
Playing Devil’s Advocate:
Inferring Sensitive Information from Anonymized Network Traces

Scott E. Coull∗ Charles V. Wright∗ Fabian Monrose∗ Michael P. Collins† Michael K. Reiter‡

Abstract

Encouraging the release of network data is central to
promoting sound network research practices, though the
publication of this data can leak sensitive information about
the publishing organization. To address this dilemma, sev-
eral techniques have been suggested for anonymizing net-
work data by obfuscating sensitive fields. In this paper,
we present new techniques for inferring network topology
and deanonymizing servers present in anonymized network
data, using only the data itself and public information. Via
analyses on three different network datasets, we quantify
the effectiveness of our techniques, showing that they can
uncover significant amounts of sensitive information. We
also discuss prospects for preventing these deanonymiza-
tion attacks.

1 Introduction

In order to provide a sound scientific foundation for
some types of research on network systems, it is impera-
tive that trace and log data be made publicly available for
verification and comparison of results. Indeed, the lack of
public datasets has been identified as a key weakness in cur-
rent networking research [22], and work is underway to con-
struct a large, shared repository of network trace data [23].

To protect the privacy of end users and the security
of the networks themselves, it is clearly necessary to ob-
scure certain identifying information (e.g., IP addresses)
before it is published. Several methods for such network
trace anonymization have recently been proposed (e.g.,
[19, 26, 10]). The authors of these schemes generally ac-
knowledge both the difficulty in creating an anonymization
scheme free from all forms of information leakage, and that
∗Department of Computer Science, Johns Hopkins University, Balti-

more, MD, USA; {coulls,cwright,fabian}@cs.jhu.edu
†CERT/Network Situational Awareness, Software Engineering Insti-

tute, Carnegie Mellon University; mcollins@cert.org
‡Electrical & Computer Engineering Department and Computer Sci-

ence Department, Carnegie Mellon University, Pittsburgh, PA, USA;
reiter@cmu.edu

more in-depth analysis of anonymization schemes is needed
(e.g., [19]). Lacking such analysis, however, the community
continues to move forward with the release of network data
anonymized using these and similar techniques (e.g., [23]).

In this paper, we conduct such an analysis in order to in-
form the continuing debate over the release of anonymized
network trace data. Specifically, we detail new techniques
to infer sensitive information from such traces, and using
these techniques we show that current anonymization tech-
niques might not protect sensitive information as well as ini-
tially thought. While the existence of some classes of infor-
mation leakage from individual header fields had been ac-
knowledged [19, 26, 10], these attacks are often dismissed
as easily mitigated by changes to the anonymization pol-
icy. Our study demonstrates that there are more substantial
forms of information leakage that inherently compromise
current anonymization methodology. Fundamentally, these
leaks result from patterns that naturally occur as artifacts of
useful anonymized network data. The ability to subvert cur-
rent anonymization methodology with only public informa-
tion sources provides attackers with a dangerous new tool
for passive network reconnaissance.

To demonstrate the validity of these attacks, we explore
the information leaked by the state-of-the-art anonymiza-
tion system of Pang et al. [19] when used under the rec-
ommended policy settings. As a concrete example, we ap-
ply our techniques to anonymized traces from three distinct
networks with different traffic mixes and numbers of hosts.
Our results show that sensitive network topology and host
behavioral information can be extracted from patterns ob-
served in the anonymized IP addresses and port numbers.
Using this topology and behavioral information, along with
purely public information from search engines and DNS
records, we are able to deanonymize between 28 and 100%
of targeted servers. While we choose to focus on the Pang
et al. approach, we also show that our findings are equally
applicable to a number of other recent techniques in the
literature, thereby calling into question the overall benefits
provided by current anonymization strategies.

The remainder of this paper is organized as follows. In
Section 2, we review various methods for anonymizing net-

1

work data, as well as the pragmatic requirements on the
resulting data. The primitives used in our inference tech-
niques are introduced in Section 3, and their specific use in
inferring topology information and selectively deanonymiz-
ing hosts is presented in Section 4. In Section 5, we apply
our techniques to anonymized network data taken from a
variety of networks, and show that our techniques are effec-
tive in deanonymizing hosts in a passive manner using only
publicly available information. Finally, we suggest possible
mitigation strategies in Section 6, and conclude with direc-
tions for future work in Section 7.

2 Background and Related Work

Anonymization systems, in general, are designed to ac-
complish three primary goals while providing usable net-
work trace data. These goals, as described by Pang et al.,
are aimed at preventing i) the true identities of specific
hosts from being leaked such that an audit trail of user
activity could be formed, ii) the true identities of internal
hosts from being leaked such that a map of supported ser-
vices can be constructed, and iii) the leakage of specific
security practices within the publishing organization’s net-
work [19]. Several methods of data obfuscation are uti-
lized in practice to achieve these goals [2, 20, 26]. De-
struction of information in a field (e.g., by outright removal
from the dataset) is often used to anonymize the payload
fields of packet traces. Fixed transformation provides a
single pseudonym value for all values of the field. Vari-
able transformation allows for different pseudonym values
based on the context of the field. One example of vari-
able transformation is to replace an IP address with different
pseudonyms based upon the type of application layer proto-
col, such as HTTP or SMTP. Typed transformation allows
for a single pseudonym value for each distinct value of the
original field. Prefix-preserving address anonymization is a
version of typed transformation.

