
P r i v a t e K e y D o w n l o a d P r o t o c o l s

Copyright © 1999 by Radia Perlman and Charlie Kaufman

1

Password-Based Private-Key
Download Protocols

Radia Perlman

radia.perlman@sun.com

Charlie Kaufman

ckaufman@iris.com

P r i v a t e K e y D o w n l o a d P r o t o c o l s

Copyright © 1999 by Radia Perlman and Charlie Kaufman

2

Goals

• “The network is the computer”

• WS has some minimal amount of (trusted)
software installed

• No user-specific info configured on WS

• User Alice’s private key and other info stored
in central place “Bob” (e.g., the directory)

• “Log into the network” means get Alice’s
private key, so WS can authenticate as Alice

• Download the key knowing only a password

- no off-line pwd guessing by eavesdropper,
Alice-impersonator, or Bob-impersonator

- minimal messages

- minimize computation for Bob, stateless Bob

- allow for “salt”

P r i v a t e K e y D o w n l o a d P r o t o c o l s

Copyright © 1999 by Radia Perlman and Charlie Kaufman

3

Unavoidable Vulnerabilities

• Someone that knows (or can guess) Alice’s
password can impersonate Alice to Bob, get
Alice’s security info from Bob and then
impersonate Alice to the world

• Someone that knows (or can guess) Alice’s
password can impersonate Bob to Alice and
trick her into using the wrong private key,
trusting the wrong CA’s, etc.

• Someone who can read Bob’s database can do
off-line, unaudited, password guessing

• Alice-impersonator can do on-line guessing.
Bob can’t distinguish this from user mistyping

• One side, X, discovers first whether the other
side is legitimate. X-impersonator can get one
“free” on-line pwd guess by breaking off
communication

P r i v a t e K e y D o w n l o a d P r o t o c o l s

Copyright © 1999 by Radia Perlman and Charlie Kaufman

4

Building Blocks

• Diffie-Hellman

• EKE (Bellovin-Merritt)

- encrypt Diffie-Hellman exchange with W
(W=h(pwd))

• SPEKE (Jablon)

- replace base in Diffie-Hellman exchange
with W

• Both EKE and SPEKE are 4-message
protocols designed for mutual authentication
and agreeing on a strong session key S

P r i v a t e K e y D o w n l o a d P r o t o c o l s

Copyright © 1999 by Radia Perlman and Charlie Kaufman

5

EKE

Alice Bob
W=h(pwd), g, p

{gA mod p}W
pick A

pick B
decrypt {gA mod p}W
calculate K=gAB mod p
choose challenge C1

{gB mod p}W, {C1}K

{C1,C2}K

{C2}K

choose challenge C2

P r i v a t e K e y D o w n l o a d P r o t o c o l s

Copyright © 1999 by Radia Perlman and Charlie Kaufman

6

SPEKE

Alice Bob
W, g, p

WA mod p
pick A

pick B
calculate K=WAB mod p
choose challenge C1

WB mod p, {C1}K

{C1,C2}K

{C2}K

choose challenge C2

P r i v a t e K e y D o w n l o a d P r o t o c o l s

Copyright © 1999 by Radia Perlman and Charlie Kaufman

7

Downloading Private Key

• Call private key encrypted with password “Y”

• Bob could send {Y}K in 4th message

• No salt: Reading Bob’s database, can check W
for many users against one database of guessed
passwords

• Could add salt by adding two messages to the
front

• Simplifications for our use:

- no need to authenticate Bob

- get rid of C1 (just prove knowledge of K)

Alice Bob
“Alice”

saltAlice

P r i v a t e K e y D o w n l o a d P r o t o c o l s

Copyright © 1999 by Radia Perlman and Charlie Kaufman

8

Basic EKE-Based 4-msg

Alice Bob
W, g, p

{gA mod p}W
pick A

pick B
decrypt {gA mod p}W
calculate K=gAB mod p

{gB mod p}W

h(K)

{Y}K

Alice: W, Y

verify h(K)

calculate K=gAB mod p

P r i v a t e K e y D o w n l o a d P r o t o c o l s

Copyright © 1999 by Radia Perlman and Charlie Kaufman

9

Basic SPEKE-based 4-msg

Alice Bob
W, g, p

WA mod p
pick A

pick B
calculate K=WAB mod p

WB mod p

h(K)

{Y}K

Alice: W, Y

verify h(K)

calculate K=WAB mod p

P r i v a t e K e y D o w n l o a d P r o t o c o l s

Copyright © 1999 by Radia Perlman and Charlie Kaufman

10

Notes

• Ted, impersonating Bob, gets one unaudited
guess by breaking off communication after
msg 3

• An eavesdropper gains no information

• Someone impersonating Alice gets one “on-
line” guess, i.e., can’t verify guess without
letting Bob know she guessed wrong

• Salt would be nice, so computation to produce
W must be done per user, per password

• A “cookie” would be nice, so Bob does no
significant computation if you can’t receive
from the IP address you sent from

• Both salt and cookie can be added easily to
produce a 6-message protocol

P r i v a t e K e y D o w n l o a d P r o t o c o l s

Copyright © 1999 by Radia Perlman and Charlie Kaufman

11

SPEKE-based, 6-msgs

Alice
W=f(pwd, salt), g, p

cookie, WA mod p
pick A

pick B
calculate K=WAB mod p

WB mod p

h(K)

{Y}K

Alice:

verify h(K)

calculate K=WAB mod p

“Alice”

saltAlice, cookie

saltAlice, W, Y
Bob

choose cookie

P r i v a t e K e y D o w n l o a d P r o t o c o l s

Copyright © 1999 by Radia Perlman and Charlie Kaufman

12

Notes

• No security lost if Bob uses same B every time
for a particular user (but different B per user)

• If we’re picking B per user in advance, we can
precompute {gB mod p}W for EKE and WB

mod p for SPEKE

• EKE: if Alice sends gA mod p unencrypted
rather than {gA mod p}W, then Bob can store
B, {gB mod p}W and does not need to store W

• SPEKE: If Bob stores B, WB mod p, then he
doesn’t need to store W

• This accomplishes the same thing as salt!

