
Performance Analysis of TLS Web Servers

Cristian Coarfa, Peter Druschel and Dan S. Wallach
Department of Computer Science

Rice University

Abstract

TLS is the protocol of choice for securing today’s e-
commerce and online transactions, but adding TLS to a
web server imposes a significant overhead relative to an
insecure web server on the same platform. We perform
a comprehensive study of the performance costs of TLS.
Our methodology is to profile TLS web servers with trace-
driven workloads, replacing individual components inside
TLS with no-ops, and measuring the observed increase in
server throughput. We estimate the relative costs of each
component within TLS, predicting the areas for which fu-
ture optimizations would be worthwhile. Our results we
show that RSA accelerators are effective for e-commerce
site workloads , because they experience low TLS ses-
sion reuse. Accelerators appear to be less effective for
sites where all the requests are handled by a TLS server,
thus having higher session reuse rate; investing in a faster
CPU might prove more effective.

1. Introduction

Secure communication is an intrinsic demand of to-
day’s world of online transactions. The most widely
used method is SSL/TLS [10]. Original designed at
Netscape for its web browsers and servers, Netscape’s Se-
cure Socket Layer (SSL) has been standardized by the
IETF and is now called Transport Layer Security (TLS).
TLS runs at the transport layer above existing protocols
like TCP. TLS is used in a variety of application, including
secure web servers, secure shell and secure mail servers.
As TLS is most commonly used for secure web applica-
tions, such as online banking and e-commerce, our goal is
to provide a comprehensive performance analysis of TLS
web servers. While previous attempts to understand TLS
performance have focused on specific processing stages,
such as the RSA operations or the session cache, we ana-
lyze TLS web servers as systems, measuring page-serving
throughput under trace-driven workloads.

TLS provides a flexible architecture that supports a
number of different public key ciphers, bulk encryption

ciphers, and message integrity functions. In its most com-
mon web usage, TLS uses 1024-bit RSA encryption to
transmit a secret that serves to initialize a 128-bit RC4
stream cipher and uses MD5 as a keyed hash function.
(Details of these algorithms can be found in Schneier [25]
and most other introductory cryptography texts.)

TLS web servers incur a significant performance
penalty relative to a regular web server running on the
same platform (as little as a factor of 3.4 to as much as
a factor of 9, in our own experiments). As a result of
this cost, a number of hardware accelerators are offered
by vendors such as nCipher, Broadcom, Alteon and Com-
paq’s Atalla division. These accelerators take the modular
exponentiation operations of RSA and perform them in
custom hardware, thus freeing the CPU for other tasks.

Researchers have also studied algorithms and systems
to accelerate RSA operations. Boneh and Shacham [8]
have designed a software system to perform RSA opera-
tions together in batches, at a lower cost than doing the
operations individually. Dean et al. [9] have designed a
network service, offloading the RSA computations from
web servers to dedicated servers with RSA hardware.

A more global approach was to distribute the TLS pro-
cessing stages among multiple machines. Mraz [16] has
designed an architecture for high volume TLS Internet
servers that offloads the RSA processing and bulk cipher-
ing to dedicated servers.

The TLS designers knew that RSA was expensive and
that web browsers tend to reconnect many times to the
same web server. To address this, they added a cache, al-
lowing subsequent connections to resume an earlier TLS
session and thus reuse the result of an earlier RSA com-
putation. Research has suggested that, indeed, session
caching helps web server performance [11].

Likewise, there has been considerable prior work in per-
formance analysis and benchmarking of conventional web
servers [15, 12, 17, 5, 18], performance optimizations of
web servers, performance oriented web server design, and
operating system support for web servers [13, 22, 6, 7, 21].

Apostolopuolos et al. [3] studied the cost of TLS con-
nection setup, RC4 and MD5, and proposed TLS connec-
tion setup protocol changes.

Our methodology is to replace each individual opera-
tion within TLS with a “no-op” and measure the incre-
mental improvement in server throughput. This method-
ology measures the upper-bound that may be achieved by
optimizing each operation within TLS, whether through
hardware or software acceleration techniques. We can
measure the upper-bound on a wide variety of possible
optimizations, including radical changes like reducing the
number of TLS protocol messages. Creating such an op-
timized protocol and proving it to be secure would be a
significant effort, whereas our simulations let us rapidly
measure an upper bound on the achievable performance
benefit. If the benefit were minimal, we would then see
no need for designing such a protocol.

Section 2 presents an overview of the TLS protocol.
Section 3 explains how we performed our experiments and
what we measured. Section 4 analyzes our measurements
in detail. Our paper wraps up with future work and con-
clusions.

2. TLS protocol overview

The TLS protocol, which encompasses everything from
authentication and key management to encryption and in-
tegrity checking, fundamentally has two phases of opera-
tion: connection setup and steady-state communication.

Connection setup in quite complex. Readers looking
for complete details are encouraged to read the RFC [10].
The setup protocol must, among other things, be strong
against active attackers trying to corrupt the initial negoti-
ation where the two sides agree on key material. Likewise,
it must prevent “replay attacks” where an adversary who
recorded a previous communication (perhaps one indicat-
ing some money is to be transferred) could play it back
without the server’s realizing the transaction is no longer
fresh (and thus, allowing the attacker to empty out the vic-
tim’s bank account).

TLS connection setup has the following steps (quoting
from the RFC):

� Exchange hello messages to agree on algorithms,
exchange random values, and check for session re-
sumption.