There have been several attempts to provide anonymiza-
tion techniques appropriate for network trace data. The
TCPurify tool, for example, implements the destruction by
randomizing IP addresses, and removing packet payloads
[28]. By randomizing the addresses, TCPurify provides
protection for the true identity of hosts, but also destroys
useful network prefix information. TCPdPriv uses another
approach known as prefix-preserving anonymization to pro-
vide typed transformation of the addresses, whereby the
longest common prefixes within the trace data are mapped
to the same pseudonym prefix [27]. The prefix table used by
TCPdPriv is created on a per trace basis, and therefore it is
likely that a particular host will map to different pseudonym
addresses in different network traces.

Recently, Fan et al. developed a cryptographic approach,
known as CryptoPAn, for the creation of prefix-preserving

pseudonym addresses without the need for a prefix table
[10]. The cryptographic approach to anonymization uses
keyed hash functions to produce consistent anonymized
prefix-preserving addresses, thereby allowing for the pub-
lication of several traces with consistent network informa-
tion throughout. The approach of Fan et al. [10] has been
widely used in several recent systems that provide policy-
based anonymization of trace data. These policy-based sys-
tems allow for the application of any of the transformations
described above based on the security policy provided by
the user. One such example, suggested by Pang and Paxson,
provides a method for defining policy-based anonymization
scripts utilizing the Bro scripting language [20]. A differ-
ent approach, called CANINE [25, 26], operates on Net-
Flow [6] data, but limits the abilities of the dataset pub-
lisher by allowing only for certain classes of anonymiza-
tion on a particular subset of fields. In particular, the CA-
NINE’s prefix-preserving anonymization only allows the
use of CryptoPAn, and provides no methods to implement
other anonymization techniques.

Of course, while the aforementioned definitions suggest
various ways in which network data may be sanitized, the
use of anonymization techniques in practical network re-
search forces the anonymization systems to adhere to sev-
eral requirements with regard to the resulting data. Here,
we attempt to summarize what appears to be a minimum
set of requirements that show up repeatedly in networking
research.

One of the most obvious and intuitive requirements is
that the network and hardware addresses provided within
the trace data be consistently anonymized, within and pos-
sibly across traces. Several areas of research (e.g., traffic
matrix estimation [5, 11, 21, 34], characterization of con-
nection and packet arrival processes [15], and other work
that rely on counting the number of distinct hosts in a trace
over some period of time [17, 16]), require that metrics
be evaluated on a per host, or per network basis. Without
consistent anonymization, these metrics could be applied
only to each individual trace, rather than to the dataset as a
whole. As such, the resulting data would be of little value to
researchers in search of large, realistic, datasets — indeed,
the main impetus behind the current trend towards making
more anonymized datasets available in the first place. For
the remainder of this paper, we refer to this requirement
on anonymized data as the pseudonym consistency require-
ment.

Similarly, while payload destruction has been standard
practice in providing privacy, the transport, network, and
link layer headers typically remain intact. Use of header in-
formation remains central to providing a flexible dataset for
use in many areas of fundamental network research (e.g.,
the effects of packet loss and reordering on TCP dynamics
[14, 13, 1, 30, 32]). To remain appealing to the network re-

2

Pang et al. CANINE TCPdPriv TCPurify
Transformation

Destruction X X X X
Fixed Transformation X X

Variable Transformation X X X X
Typed Transformation X X X

Requirements met Examples
Pseudonym Consistency Requirement X X X [11] [21] [34] [15]

Header Requirement X X X [13] [14] [1] [30]
Transport Protocol Requirement X X X X [17] [16]

Port Number Assumption X X X X [12] [24]

Table 1. Summary of anonymization techniques and the corresponding requirements they meet

search community, the anonymization approach must there-
fore respect this requirement for header information, which
we herein refer to as the header requirement. In addi-
tion, records corresponding to transport layer traffic must
be present within the dataset to facilitate studies on round
trip times, reassembly, and fragmentation. This minimum
amount of transport layer traffic is subsequently referred to
as the transport protocol requirement.

Finally, the ability to uniquely map well-known applica-
tion layer services to their constituent port numbers is often
used in practice for protocol classification schemes (e.g.,
[12, 24]). While the requirement that port numbers faith-
fully map to their related well-known services may seem
onerous, we note that there are still many ways to infer the
correct service being offered from anonymized or destroyed
port numbers. Recent research, for example, has indicated
that application layer services can be accurately identified
through the use of timing and size information [31], as well
as the unique behaviors of the application layer protocols
[9, 18, 7]. The ability to map port numbers to services is
subsequently called the port number assumption.

A cursory examination of anonymized network data
repositories, such as CRAWDAD [8], reveals that these
requirements are frequently relied upon in practice. Of
all the trace anonymization techniques suggested to date
[28, 27, 25, 19], we focus on what we believe to be the most
comprehensive approach, namely that of Pang et al. [19].
We believe their approach best meets the pragmatic require-
ments outlined previously, and is arguably the most flexi-
ble in satisfying the privacy of publishing organizations. A
comparison of the anonymization systems, their methods
of anonymization, and their adherence to the pragmatic re-
quirements is given in Table 1.

Additionally, our choice to examine the Pang et al.
anonymization system is further motivated by a weak-
ness in CryptoPAn [10]. Specifically, the prefix-preserving
methodology of CryptoPAn anonymizes addresses such that
any given bit of the anonymized address is dependent on
all previous bits of the unanonymized address. This de-
pendence causes a single deanonymization to affect all

anonymized addresses that share a prefix with the true ad-
dress. In fact, Brekne et al. recently demonstrated how
active probing attacks can be used to systematically under-
mine the CryptoPAn anonymization scheme [4, 3].