• And it saves computation for Bob!

• And it avoids the first two messages!

P r i v a t e K e y D o w n l o a d P r o t o c o l s

Copyright © 1999 by Radia Perlman and Charlie Kaufman

13

Making Bob Stateless

• Bob doesn’t have to remember what B he used,
since it’s always the same one for Alice

• Include Alice’s name in each msg from Alice

• Make cookie a function of Alice’s IP address
and a secret known only to Bob

- cookie=h(IP address, Bob’s secret)

• Bob can change his secret often (like every 5
minutes) and always accept one of 2 values

P r i v a t e K e y D o w n l o a d P r o t o c o l s

Copyright © 1999 by Radia Perlman and Charlie Kaufman

14

Stateless, precompute,
EKE-based, 4-msgs

Alice Bob“Alice”

verify cookie

{gB mod p}W, cookie

“Alice”, cookie, gA mod p, h(K)

{Y}K

“Alice”, B, {g B mod p}W, Y

calculate cookie=h(IP add, Bob’s secret)

choose A
calculate K=gAB mod p

calculate K=gAB mod p
verify h(K)

P r i v a t e K e y D o w n l o a d P r o t o c o l s

Copyright © 1999 by Radia Perlman and Charlie Kaufman

15

Stateless, precompute,
SPEKE-based, 4-msgs

Alice Bob“Alice”

verify cookie

WB mod p, cookie

“Alice”, cookie, WA mod p, h(K)

{Y}K

“Alice”, B, WB mod p, Y

calculate cookie=h(IP add, secret)

choose A
calculate K=WAB mod p

calculate K=WAB mod p
verify h(K)

P r i v a t e K e y D o w n l o a d P r o t o c o l s

Copyright © 1999 by Radia Perlman and Charlie Kaufman

16

Two Messages, EKE-based

• Bob stores, for Alice:

- “Alice”

- W=h(pwd)

- Y=private key encrypted with password

- B ;to save computation

- {gB mod p}W ;to save computation

Alice Bob

“Alice”, {g A mod p}W

{gB mod p}W, {Y}K

P r i v a t e K e y D o w n l o a d P r o t o c o l s

Copyright © 1999 by Radia Perlman and Charlie Kaufman

17

Notes

• No salt. Bob needs to store W

- If Alice sent gA mod p, someone
impersonating Alice could do off-line
password guessing

- So Bob needs W do decrypt {gA mod p}W

- Conceivably the user’s name can act as salt
W=h(name,pwd), but problematic if user has
aliases, or name changes

• No cookie. Every message requires Bob to
compute K

• Someone impersonating Bob gets no info
about W

• Someone impersonating Alice gets one
unaudited on-line password guess

P r i v a t e K e y D o w n l o a d P r o t o c o l s

Copyright © 1999 by Radia Perlman and Charlie Kaufman

18

Two Msgs, SPEKE-based

• Bob stores, for Alice:

- “Alice”

- B

- WB mod p

- Y=private key encrypted with password

Alice Bob

“Alice”, WA mod p

WB mod p, {Y}K

P r i v a t e K e y D o w n l o a d P r o t o c o l s

Copyright © 1999 by Radia Perlman and Charlie Kaufman

19

Notes

• Better than 2-msg EKE-based because it gets
the advantage of salt!

• Same other disadvantages (relative to 4-msg
protocols) as 2-msg EKE-based

- Alice gets a single unaudited on-line guess

- no cookie

P r i v a t e K e y D o w n l o a d P r o t o c o l s

Copyright © 1999 by Radia Perlman and Charlie Kaufman

20

Retrieving User’s Security
Context

• WS needs other info, like keys of CAs she
trusts, her certificate, etc.

• Store it signed (and encrypted if necessary)
with Alice’s key

• If info changes, include a timestamp or version
number and display to the user (to prevent
tricking WS into using old security context
info)

• Or Alice can sign certificate trusting some
administrator’s signature on her security
context. Store info signed by admin’s key and
encrypted (if necessary) with Alice’s key

P r i v a t e K e y D o w n l o a d P r o t o c o l s

Copyright © 1999 by Radia Perlman and Charlie Kaufman

21

Summary

• We present 4-msg protocols for downloading
private key and user’s security context:

- no off-line guessing

- minimize server computation

- denial of service protection of cookie

- equivalent advantage of salt

- stateless server (Bob can act in request-
response mode)

- Bob gets one unaudited on-line guess

• We present 2-msg protocols:

- lose cookie protection

- Alice gets one unaudited on-line guess

- in EKE-based, lose salt. SPEKE-based we
keep salt advantage