� Exchange certificates and cryptographic information
to allow the client and server to authenticate them-
selves. [In our experiments, we do not use client cer-
tificates.]

� Exchange the necessary cryptographic parameters to
allow the client and server to agree on a “premaster
secret”.

� Generate a “master secret” from the premaster secret
chosen by the client and exchanged random values.

� Allow the client and server to verify that their peer
has calculated the same security parameters and that
the handshake occurred without tampering by an at-
tacker.

There are several important points here. First, the TLS
protocol designers were aware that performing the full
setup protocol is quite expensive, requiring two network
round-trips (four messages) as well as expensive cryp-
tographic operations, such as the 1024-bit modular ex-
ponentiation required of RSA. For this reason, the pre-
master secret can be stored by both sides in a session
cache. When a client subsequently reconnects, it need
only present a session identifier. Then, the premaster se-
cret (known to client and server but not to any eaves-
dropper) can be used to create a new master secret, a
connection-specific value from which the connection’s en-
cryption keys, message authentication keys, and initializa-
tion vectors are derived.

After the setup protocol is completed, the data exchange
phase begins. Prior to transmission, the data is broken into
packets. For each packet, the packet is optionally com-
pressed, a keyed message authentication code is computed
and added to the message with its sequence number. Fi-
nally the packet is encrypted and transmitted. TLS also
allows for a number of control messages to be transmit-
ted.

Analyzing the above information, we see a number of
operations that may form potential performance bottle-
necks. Performance can be affected by the CPU costs of
the RSA operations and the effectiveness of the session
cache. It can also be affected by the network latency of
transmitting the extra connection setup messages, as well
as the CPU latency of marshaling, encrypting, decrypting,
unmarshaling, and verifying packets. This paper aims to
quantify these costs.

3. Methodology

We chose not to perform “micro-benchmarks” such as
measuring the necessary CPU time to perform specific op-
erations. In a system as complex as a web server, I/O and
computation are happening simultaneously and the sys-
tem’s bottleneck is never intuitively obvious. Instead, we
chose to measure the throughput of the web server un-
der various conditions. To measure the costs of individ-
ual operations, we replaced them with no-ops. Replac-
ing cryptographically significant operations with no-ops
is obviously insecure, but it allows us to measure an upper
bound on the performance that would result from optimiz-
ing the system. In effect, we simulate ideal hardware ac-
celerators. Based on these numbers, we can estimate the
relative cost of each operation using Amdahl’s Law (see
Section 4).

3.1. Platform

Our experiments used two different hardware platforms
for the TLS web servers: a generic 500MHz Pentium III
clone and a Compaq DL360 server with a single 933MHz
Pentium III. Both machines had 1GB of RAM and a gi-
gabit Ethernet interface. Some experiments also included
a Compaq AXL300 [4] cryptography acceleration board.
Three generic 800MHz Athlon PCs with gigabit Ethernet
cards served as TLS web clients, and all experiments were
performed using a private gigabit Ethernet switch.

All computers ran RedHat Linux 6.2. The stan-
dard web servers used were Apache 1.3.14 [2], and
the TLS web server was Apache with mod SSL 2.7.1-
1.3.14 [14]. We have chosen the Apache mod SSL so-
lution due to its wide availability and use, as shown by
a March 2001 survey [26]. The TLS implementation
used in our experiments by mod SSL is the open source
OpenSSL 0.9.5a [19]. The HTTPS traffic load was gen-
erated using the methodology of Banga et al. [5], with
additional support for OpenSSL. As we are interested pri-
marily in studying the CPU performance bottlenecks aris-
ing from the use of cryptographic protocols, we needed
to guarantee that other potential bottlenecks, such as disk
or network throughput, did not cloud our throughput mea-
surements. To address this, we used significantly more
RAM in each computer than it’s working set, and thus
minimizing disk I/O when the disk caches are warm. Like-
wise, to avoid network contention, we used gigabit Ether-
net, which provide more bandwidth than the computers in
our study can reasonably generate.

3.2. Experiments performed

We performed four sets of experiments, using two dif-
ferent workload traces against two different machine con-
figurations.

One workload simulated the secure servers at Ama-
zon.com. Normally, an Amazon customer selects goods
to be purchased via a normal web server, and only inter-
acts with a secure web server when submitting credit card
information and verifying purchase details. We purchased
two books at Amazon, one as a new user and one as a
returning user. By replicating the corresponding HTTPS
requests in the proportions that they are experienced by
Amazon, we can simulate the load that a genuine Amazon
secure server might experience. Our other workload was a
100,000-hit trace taken from our departmental web server,
using a 530MB set of files. While our departmental web
server supports only normal, unencrypted web service, we
measured the throughput for running this trace under TLS
to determine the costs that would be incurred if our normal
web server was replaced with a TLS web server.

These two workloads represent endpoints of the work-
load spectrum TLS-secured web severs might experience.

The Amazon workload has a small average file size, 7 KB,
while the CS trace has a large average file size, 46KB.
Likewise, the working size of the CS trace is 530MB
while the Amazon trace’s working size is only 279KB.
Even with the data stored in RAM buffers, these two
configurations provide quite different stresses upon the
system. For example, the Amazon trace will likely be
stored in the CPU’s cache whereas the CS trace will gen-
erate more memory traffic. The Amazon trace thus places
similar pressure on the memory system as we might ex-
pect from dynamically generated HTML (minus the costs
of actually fetching the data from an external database
server). Likewise, the CS trace may put more stress on
the bulk ciphers, with its larger files, whereas the Amazon
trace would put more pressure on the connection setup
costs, as these connections will be, on average, much
shorter lived.