Pang et al., however, only use CryptoPAn to anonymize
addresses external to the enterprise where the trace was col-
lected. To anonymize internal addresses, Pang et al. break
the dependency across bits by anonymizing the subnet and
host portion of the addresses as independent blocks using
a pseudo-random permutation. Although the separation of
the anonymization into two independent permutations may
still lend itself to attacks where the adversary learns the
deanonymized host’s true address, only that host’s specific
subnet is compromised in this case; that is, no information is
discovered about other host mappings and subnet permuta-
tions from this single deanonymization. A more detailed re-
view of the CryptoPAn weakness can be found in Appendix
A.

3 Primitives

The deanonymization techniques we develop in this pa-
per are based on a few simple primitives. These primi-
tives, with the exception of Subnet Clustering, were first
proposed by Xu et al. [33] to provide summary informa-
tion about the traffic at backbone routers. We apply these
techniques to determine the statistically significant values
within the network trace data. In addition, we also apply our
own Subnet Clustering technique to infer the subnets of net-
works from only the observed addresses. Discovery of the
proper subnets and their sizes aid in the passive inference of
topology from the provided trace data. However, unlike Xu
et al. [33], we apply these techniques to anonymized net-
work traces, and our deanonymization techniques require
additional analysis on top of that provided by these tools.

For the remainder of the paper, we represent network
data, in the form of packet traces or NetFlow logs, as a set
of connections, C. Each connection c ∈ C is described
by a feature vector 〈c1, c2, ..., ck〉. In our case, k = 4, and
the features are: c1 = source IP address, c2 = destination

3

IP address, c3 = source port number, and c4 = destination
port number. Several of our techniques employ analysis of
the normalized entropy (H) of one or more features of the
data. The normalized entropy provides a measure of the un-
certainty of outcomes for the given feature, relative to the
maximum possible uncertainty of a random variable taking
on the same values. Specifically, we denote the ith feature
across all connections in C as Ci, and treat it as a random
variable. Then, if Ci takes on ni > 1 distinct values in our
data, we calculate its normalized entropy as

H(Ci) =
H(Ci)
log ni

where for each c, the probability PC(Ci = ci) is the number
of occurrences of value ci in feature Ci, divided by |C|.

Thus, normalized entropy values near zero indicate a
highly peaked distribution for that attribute, while values
near one indicate a nearly uniform distribution of values.
Given an anonymized dataset, we will use this measure to
find a set of hosts within that data whose presence is most
significant—the so-called ‘heavy-hitters’. Intuitively, if a
few IP addresses occur much more frequently than others
in the data, then the normalized entropy of the addresses
will be low. Because of this fact, we can employ an itera-
tive algorithm, shown in Algorithm 1, to obtain the set
of the most significant IP addresses in the data. This al-
gorithm works by repeatedly removing very frequent (ini-
tially, of probability > tP) values from the distribution
and recomputing the normalized entropy until the distribu-
tion becomes sufficiently uniform, bringing the normalized
entropy above a given threshold, tH . Finding the ‘heavy-
hitters’ this way allows us to focus our later deanonymiza-
tion efforts on the most prevalent hosts in the network trace.

Algorithm 1 Find-Heavy-Hitters(Connections C, thresh-
olds tH and tP)

HeavyHitters ← ∅
// Examine both source IP address (C1) and destination IP address (C2)
for i = 1, 2 do

k ← 0
C′ ← C
while H(C′i) < tH do

for all c ∈ C′ do
if PC(Ci = ci) > 2−ktP then

HeavyHitters ← HeavyHitters ∪ {ci}
C′ ← C′ \ {c}

k ← k + 1
return HeavyHitters

Dominant State Analysis Xu et al. also propose a novel
approach for determining the most characteristic behaviors
for a given host, known as Dominant State Analysis [33].
We apply this technique to the network traffic associated
with the heavy-hitters found as described above to develop

a behavioral profile, or set of recurring network activities
that best characterize these hosts. These behavioral profiles
can then be used as a means of fingerprinting various hosts
based on their behaviors. The concept of profiling behaviors
has been examined by others, including Karagiannis et al.
and Aiello et al., and has been found to be a practical mech-
anism for classifying hosts into logical groupings based on
the characterization of their traffic [16, 17].

To find these behaviors, for each ‘heavy-hitter’ address
x, we begin with a simple behavioral profile: src address =
x. Recall that c1 is the source IP address of connection c.
Then, denoting the set of connections with c1 = x as Cx,
we reorder the remaining features i such that H(Cx

i) ≤
H(Cx

i+1). Then, for each feature in the set of connec-
tions, Cx

i=2..4, we look for values of ci whose conditional
probability with the current profile exceeds our threshold
t, and append that value to the profile vector for further
consideration. The algorithm extends these profiles in an
iterative fashion until no value meeting our threshold can
be found, or all features have been examined. The output
of this Dominant State Analysis (Algorithm 2) for each
‘heavy-hitter’ IP address is a set of feature vectors describ-
ing its behavioral profiles. After performing the Dominant
State Analysis on the source IP addresses, we repeat the
same process using the destination IP addresses.

Subnet Clustering The subnets associated with the IP ad-
dresses found in the network data are not always made avail-
able, and thus we must consider alternate methods of deter-
mining this information. The determination of the subnets
found in the anonymized data is an important step in the
creation of network topology maps and the deanonymiza-
tion of hosts, as it allows us to distinguish the distinct areas
of the network where the data was collected. Subnets can
be inferred from the set of IP addresses present within the
network data using an application of the k-means cluster-
ing algorithm. Note that this process does not deanonymize
the addresses in the trace, but it does take advantage of
the prefix-preserving anonymization to extract information
about the underlying network topology.

