeling
	Dependency rules for editing/viewing App
	Dependency rules for web browsers
	Management of hooks
	Integrity protection
	Evaluation
	Effectiveness
	Performance
	Limitations
	Related research
	Conclusions