In addition to replacing cryptographic operations, such
as RSA, RC4, MD5/SHA-1, and secure pseudo-random
number generation with no-ops1, we also investigated
replacing the session cache with an idealized “perfect
cache” that returns the same session every time (thus
avoiding contention costs in the shared memory cache).
Simplifying further, we created a “skeleton TLS” proto-
col where all TLS operations have been completely re-
moved but the messages of the same length as the TLS
handshake are transmitted. This simulates an “infinitely
fast” CPU that still needs to perform all the same network
operations. Finally, we hypothesize a faster TLS session
resumption protocol that removes two messages (one net-
work round-trip), and measure its performance.

Through each of these changes, we can progressively
simulate the effects of “perfect” optimizations, identifying
an upper bound on the benefits available from optimizing
each component of the TLS system.

3.2.1. Amazon-like workload experiments

We were interested in closely simulating the load that
might be experienced by a popular e-commerce site, such
as Amazon. While our experiments do not include the
database back-end processing that occurs in e-commerce
sites, we can still accurately model the front-end web
server load.

To capture an appropriate trace, we configured a Squid
proxy server and logged the data as we purchased two
books from Amazon.com, one as a new customer and
one as a returning customer. The web traffic to browse
Amazon’s inventory and select the books for purchase oc-
curs over a regular web server, and only the final payment

1While TLS also supports operating modes which use no encryption
(e.g., TLS_NULL_WITH_NULL_NULL), our no-op replacements still
use the original data structures, even if their values are now all zeros.
This results in a more accurate simulation of “perfect” acceleration.

and shipping portion occurs with a secure web server. Of
course, the traces we recorded do not contain any plain-
text from the secure web traffic, but they do indicate the
number of requests made and the size of the objects trans-
mitted by Amazon to the browser. This is sufficient in-
formation to synthesize a workload comparable to what
Amazon’s secure web servers might experience. The only
value we could not directly measure is the ratio of new
to returning Amazon customers. Luckily, Amazon pro-
vided this ratio (78% returning customers to 22% new
customers) in a recent quarterly report [1]. For our exper-
iments, we assume that returning customers do not retain
TLS session state, and will thus complete the full TLS
handshake every time they wish to make a purchase. In
this scenario, based on our traces, the server must per-
form a full TLS handshake approximately once out of
every twelve web requests. This one-full-handshake-per-
purchase assumption may cause us to overstate the relative
costs of performing full TLS handshakes, but it does rep-
resent a “worst case” that could well occur in e-commerce
workloads.

We created files on disk to match the sizes collected in
our trace and request those files in the order they appear in
the trace. When replaying the traces, each client process
uses at most four simultaneous web connections, just as
common web browsers do. We also group together the hits
corresponding to each complete web page (HTML files
and inline images) and do not begin issuing requests for
the subsequent page until the current page is completely
loaded. All three client machine run 24 of these processes,
each, causing the server to experience a load comparable
to 72 web clients making simultaneous connections.

3.2.2. CS workload experiments

We also wished to measure the performance impact of
replacing our departmental web server with a TLS web
server. To do this, we needed to design a system to read
a trace taken from the original server and adapt it to our
trace-driven TLS web client. Because we are interested
in measuring maximum server throughput, we discarded
the timestamps in the server and instead replayed requests
from the trace as fast as possible. However, we needed to
determine which requests in the original trace would have
required a full TLS handshake and which requests would
have reused the sessions established by those TLS hand-
shakes. To do this, we assumed that all requests in the
trace that originated at the same IP address corresponded
to one web browser. The first request from a given IP
address must perform a full TLS handshake. Subsequent
requests from that address could reuse the previously ac-
quired TLS session. This assumption is clearly false for
large proxy servers that aggregate traffic for many users.
For example, all requests from America Online users ap-

pear to originate from a small number of proxies. To avoid
an incorrect estimation of the session reuse, we hand-
deleted all known proxy servers from our traces. The
remaining requests could then be assumed to correspond
to individual users’ web browsers. The final trace con-
tained approximately 11,000 sessions spread over 100,000
requests.

In our trace playback system, three client machines ran
20 processes each, generating 60 simultaneous connects,
proving sufficient to saturate the server. The complexity
of the playback system lies in its attempt to preserve the
original ordering of the web requests seen in the original
trace. Apache’s logging mechanism actually records the
order in which requests complete, not the order in which
they were received. As such, we have insufficient infor-
mation to faithfully replay the original trace in its origi-
nal order. Instead, we derive a partial ordering from the
trace. All requests from a given IP address are totally or-
dered, but requests from unrelated IP addresses have no
ordering. This allows the system to dispatch requests in
a variety of different orders, but preserves the behavior of
individual traces.

As a second constraint, we wished to enforce an upper
bound on how far the final requests observed by the web
server may differ from the order of requests in the origi-
nal trace. If this bound were too small, it would artificially
limit the concurrency that the trace playback system could
exploit. If the bound were too large, there would be less
assurance that the request ordering observed by the exper-
imental server accurately reflected the original behavior
captured in the trace. In practice, we needed to set this
boundary at approximately 10% of the length of the origi-
nal trace. Tighter boundaries created situations where the
server was no longer saturated, and the clients could begin
no new requests until some older large request, perhaps for
a very large file, could complete.

While this technique does not model the four simulta-
neous connections performed by modern web browsers,
it does saturate the server sufficiently that we believe the
server throughput numbers would not change appreciably.