A naı̈ve solution for discovering subnets within the data
is to simply look for groupings of contiguous addresses sep-
arated by large gaps. Of course, an arbitrary cutoff would
have to be determined to specify the required gap between
the groupings. This gap size would necessarily relate to
a predetermined subnet size, which may not be uniform
across all subnets. It is therefore likely that such a scheme
would improperly group addresses if a variety of subnet
sizes were present. Our approach, on the other hand, is able
to choose the proper sizes for a variety of subnets without
the use of a priori information on the subnets sizes being
grouped. To achieve that, we automatically determine the
best subnets based on the observed data and an initial ap-

4

Algorithm 2 Dominant State Analysis for Heavy-Hitter x

FinishedProfiles ← ∅
CurrentProfiles ← {〈x〉}
i ← 2
// examine each feature, in order of increasing normalized entropy
while i ≤ 4 do

NewProfiles ← ∅
for all profile ∈ CurrentProfiles do

ExtendedProfiles ← ∅
for all c ∈ Cx do

if PCx (Cx
i = ci|profile) > t then

ExtendedProfiles ← ExtendedProfiles ∪ {profile||〈ci〉} // where || indicates vector concatenation
if ExtendedProfiles = ∅ then

FinishedProfiles ← FinishedProfiles ∪ {profile}
else

NewProfiles ← NewProfiles ∪ ExtendedProfiles
CurrentProfiles ← NewProfiles
i ← i + 1

FinishedProfiles ← FinishedProfiles ∪ CurrentProfiles
return FinishedProfiles

proximation of the density of addresses within the subnet
through the use of unsupervised learning techniques, in our
case, the k-means algorithm.

Specifically, we treat IP addresses as 4-dimensional vec-
tors, where each element of the vector corresponds to one
octet of the IP address as written in dotted decimal nota-
tion. To determine cluster membership, we use a modi-
fied Euclidean distance with bitwise exclusive-OR instead
of subtraction as our distance metric. The dimensions corre-
sponding to the octets are exponentially weighted such that
the left-most octet carries the most weight. This weight-
ing ensures that the hierarchical nature of the subnetting is
preserved in the clustering algorithm 1.

We note that k-means clustering requires that the number
of clusters be specified a priori; however, since we have no
way of inferring the number of expected subnets, nor their
density within the 4-dimensional space, we first evenly di-
vide each of the octet dimensions into m blocks. In doing
so, we make an approximate guess about the length of the
subnet prefix. The initial centroids are placed at the bound-
aries of these partitions. Therefore, we create k = md ini-
tial centroids where m is the number of partitions and d is
the number of dimensions to which the partitioning was ap-
plied. Notice that as we increase m, we allow for greater
density of subnets by decreasing the spacing among initial
centroids 2. Also, by including or excluding dimensions
from the initial partitioning scheme, we can control how
many octets participate in the creation of initial clusters.

After this initial step, we iteratively recompute the cen-
troid and the corresponding cluster membership. This pro-

1For example, using this weighted metric we compute the
distance between the IP addresses 192.168.1.2 and 10.0.0.10 asq

((192 ⊕ 10) ∗ 23)2 + ((168 ⊕ 0) ∗ 22)2 + ((1 ⊕ 0) ∗ 21)2 + ((2 ⊕ 10) ∗ 20)2 .
2In practice, the parameter m can be tuned based on the observed be-

havior of the Subnet Clustering output to ensure it properly accommodates
the density of addresses present in the given data.

cess continues until the membership of the clusters reaches
a steady state. This iterative refinement of the clusters
makes it possible to accommodate for variable length sub-
nets. In particular, at the beginning of the refinement pro-
cess, the clusters start in an unoptimized state where some
addresses that reside within the same subnet appear in dif-
ferent clusters due to the inaccuracy of our initial approx-
imation. However, as the refinement continues, new clus-
ter centroids are created that better represent the addresses
within each cluster, and the process eventually converges to-
ward a set of stable centroids for the observed subnets in the
data. This ensures that the addresses within a given cluster
all reside in the same subnet without requiring exact initial
centroid placement.

Upon completion, each nonempty cluster represents a
subnet in the underlying network, and for each cluster we
calculate its subnet address as the longest common prefix
shared by all IP addresses in the given cluster. As with
any application of the k-means algorithm, the results must
be empirically evaluated to ensure proper selection of ini-
tial clusters to approximate the anonymized address space.
In our evaluation, the Subnet Clustering technique achieves
> 96% accuracy across all datasets used within this paper
without significant tuning of the initial cluster centroids.

We reiterate that the primitives do not actually
deanonymize anything by themselves; the application of the
Dominant State Analysis algorithm can reveal typical be-
haviors for each anonymized IP address in the trace, and the
Subnet Clustering technique can derive a list of anonymized
subnet addresses, but more work is required to infer a map
of the network and to deanonymize hosts.

5

4 Information Leakage

In what follows, we show that not only can a map of
the network be recovered from anonymized network data,
but we are also able to deanonymize hosts in the trace
through the use of behavioral profiling. Such successful
deanonymization provides for a new method of passive net-
work reconnaissance and undermines the stated goals of ex-
isting approaches to anonymization. We note that the infor-
mation required to mount these attacks follows the require-
ments on the anonymized dataset laid out in Section 2.

4.1 Recovering network topology

Network topology can be inferred by first determining
the locations within the network where each of the traces
were captured (i.e, the observation points), then identifying
the routers at each location, and finally examining the traffic
to infer the connectivity between them.

To associate traces with observation points, we first iden-
tify the network subnets which are present on the local area
network where the trace was recorded. We then regard two
traces as coming from the same observation point if they
have one or more subnets in common. If the anonymized
trace data contains Address Resolution Protocol (ARP) traf-
fic, we can find the local subnets by performing subnet clus-
tering (see Section 3) on the IP addresses in the ARP re-
quests and replies. When given only IP traffic, subnets sur-
rounding the trace’s observation point can be inferred by
performing subnet clustering on all IP addresses found in
the trace and taking the n most frequently occurring subnets
in the results as the observation point’s subnets. The pa-
rameter n can be chosen to represent a best estimate of the
number of subnets for the observation point.3

Next, routing devices can be identified by the hardware
address used in the link layer headers. For each subnet at
each observation point, we examine TCP and UDP traffic
sent from local hosts to out-of-subnet hosts and record the
destination hardware address found in the link layer header
as the gateway for that subnet. Similarly, routers can be
found by recording the hardware addresses that appear to
have multiple network addresses associated with them over
some time period δ. To avoid also flagging hosts that use the
Dynamic Host Configuration Protocol (DHCP) as routers,
this time period should be shorter than a typical DHCP
lease. In practice, this has not been an issue in any of the
traces we have examined, and we typically set δ to be on the
order of several seconds.

3For example, with an initial guess of n = 5 for the Johns Hopkins
University trace in the example below, we find the top two subnets share
a common prefix and both occur twice as often as the third most frequent
subnet. The similarity of the prefixes and the substantial difference in num-
ber of occurrences suggest that we should instead set n = 2.

Inferring the routes taken by observed traffic can be
useful in understanding the interconnection of observation
points at the network layer. To characterize the routes han-
dled by the discovered routing devices, the subnet cluster-
ing technique is applied to the source and destination IP ad-
dresses of TCP and UDP traffic that transit the devices. The
unique pairs of source and destination subnets, as well as
the hardware addresses of the other routers to which traffic
is sent, can be used to better understand the routing topol-
ogy of the network in question.

Lastly, the network layer topology can be reconstructed
by examining the routers and gateways for each observation
point, and the hardware addresses with which they commu-
nicate. Formally, the network can be represented as a graph
G consisting of nodes V and edges E ⊆ V ×V . Then if the
hardware address for router s is associated with some other
discovered routing device t, we add an edge e = (s, t) to
E in the graph. Once the topology map is created via this
matching process, the routes can be superimposed using the
hardware addresses to characterize the actual routes taken
by network layer traffic. This inference can also occur for
link layer topology if the network traces provide ARP traf-
fic. In this case, one may logically assume that only the
IP addresses observed in the ARP packets are members of
the local link layer network. Therefore, any traffic that is
present at an observation point not destined to or sent from a
local host must be transiting that observation point. Specifi-
cally, the path taken from hosts in a given observation point
to their gateway router can provide an approximation of the
topology, including the presence of switches and bridging
devices.

Note that to perform this topology inference, the pro-
vided data must at least meet the header and transport pro-
tocol requirements discussed in Section 2. The header re-
quirement is necessary to retrieve the anonymized hardware
addresses of the routing devices within the topology, and
therefore datasets that do not meet this requirement, such
as NetFlow data, are not vulnerable to the topology infer-
ence attack. The transport protocol requirement provides
the minimum network traffic from which the inference of
network topology information is made.

4.2 Inferring Host Behavior

While the inference of network topology information
is certainly disconcerting, the anonymization of host ad-
dresses should make it difficult to accurately map this topol-
ogy to real-world addresses. If, however, the behaviors of
the anonymized hosts can be uniquely mapped to the behav-
iors of their real-world counterparts, the attacker can begin
deanonymizing portions of the topology.

To infer the host behavior, the unique, recurring traffic to
and from a particular host is characterized as a behavioral

6

Host Src IP Address Src Port Dst IP Address Dst Port H(Src Port) H(Dst IP) H(Dst Port)
web server 128.220.231.207 80 * * 0.0 0.93 1.0
SSH server 128.220.231.147 22 17.138.176.51 * 0.0 0.0 1.0
web client 128.220.231.17 * * 80 1.0 0.85 0.17

Table 2. Example behavioral profiles observed in the departmental network

profile. To create these profiles, we take as input a list of
k-dimensional feature vectors c = 〈c1, . . . , ck〉 describing
a set of connections C. The set of significant source and
destination addresses, or ‘heavy-hitters’, is obtained from
the connections in C via Algorithm 1. Next, Dominant
State Analysis is applied to the connections c ∈ C con-
taining each of these significant addresses to determine the
set of dominant behaviors that comprise the given host’s
behavioral profile. Upon termination, the set of behav-
ioral profiles for each significant address is returned (see
Algorithm 2).

Like the topology inference attack, our inference of host
behavior requires that the transport protocol requirement be
met, as well as the pseudonym consistency requirement and
port number assumption. In particular, the pseudonym con-
sistency requirement allows us to accurately build profiles
for the hosts in the data, which would otherwise be difficult
if their identities in the dataset changed. The port number
assumption simply allows us to easily determine what ser-
vices a given host offers when building our profiles. Un-
like the topology attack, these requirements can be met re-
gardless of the form that the network data takes. There-
fore, while the use of NetFlow data hampers the topology
inference attack due to its lack of header information, it still
meets all requirements for our behavioral inference attacks
and remains vulnerable to deanonymization via behavioral
profiling.

4.3 An Example

For concreteness, we illustrate the application of the
aforementioned techniques on an anonymized trace from
the Johns Hopkins University (JHU) network. In general,
deanonymization begins by first identifying an interesting
service, and finding an appropriate host offering that service
to deanonymize. The goal is to create a behavioral profile
query based on public information regarding services being
run on the target host, the perceived popularity of the host,
and its possible locations within the network topology. De-
veloping this profile often requires the use of public infor-
mation sources, such as DNS or web search engine queries,
to specify unique information about the host. Beyond that, it
is simply a matter of matching hosts within the trace dataset
that best match the derived criterion.