4. Analysis of experimental results

Figures 1 and 2 show the main results of our exper-
iments with the Amazon trace and the CS trace, respec-
tively. The achieved throughput is shown on the y axis.
For each system configuration labeled along the x-axis,
we show two bars, corresponding to the result obtained
with the 500MHz system and the 933MHz system, respec-
tively.

Three clusters of bar graphs are shown along the x-axis.
The left cluster shows three configurations of a complete,
functional web server: the Apache HTTP web server
(Apache), the Apache TLS web server (Apache+TLS),

Label Description of server configuration

Apache Apache server
Apache+TLS Apache server with TLS

Apache+TLS AXL300 Apache server with TLS and AXL300
RSA RSA protected key exchange
PKX plain key exchange

NULL no bulk cipher (plaintext)
RC4 RC4 bulk cipher

noMAC no MAC integrity check
MD5 MD5 MAC integrity check

no cache no session cache
shmcache shared-memory based session cache

perfect cache idealized session cache (always hits)
no randomness no pseudo-random number generation (also: NULL, noMAC)

plain no bulk data marshaling (plaintext written directly to the network)
fast resume simplified TLS session resume (eliminates one round-trip)

Skeleton TLS all messages of correct size, but zero data

305

1118

937

622615585
490474467

160166

350

63
147

1370

525

1876

1480

976967
901

783750735

280285

600

112

261

2200

0

500

1000

1500

2000

2500

Apa
ch

e

Apa
ch

e+
TLS

Apa
ch

e+
TLS

 A
XL3

00

RSA, R
C4,

 M
D5,

 n
o

ca
ch

e

PKX, R
C4,

 M
D5,

 sh
m

ca
ch

e

RSA, R
C4,

 n
oM

AC, s
hm

ca
ch

e

RSA, N
ULL

, M
D5,

 sh
m

ca
ch

e

PKX, N
ULL

, n
oM

AC, n
o

ca
ch

e

PKX, N
ULL

, n
oM

AC, s
hm

 ca
ch

e

PKX, N
ULL

, n
oM

AC, p
er

fe
ct

ca
ch

e

PKX,
no

 ra
nd

om
ne

ss
, p

er
fe

ct
ca

ch
e

PKX,
no

 ra
nd

om
ne

ss
, p

er
fe

ct
ca

ch
e,

 p
lai

n

PKX,
no

 ra
nd

om
ne

ss
, p

er
fe

ct
ca

ch
e,

 p
lai

n,
 fa

st
re

su
m

e

Ske
let

on
 T

LS

Ske
let

on
 T

LS
, f

as
t r

es
um

e

PIII-500Mhz

PIII-900Mhz

Figure 1. Throughput for Amazon trace and different server configurations, on 500MHz and 933MHz servers.

Label Description of server configuration

Apache Apache server
Apache+TLS Apache server with TLS

Apache+TLS AXL300 Apache server with TLS and AXL300
RSA RSA protected key exchange
PKX plain key exchange

NULL no bulk cipher (plaintext)
RC4 RC4 bulk cipher

noMAC no MAC integrity check
MD5 MD5 MAC integrity check

no cache no session cache
shmcache shared-memory based session cache

perfect cache idealized session cache (always hits)
no randomness no pseudo-random number generation (also: NULL, noMAC)

plain no bulk data marshaling (plaintext written directly to the network)
fast resume simplified TLS session resume (eliminates one round-trip)

Skeleton TLS all messages of correct size, but zero data

387

544

178

610

149

48

194 172 175

285 301 309
334

380

509

579

755

566

494
464456447

301295
326

95

317

259

885

824

0

100

200

300

400

500

600

700

800

900

1000

Apa
ch

e

Apa
ch

e+
TLS

�

Apa
ch

e+
TLS

�A
XL3

00

RSA,�R
C4,

�M
D5,�

no
�ca

ch
e

PKX,�R
C4,

�M
D5,

�sh
m

ca
ch

e

RSA,�R
C4,

�no
MAC,�s

hm
ca

ch
e

RSA,�N
ULL

,�M
D5,�

sh
mca

ch
e

PKX,�N
ULL

,�n
oM

AC,�n
o�c

ac
he

PKX,�N
ULL

,�n
oM

AC,�s
hm

�ca
ch

e

PKX,�N
ULL

,�n
oM

AC,�p
er

fe
ct�

ca
ch

e

PKX,��n
o�r

an
do

mne
ss

,�p
er

fe
ct�

ca
ch

e

PKX,��n
o�r

an
do

mne
ss

,�p
er

fe
ct�

ca
ch

e,�
pla

in

PKX,��n
o�r

an
do

mne
ss

,�p
er

fe
ct�

ca
ch

e,�
pla

in,
�fa

st�
re

su
me

Ske
let

on
�T

LS

Ske
let

on
�T

LS
,�f

as
t�r

es
um

e

PIII-500�Mhz

PIII-900�Mhz

Figure 2. Throughput for CS trace and different server configurations, on 500MHz and 933MHz servers.

and the Apache TLS server using an AXL300 RSA ac-
celerator (Apache+TLS AXL300).

The center cluster of bar graphs shows results obtained
with various experimental TLS configurations, where ba-
sic primitives within the TLS protocol were replaced with
no-ops. Each configuration is labeled to indicate the key
exchange method, bulk encryption algorithm, message au-
thentication code, and caching strategy used. Rather than
measuring all possible variations, we measured the config-
uration where all attributes were replaced by their no-op
alternatives, followed by configurations where each oper-
ation was enabled individually. We also measured a few
additional configurations discussed below. For instance,
we measured “PKX, RC4, MD5, shm cache,” a configu-
ration where all RSA operations have been replaced with
no-ops, but other operations ran normally, to expose the
performance limits of RSA acceleration techniques.

The right cluster of bar graphs shows measurements of
TLS configurations where non crypto-related TLS func-
tions were removed and the session resume protocols was
simplified. These measurements allow us to understand
the costs of the remaining operations in TLS session setup
and data exchange.

Additionally, we wish to estimate the relative costs of
each operation performed by the TLS web server. To do
this, we take advantage of Amdahl’s Law:

Speedup � 1�
1 � fractionenhanced ��� fractionenhanced

speedupenhanced

For each TLS processing component, we have simu-
lated infinite or almost infinite speedup, either by remov-
ing the component (e.g., for the key exchange method,
stream cipher and message authentication code), or by re-
placing the component with a much cheaper alternative
(e.g., the “perfect” cache and the predicted randomness).
Thus, Amdahl’s Law can be simplified as follows:

Speedup � 1
1 � fractionenhanced

Since we measured speedups experimentally, we can es-
timate the cost of individual operations by solving this
equation for fractionenhanced. The results of these calcu-
lations are shown in Figure 3.

In order to directly determine the relative costs of RSA,
RC4, and MD5, we replaced each stage individually with
a no-op and measured the corresponding server through-
put. Other TLS components, such as the TLS session
cache, the randomness processing and TLS packet mar-
shaling cannot be replaced without also effecting other
TLS components. For these cases, we were forced to run
some experiments with multiple TLS stages simultane-
ously disabled. We still estimate the relative cost of each
component using Amdahl’s Law.

4.1. Impact of TLS on server performance

The Apache server, without TLS enabled, achieves be-
tween 610 hits/sec and 885 hits/sec with the CS trace, and
between 1370 hits/sec and 2200 hits/sec with the Amazon
trace. The difference in throughput for the two workloads
is due to the increased average file size: 46KB for the
CS trace and only 7KB for the Amazon trace as well as
the increased working set size. Increasing the CPU speed
from 500MHz to 933MHz leads to a substantial increase
in throughput in each case.

Apache TLS without the AXL300 served between 149
hits/sec and 259 hits/sec for the CS trace, and between
147 hits/sec and 261 hits/sec for the Amazon trace. This
confirms that TLS incurs a substantial cost and reduces
the throughput by 70 to 89% relative to the insecure
Apache. Apache TLS with the AXL300 served between
178 hits/sec and 317 hits/sec for the CS trace, and be-
tween 300 hits/sec and 525 hits/sec for the Amazon trace.
This shows that, with the use of the AXL300 board, the
throughput loss is now only 64 to 77% relative to the in-
secure Apache.

4.2. Impact of increased CPU speed

Consider the impact of the available server CPU cycles
on the relative cost of TLS. In the configurations with a
complete, functional TLS implementation, the 933MHz
Pentium III achieves a sizeable increase in throughput
(45-60%) relative to the 500MHz Pentium III. We con-
clude that the performance of the various TLS processing
steps scales well with increased availability of CPU cy-
cles. In the long run, this implies that the performance
loss associated with the use of TLS should diminish as
CPUs get faster. Of course, faster CPUs can potentially be
used to attack cryptosystems more effectively. As a result,
stronger, and potentially more CPU intensive, cryptogra-
phy may become necessary in the future as well.

4.3. Effectiveness of accelerator hardware

The use of the AXL300 accelerator yields a noticeable
throughput improvement with the CS trace (19 to 22%)
relative to the normal TLS Apache, and a substantial gain
with the Amazon trace (101 to 107%) relative to the nor-
mal TLS Apache. The reason that the Amazon workload
benefits more from the accelerator is that the average ses-
sion is shorter. As a result, more requests in the Ama-
zon trace require the full TLS handshake with its corre-
sponding RSA operations. The CS trace, with its longer
sessions, benefits from the session cache, limiting the ef-
fectiveness of accelerated RSA operations. Another con-
tributing factor in the performance difference is the aver-
age file size. In the CS trace, with files averaging 46KB,
the server spends proportionally more time transmitting

RSA
58%

non-TLS
10%

RC4
8%

TLS session
cache

1%

random numbers
5%

TLS packet
marshaling

1%

other TLS
8%

MD5
9%

RSA
23%

RC4
15%

non-TLS
29%

other TLS
10%

MD5
13%

random numbers
4% TLS session

cache
1%

TLS packet
marshaling

5%

a) Amazon trace for PIII 500MHz b) CS trace for PIII 500MHz

RSA
57%

non-TLS
12%

TLS session
cache

1%

random numbers
4%

TLS packet
marshaling

2%

RC4
7%

MD5
8%

other TLS
9%

RSA
20%

RC4
14%

non-TLS
32%

other TLS
11%

random numbers
3%

TLS session
cache

1%

MD5
12%

TLS packet
marshaling

7%

c) Amazon trace for PIII 933MHz d) CS trace for PIII 933MHz

Figure 3. Relative costs of TLS processing stages for Amazon trace, CS trace, and for 500MHz and
933MHz server configurations. The sections labeled “Other TLS” refer to the remaining portions of the
TLS implementation we did not specifically single out for no-op tests, and “Non-TLS” refers to other
performance costs, such as the Apache server and the Linux kernel.