The trace in question contains TCP traffic from a sin-
gle observation point between a departmental network and

Anonymized Dest. Real
address address H hostname

128.220.231.207 0.93 simnet1
128.220.231.50 0.93 skdnssec
128.220.231.168 0.87 spar
128.220.231.121 0.85 -

Table 3. Deanonymization of significant Web
servers in local network trace

the main campus network. It contains packets from over
26,000 TCP connections involving 38 internal hosts and
more than 1,500 external hosts. The topology inference
technique indeed finds a single observation point with sub-
nets of 128.220.231.0/24 and 128.220.116.0/26. These
subnets are the two anonymized subnets present within the
trace, which is correct given the location of the observation
point just outside of the departmental network. The infer-
ence technique also finds one router and one gateway that
are directly connected to one another, with the departmental
network behind the router. The routes discovered are trivial
considering the topology of the observation point.

We can also deanonymize many of the web servers
within the departmental network. To find the web servers
in this database, we must first create an estimate of the be-
havioral profile for which we are looking. Table 2 shows
example behavioral profiles for three ‘heavy-hitters’, found
via Algorithm 1, in the department’s network.

Because all the web servers in the trace have behav-
ioral profiles with similar TCP ports and destination IP ad-
dresses, we must use the normalized entropy of the desti-
nation IP addresses to distinguish between the web servers
based on their popularity. More popular servers communi-
cate with a wider range of clients, and thus have a higher
normalized entropy (H) for their destination addresses. To
find the names of the most popular web servers in the de-
partmental network and to estimate their relative popular-
ity, we use Alexa.com’s popularity-based search engine.4

By counting the number of references made to each host-
name over the first l(= 5) pages of results, we arrive at
the following ordered ranking of web servers: 〈simnet1: 30,
skdnssec: 11, spar:9〉.

The rankings provide strong indication that there are ap-

4See http://www.alexa.com

7

Trace Type Connections Internal Hosts Dates Duration
JHU packet trace 2.63e+04 38 Apr 2005 24 hr

CERT-A NetFlow 1.04e+05 20 Aug 2006 4 hr
CERT-B NetFlow 1.40e+05 24 Aug 2006 4 hr
LBNL packet trace 8.71e+05 5976 Oct 2004 - Jan 2005 60 hr

Table 4. Summary information for anonymized datasets

proximately three significant web servers within the depart-
mental network. Due to their popularity, it is appropriate to
assume that the normalized entropy of the destination ad-
dresses they service will be nearly one, indicating a large
variety of hosts. By querying the behavioral profiles derived
from the local trace data for a web server with a destination
address normalized entropy greater than γ = 0.85, we ob-
tain the list of anonymized addresses shown in Table 3.

By pairing the ranking of web server addresses in the
departmental subnet found via behavioral profile to the
three hostnames found via the Alexa.com search, we ob-
tain the correct mapping between the real hostnames and the
anonymized addresses, which are verified by our original,
unanonymized trace. This mapping is given in the last col-
umn of Table 3. Overall, we are able to deanonymize three
of the seven significant web servers in the trace (43%), and
two of the three mail servers (66%). Moreover, these map-
pings have correctly deanonymized one of the discovered
anonymized subnets to 128.220.247.0/24, thereby reduc-
ing the uncertainty of the remaining anonymized hosts.

5 Evaluation

Our inference techniques are evaluated on network traces
for three distinct networks, including the Johns Hopkins
network described in Section 4. Table 4 provides a break-
down of each dataset. The anonymized dataset provided by
Pang et al. [19] is the most diverse, and contains packet
traces that were collected at Lawrence Berkeley National
Laboratory (LBNL) over the course of several months. The
LBNL traces are arranged into 131 individual trace files
anonymized by the system described in [20, 19]. Several
network and transport layer protocols are present within the
anonymized trace data, which include only the anonymized
link, network, and transport layer headers. Payload data is
deleted, and fields are anonymized per the policy defined
in [19]. Pang et al. also remove the packets generated by
routers and certain security devices to prevent their discov-
ery. In addition to the anonymized trace data, Pang et al.
provide meta-data to ensure sound measurement practices.
This meta-data includes the identification of anonymized
subnets, anonymized gateway addresses for those subnets,
and corrupt packets. This meta-data is used in our evalua-

tion only to provide a form of ground truth for our analysis.
One solution to preventing the inference of topology in-

formation is to simply publish NetFlow logs, a data format
consisting of tuples of transport and network layer infor-
mation gathered from packet headers on a per connection
basis, rather than complete packet traces. In fact, release of
anonymized NetFlow data is gaining popularity and there-
fore it seems only prudent that we validate our techniques
against both NetFlow and packet trace data. To show the
viability of our techniques on NetFlow data, we also evalu-
ate a dataset obtained from CERT containing NetFlow logs
of two distinct /24 networks taken over four hours on a
single day. To anonymize this NetFlow data, we apply
prefix-preserving anonymization of addresses (as specified
by Pang et al. in [19]), remove connections of less than four
packets in size to compensate for scanning behavior, and ex-
plicitly remove references to routers and network security
devices. Since this is NetFlow data, topology inference is
not possible, but we are able to apply our deanonymization
techniques just as in the LBNL dataset.