CS trace Amazon trace
Experiment 500 MHz 900 MHz 500 MHz 900 MHz
Apache + TLS 149 (24%) 261 (29%) 147 (11%) 261 (12%)
Regular setup, plain communication 219 (36%) 353 (40%) 162 (12%) 282 (13%)
Minimal setup, regular communication 384 (63%) 559 (63%) 844 (65%) 1136 (52%)

Figure 4. Throughput in hits/sec for Apache+TLS, regular setup with plain communication, and mini-
mal setup with regular communication, for the CS trace and the Amazon trace, and both 500 MHz and
933 MHz servers. Percentages show the throughput relative to non-TLS Apache on the same platform.

files versus performing connection setup when compared
to the Amazon trace, with an average file size of 7KB.

4.4. Comparative impact of accelerator hardware
versus faster CPU

The next question we wish to pose is whether it is more
advantageous to invest in acceleration hardware, or in a
faster CPU. The answer depends strongly on the work-
load. With the CS trace, using a faster CPU is more effec-
tive than using an accelerator board. However, with the
Amazon trace, the opposite is true. We conclude that sites
that only use TLS servers for a small part of their user in-
teraction, as Amazon only uses TLS for its final purchase
validation and payment, will benefit from hardware RSA
acceleration. Whereas, web sites that do all their user in-
teraction through TLS, or otherwise have a high session
reuse rate, may be better advised to invest in faster gen-
eral purpose CPUs.

4.5. Impact of session caching

Our results confirm the findings of prior work [11] that
session caching substantially improves server throughput.
The main reason for this gain is a reduction in the number
of RSA operations as a result of session reuse. However,
even in configurations where the RSA operations are as-
sumed to be infinitely fast, session caching is still benefi-
cial, avoiding the extra network traffic and other compu-
tations required by the full TLS handshake.

4.6. Relative cost and impact of crypto operations

Figures 1, 2, and 3 quantify the costs of various TLS
processing steps. The RSA operations have the dominant
cost, as expected. Among the remaining operations, the
“other TLS” operations stand out, as do the MD5 MAC
computation and the RC4 stream cipher in the case of the
CS trace workload. However, these costs are sufficiently
balanced that there is no obvious single candidate for op-
timization. We note that, even when MD5 is the message
integrity function, both MD5 and SHA-1 are used in con-
junction in several portions of the TLS protocol, such as
the “pseudo-random function,” used when generating key

material. In our experiments, “no MAC” replaces all MD5
and SHA-1 computations with no-ops, throughout the en-
tire TLS protocol, with the exception of the SHA-1 oper-
ation used in the pseudo-random number generator. The
cost of the pseudo-random number generator is consid-
ered below.

4.7. Miscellaneous TLS operations

Starting with a server in which we replaced RSA, RC4,
pseudo-randomness computations (which use the SHA-1
hash function), and the session cache with no-ops (labeled
“PKX, no randomness, perfect cache” on the bar charts),
we still observed a significant performance deficit rela-
tive to the original Apache performance. Removing TLS
packet marshaling costs and doing raw network writes
of the plaintext (labeled “PKX, no randomness, perfect
cache, plain”) resulted in only modest gains, so we de-
cided to try something more radical. We created a “Skele-
ton TLS” system that transmitted network messages of
the same length as genuine TLS, but otherwise performs
no TLS processing whatsoever. The difference between
“PKX, NULL, no MAC, no randomness, perfect cache”
and plain text communication and skeleton TLS covers
between 8% and 11% of the total performance cost. Since
we have already replaced the data exchanging TLS op-
erations with plain text, the above difference indicates a
“catch all” of every other connection setup related TLS
cost.

Once the “other TLS” costs have been measured, the
remainder must be from sources outside TLS, including
the Apache web server and the Linux kernel.

4.8. Overall costs of TLS connection setup and
data exchange

To determine the relative cost of connection setup we
have modified the TLS protocol to perform a minimal con-
nection setup and regular encrypted data exchange. This
involves establishing a generic TCP connection between
the client and server, then initializing the data structures
used by TLS with the session keys set to zero. We can
then compare this with the the plain data exchange de-

scribed earlier. The results are presented in figure 4.
Again using Amdahl’s Law, we show the cost of the

TLS connection setup ranges from 53% to 61% of the total
cost for the CS trace and ranges from 77% to 82% of the
total cost for the Amazon trace. Replacing the connection
setup with a minimal initialization of the data structures
yields a throughput improvement of 115 to 157% for the
CS trace and 335 to 471% for the Amazon trace.

Likewise, we show the cost of the TLS data exchange
ranges from 26 to 31% from the total cost for the CS trace
and ranges from 7 to 9% from the total cost for the Ama-
zon trace. Replacing the TLS data exchange with plain
communication yields a throughput improvement of 36 to
46% for the CS trace and of 8 to 10% for the Amazon
trace. We note that, in this experiment, replacing the TLS
data exchange with plain data exchange only eliminates a
portion of the costs associated with RC4 and MD5, which
are also used as part of the connection setup protocol.

These measurements imply that optimizations aimed at
the connection setup phase of TLS will have a more sig-
nificant impact on system performance than optimizations
aimed at the data exchange phase.

4.9. Potential impact of protocol changes

When considering optimizations for the TLS connec-
tion setup phase, we wish to explore potential changes to
the TLS protocol aimed reducing the amount of network
traffic. The do this, we used a straw-man implementation
of a “fast resume” TLS variant that optimizes the session
resume protocol phase in such a way that two messages
and one round-trip network delay are eliminated. The re-
sults indicate that the potential throughput improvement
of such a hypothetical protocol change is minimal (1 to
2%). Therefore, optimizations aimed at reducing the vol-
ume of network traffic will have little effect on TLS server
throughput (although such optimizations could have other
benefits, particularly for bandwidth-limited clients).

4.10. Dynamic content generation

A common question is how to apply performance mea-
surements, such as performed in this paper with static con-
tent generation, to the relatively common case of dynamic
page generation, which often involves running custom
server plug-in code that makes database queries and as-
sembles HTML on the fly. Our experiments focus on TLS
web servers that serve static content, discerning among
the TLS and non-TLS costs. If the TLS web server is gen-
erating dynamic HTML, then the new load will obviously
impact server throughput. In the pie charts of Figure 3,
this additional overhead should be reflected in the non-
TLS sections of the pie charts, which could be increased
appropriately, scaling down the TLS sections of the pie
chart such that their relative costs remain the same.

4.11. Summary of results

We can summarize the result of our experiments as fol-
lows:

� TLS imposes a factor of 3.4 to 9 overhead over an
insecure web server.

� The largest performance cost in the TLS web server
is the public key cryptography (20% to 58%).

� Non-TLS performance costs (including Apache and
the Linux kernel) range from 10 to 32% of the total
cost.

� The costs of marshaling TLS data structures, com-
puting connection keys from the premaster secret and
executing other miscellaneous operations within TLS
consumes between 8% and 11% of the total perfor-
mance cost. Reducing the session resumption proto-
col by two messages and one round-trip delay had a
negligible impact on performance.

� Adding an RSA accelerator, a common commercial
approach to addressing TLS server performance is-
sues, has widely different effects on server through-
put depending on the session reuse rate of the re-
quests seen by the TLS server. For low session reuse
rates, the RSA accelerator can result in a 101-107%
performance improvement (a factor of two improve-
ment in hit rate). For high session reuse rates, how-
ever, the RSA accelerator only resulted in a 19-22%
performance improvement.

� This improvement is bounded at 130-138% (for the
Amazon trace) or 25-30% (for the CS trace), regard-
less of how fast the RSA accelerator can run.

� The TLS session cache is effective; it improved
throughput by a factor of 2.7-3.1 for the CS trace and
2.3-2.4 for the Amazon trace, relative to a server with
no cache.

� The costs of the non-RSA cryptographic opera-
tions, such as RC4, MD5, pseudo-random number
generation, performed by TLS are relatively bal-
anced. Hardware acceleration for any individual op-
eration would yield only modest performance im-
provements.

� TLS appears to be purely CPU bound, as optimiza-
tions intended to reduce network traffic have little ef-
fect on server throughput.

� The CPU costs associated with TLS connection
setup have a more significant impact on TLS server
throughput than the CPU costs associated with TLS
data exchange.

5. Future work

This paper has studied the performance of TLS web ser-
vice from a single server. It has not considered the larger
environment that often occurs in an e-commerce site, such
as load-balancing front end switches, with replicated clus-
ters of web servers and a database back-end. There have
already been some efforts to study these environments.
For example, the Zeus web server performance tuning
guide [27] mentions the importance of sharing TLS ses-
sions across web servers in a cluster. We plan to study
the interaction of different cluster load-balancing strate-
gies (such as used in LARD [20]) with TLS web servers.

This paper also presents data that predicts what might
happen to TLS performance as CPUs become faster in
the coming years. Rather than our no-op approach to per-
formance measurement, a more accurate technique would
be to measure TLS performance using a precise machine
simulator such as SimOS [24] or RSIM [23]. Such simu-
lators would allow us to predict the effects of future archi-
tectural trends on TLS performance. Likewise, many web
servers such as Zeus and Flash [21] are known to radically
outperform Apache. As the available CPU increases and
cryptographic operations are no longer the primary per-
formance bottleneck, these other server architectures may
also prove to be faster at TLS web service than Apache.

6. Conclusions

We have presented a systematic analysis of the perfor-
mance of the Apache web server with the mod SSL exten-
sion for secure TLS delivery of web pages. Our method-
ology was to exercise the web server with a trace-based
workload while selectively replacing TLS operations with
no-ops. By measuring the differences in the resulting
server throughput, our measurements are more accurate
than results that could otherwise be obtained through tra-
ditional CPU profilers or microbenchmarks.

Our measurements show that RSA computations are the
single most expensive operation in TLS, consuming 20-
58% of the time spent in the web server. Other TLS costs
are balanced across other the various cryptographic and
protocol processing steps. Optimizations aimed at im-
proving RSA operation throughput, whether through al-
gorithmic enhancements, cryptographic co-processors, or
simply increasing raw CPU speed, will continue to be
profitable. However, even ideal RSA optimization leaves a
large gulf between TLS server performance and insecure
server performance. No simple optimization is likely to
close that gap, but faster CPUs can be expected to narrow
it over time.

Hardware acceleration is fairly effective in absorbing
the cost of the RSA operations. Our results indicate that
accelerators have a significant impact on the throughput of

dedicated secure servers for e-commerce sites; such sites
minimize the number of requests to secure servers and
therefore experience relatively lower session reuse rates.
Acceleration appears to be less effective for sites where all
requests are handled by a TLS server, thus having higher
session reuse rates. For such sites, investing in a faster
CPU may prove more effective.

Future efforts to optimize TLS server throughput would
be advised to focus on reducing the CPU costs of the TLS
connection setup phase, rather than working on the TLS
data exchange phase. Likewise, efforts to redesign or ex-
tend the TLS protocol would be advised to consider the
CPU costs of all operations performed during connection
setup, not just the RSA operations.