To streamline our analysis of these datasets, we parse
packet trace or NetFlow logs and automatically dump all
information about the connections (C), the ‘heavy-hitter’
hosts, topology information, and their behavioral profiles
into a relational database for fast and easy querying. The
database can then be queried for the features of the behav-
ioral profile, the normalized entropy values, specific con-
nection information to deanonymize hosts, etc. Hence, no
active probing of the network under scrutiny is necessary.

5.1 Network Topology

To infer the network topology of LBNL, we employ the
techniques described in Section 4. Our techniques find
29 distinct observation points with a total of 31 associ-
ated enterprise subnets. The subnets found through the
Subnet Clustering technique agreed with those provided in
the meta-data, with the exception of one subnet whose size
was overestimated, thereby providing 96% accuracy. This
overestimate appears to have occurred due to an improper
estimate of the longest common prefix computed from a
small number of distinct addresses within the ARP trace
data. Interestingly, the anonymization system used to pro-
vide privacy for the LBNL data makes extra effort to mask

8

� � �� � � � � � � � 	 � �� �
 � �
 � � � � �� � � � � �� � � � � � � � � � � ��
 � � �
 � �� � �
 � � �
 � � �
 � ���� �� � �
! "#$ %&'() *+ ,-. /01 "$ /%+ 2

(a) Uniqueness of the ee.lbl.gov subnet

JHU - Total
JHU - Known
EE.LBL - Total
EE.LBL - Guessed
CERT.A - Total
CERT.A - Known
CERT.B - Total
CERT.B - Known

HTTP MAIL

Server Type

0

5

10

15

N
um

be
r

of
 S

er
ve

rs

JHU

JHU

EE.LBL

EE.LBL

CERT.A

CERT.A

CERT.B

CERT.B

(b) Deanonymization results for 3 networks

Figure 1. Deanonymization

the presence of routing devices by eliminating their traf-
fic. Our inference techniques, however, are able to infer
their positioning due to the necessary presence of hardware
addresses in link layer headers. When combined with ad-
ditional information—like the placement of hosts and al-
lowed routes—maps of the network topology provide at-
tackers with information on the security posture of the pub-
lishing organization.

5.2 Deanonymization

To demonstrate the effectiveness of behavioral profiles
in the selective deanonymization of anonymized hosts, we
provide a deanonymization of the HTTP server for the Bro
IDS project [29] and other servers within its subnet, in-
cluding ee.lbl.gov. We pick these targets as candidates
for deanonymization since public information about these
servers is readily available—and hence, can be easily used
to unmask the anonymization.

We begin by querying DNS records for the addresses
of the Bro web server (www.bro-ids.org) and related hosts
found in public information sources. The results of these
queries show that www.bro-ids.org resides in the same sub-
net as the ee.lbl.gov domain, which includes SMTP, HTTP,
and FTP services on ee.lbl.gov and HTTP services on
ita.ee.lbl.gov. Knowledge of these services was gleaned
only from Google and Alexa searches, as well as DNS
records for the ee.lbl.gov and bro-ids.org domains.

By inferring the subnet size from the addresses provided
by DNS records, the set of possible subnets within the trace
data is reduced to ten /22 subnets out of the twenty nine total
subnets (see Figure 1(a)). Furthermore, if we consider that
the target subnet contains at least three ‘heavy-hitter’ web

servers, we find six subnets in the dataset that match this cri-
teria. Finally, by noting that the ee.lbl.gov server provides
SMTP, HTTP, and FTP services, we find only two subnets
that contain such a server. By combining each of the charac-
teristics of our target subnet, only one of the subnets present
in the dataset matches all criterion. In essence, the combi-
nation of required subnet size, unique services offered by
ee.lbl.gov, and the specific mix of significant HTTP servers
fingerprints the subnet within the anonymized trace.

Since the ee.lbl.gov server provides such a unique mix
of services, it is fairly easy to detect among the significant
hosts present in the subnet. The two remaining significant
HTTP servers exhibit similar behaviors, except with respect
to the normalized entropy for the destination address di-
mension. Thus, one host serves a wider variety of clients
than the other. Due to the nature of the www.bro-ids.org
and ita.ee.lbl.gov web servers and their respective presence
within web search engines, it seems reasonable to assume
that www.bro-ids.org serves a wider variety of hosts while
ita.ee.lbl.gov has a more narrow appeal.

Another HTTP server within this subnet handles only
a few distinct clients, but serves a large number of con-
nections overall. These connections carry relatively few
packets, thus indicating the presence of a web page or ap-
plication that performs several small HTTP connections to
retrieve data. Upon inspection of the Google results for
the ee.lbl.gov domain, we suspect this machine might be
froggy.lbl.gov. The Froggy site features a CGI web applica-
tion which generates short bursts of HTTP connections as
a function of the CGI usage. Table 5 provides some sam-
ple deanonymization results for various publicly available
services, including www.bro-ids.org. The deanonymiza-
tions are supposition, as there is no ground truth avail-

9

Candidate Search Auxiliary
Target Host Mappings Criteria Information

www.bro-ids.org 131.243.95.232 CIDR Block = 131.243.0.0/16 Knowledge of
Source Port=HTTP HTTP, DNS A records

ita.ee.lbl.gov 131.243.93.0 (H̄) = (< .05, > .5, > .5) Public subnet info.
Same subnet as ee.lbl.gov

CIDR Block = 131.243.0.0/16 Knowledge of
ee.lbl.gov 131.243.94.172 Source Ports=HTTP, SMTP, FTP SMTP, DNS A records

(H̄) = (> .1, > .5, > .5) Public subnet info.
co-located w/ ita.ee.lbl.gov,www.bro-ids.org

froggy.lbl.gov 131.243.95.168 CIDR Block = 131.243.0.0/16 Knowledge of
Source Port=HTTP; same subnet as ee.lbl.gov HTTP protocol

CIDR Block = 128.3.0.0/16 DNS MX records,
lbl.gov 128.3.164.249 Source Ports=SMTP, finger Mail info,

co-located w/ postalnp.,imap4.,smtp.lbl.gov public web/subnet info.
smtp.lbl.gov 128.3.164.248 CIDR Block = 128.3.0.0/16 DNS MX records,

Source Port(s) = SMTP Mail, public
postalnp.lbl.gov 128.3.164.57 co-located w/ lbl.gov, imap4.lbl.gov subnet info.