7. Acknowledgements

We gratefully acknowledge Compaq for loaning us the
hardware used in performing our experiments. Vincent
Vanackere and Algis Rudys contributed to early versions
of this work. Eric Nahum, Mohit Aron, and Adam Stub-
blefield also shared many useful ideas and opinions.

References
[1] Amazon.Com releases 2001 first quarter re-

sults. Press Release, Apr. 2001. http:
//www.sec.gov/Archives/edgar/data/
1018724/000095010901500823/dex991.htm.

[2] Apache. http://www.apache.org/.
[3] G. Apostolopoulos, V. Peris, and D. Saha. Transport Layer

Security, how much does it really cost ? In Proceedings
of Eighteenth Conference on Computer Communications,
New York City, New York, Mar. 1999.

[4] The AXL300 RSA accelerator. http://www.
compaq.com/products/servers/security/
axl300/.

[5] G. Banga and P. Druschel. Measuring the capacity of a
Web server under realistic loads. World Wide Web Journal
(Special Issue on World Wide Web Characterization and
Performance Evaluation), 1999.

[6] G. Banga and J. C. Mogul. Scalable kernel performance
for Internet servers under realistic loads. In Proceedings
of the 1998 Usenix Technical Conference, June 1998.

[7] G. Banga, J. C. Mogul, and P. Druschel. A scalable and ex-
plicit event delivery mechanism for UNIX. In Proceeding
of the Usenix 1999 Annual Technical Conference, Mon-
terey, California, June 1999.

[8] D. Boneh and H. Shacham. Improving SSL handshake
performance via batching. In Proceedings of the RSA Con-
ference, San Francisco, California, Apr. 2001.

[9] D. Dean, T. Berson, M. Franklin, D. Smetters, and
M. Spreitzer. Cryptology as a network service. In Pro-
ceedings of the 7th Network and Distributed System Secu-
rity Symposium, San Diego, California, Feb. 2001.

[10] T. Dierks and C. Allen. The TLS Protocol, Version 1.0.
Internet Engineering Task Force, Jan. 1999. RFC-2246,
ftp://ftp.isi.edu/in-notes/rfc2246.txt.

[11] A. Goldberg, R. Buff, and A. Schmitt. Secure web server
performance dramatically improved by caching SSL ses-
sion keys. In Proceedings of the Workshop on Internet
Server Performance, Madison, Wisconsin, June 1998.

[12] J. C. Hu, I. Pyrali, and D. C. Schmidt. Measuring the im-
pact of event dispatching and concurrency models on web
server performance over high-speed networks. In Proc.
2nd Global Internet Conf., Nov. 1997.

[13] M. F. Kaashoek, D. R. Engler, G. R. Ganger, and D. A.
Wallach. Server operating systems. In Proceedings of the
1996 ACM SIGOPS European Workshop, pages 141–148,
Connemara, Ireland, Sept. 1996.

[14] modSSL. http://www.modSSL.org/.
[15] J. C. Mogul. Network behavior of a busy Web server and

its clients. Technical Report WRL 95/5, DEC Western Re-
search Laboratory, Palo Alto, California, 1995.

[16] R. Mraz. Secure Blue: An architecture for a high vol-
ume SSL Internet server. In Proceedings of Seventeenth
Annual Computer Security Applications Conference, New
Orleans, Louisiana, Dec. 2001.

[17] E. M. Nahum, T. Barzilai, and D. Kandlur. Performance
issues in WWW servers. IEEE/ACM Transactions on Net-
working, 2001. to appear.

[18] E. M. Nahum, M. Rosu, S. Seshan, and J. Almeida. The
effects of wide-area conditions on WWW server perfor-
mance. In Proceedings of the ACM SIGMETRICS Confer-
ence on Measurement and Modeling of Computer Systems,
Cambridge, Massachusetts, June 2001.

[19] OpenSSL. http://www.OpenSSL.org/.
[20] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,

W. Zwaenepoel, and E. Nahum. Locality-aware request
distribution in cluster-based network servers. In Pro-
ceedings of the 8th Conference on Architectural Support
for Programming Languages and Operating Systems, San
Jose, California, Oct. 1998. ACM.

[21] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An effi-
cient and portable Web server. In Proceeding of the Usenix
1999 Annual Technical Conference, pages 199–212, Mon-
terey, California, June 1999.

[22] V. S. Pai, P. Druschel, and W. Zwaenepoel. I/O-Lite: A
unified I/O buffering and caching system. In Proc. 3rd
USENIX Symp. on Operating Systems Design and Imple-
mentation, New Orleans, Louisiana, Feb. 1999.

[23] V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM: An
execution-driven simulator for ILP-based shared-memory
multiprocessors and uniprocessors. In Proceedings of
the Third Workshop on Computer Architecture Education,
Feb. 1997. Also appears in IEEE TCCA Newsletter, Oc-
tober 1997.

[24] M. Rosenblum, E. Bugnion, S. Devine, and S. Herrod. Us-
ing the SimOS machine simulator to study complex com-
puter systems. ACM TOMACS Special Issue on Computer
Simulation, 1997.

[25] B. Schneier. Applied Cryptography. John Wiley and Sons,
New York, New York, 2nd edition, 1996.

[26] The Netcraft Secure Server Survey. http://www.
netcraft.com/ssl/.

[27] Zeus performance tuning guide. http://support.
zeus.com/faq/entries/ssl_tuning.html.