128.3.164.15 CIDR Block = 128.3.0.0/16 Public web info.
imap4.lbl.gov or Source Port(s) = IMAP, POP3

128.3.164.194 Same subnet as lbl.gov

Table 5. Sample deanonymizations of select public services

Dataset Observation Point Dominant Source Ports
JHU JHU 22 (SSH), HTTP (80)
CERT-A CERT-A 20 (FTP), 21(FTP), 25 (SMTP), 53 (DNS), 80 (HTTP), 443 (HTTPS)
CERT-B CERT-B 25 (SMTP), 53 (DNS), 80 (HTTP)

LBNL

Routing Core 161 (SNMP)
ee.lbl.gov 22 (SSH), 80 (HTTP), 123 (NTP),

137 (WINS), 161(SNMP), 427 (SRVLOC),
515 (LPR), 524,793,795-800 (Unknown)

Client Network 22 (SSH), 25 (SMTP), 67 (BOOTP), 68 (DHCP),
80 (HTTP), 137 (WINS), 138 (NetBIOS), 139 (NetBIOS),

161 (SNMP), 427 (SRVLOC), 445 (Microsoft-DS), 497 (Unknown),
548 (Apple Filesharing), 575:696:878 (Unknown)

Table 6. Dominant source ports for selected observations points

able, but the supporting evidence provides confidence in our
deanonymization results.

For the JHU and CERT datasets, we are able to provide
a similar method of deanonymization by mapping behav-
ioral profiles of true hosts to their anonymized counterparts;
more importantly, we can validate these deanonymiza-
tions via ground truth. Figure 1(b) shows our overall
deanonymization performance across the four datasets. For
each trace, the results show the number of deanonymized
servers for each protocol (“known” or, in the case of
ee.lbl.gov, “guessed”) compared to the total number of sig-
nificant servers for that protocol.

It was initially believed that information leakage attacks
of the kind presented herein were too difficult for an ad-
versary to achieve in practice [19]. However, our results
indicate that behavioral profiling is a plausible method for
deanonymizing a variety of network traces. Our success rate
ranged from 66% to 100% for significant SMTP servers and

28.6% to 50% for the significant HTTP servers in the sub-
nets we examined. While the results for HTTP servers may
not seem impressive, consider that no level of deanonymiza-
tion is expected from the anonymized datasets. Also, con-
sider that any server providing unique public services, such
as FTP or DNS, would obtain similar deanonymization re-
sults to the SMTP servers. While these results are troubling,
we argue that a determined adversary, with the luxury of
time, would be able to deanonymize even more servers.

Once this deanonymization occurs, the published data
can be used to characterize the services offered by that
host. Moreover, if the prefix-preserving anonymization
were based on CryptoPAn, rather than the Pang et al.
model, these deanonymizations would not only affect the
deanonymized host, but would also reduce the uncertainty
about all other hosts in the dataset and deanonymize the
neighboring anonymized address (see Appendix A).

In addition to deanonymizing select hosts, we are able

10

to characterize the traffic present within the various obser-
vation points. Table 6 characterizes the protocols within
select observation points in the three datasets and provides
deeper insight into the presence of important servers and the
general usage of the observation points.

6 Mitigation

Undoubtedly, there are mitigation strategies that could
be implemented by publishing organizations to foil the in-
ference attacks demonstrated in this paper. A simple strat-
egy for preventing the creation of network topology maps
is simply to publish only anonymized NetFlow logs, or to
remove link layer headers from packet traces, thereby re-
moving the hardware addresses of routing devices. Addi-
tionally, the exclusion of ARP traffic makes it more difficult
to discover link layer topology information.

By remapping port numbers, publishing organizations
hinder the ability of an attacker to directly infer services
offered within the private network and makes the creation
of behavioral profiles more difficult. Note, however, that
methods do exist to determine the true service based on the
application layer protocol behavior, e.g., [31, 9, 18, 16, 7].
Also, because behavioral profiling is less effective when
similar profiles are shared among a large number of hosts
(note, for example, the results for HTTP versus SMTP
servers), it may be possible to improve the privacy of
the dataset by removing the hosts whose behavior is most
unique. Finally, hiding the true identity of the publishing
organization makes it more difficult for an attacker to gather
the necessary information to mount the inference attacks
presented. However, this begs the question as to how dif-
ficult it would be for an attacker to still infer the publishing
organization.

It must be noted, however, that these mitigation strate-
gies destroy the research value of the data to varying de-
grees. For instance, header information and port numbers
are important to several areas of network research. The re-
moval of unique hosts may dramatically affect traffic char-
acteristics within the dataset. Furthermore, hiding the iden-
tity of publishing organizations can make verification of re-
sults obtained from the trace data difficult.

Of course, there are other, non-technical, means of
providing privacy protection for data publishers. One
method—employed by data repositories such as Predict and
CRAWDAD [23, 8]—is to impose legal requirements that
the data will be used appropriately, and that adequate lev-
els of protection will be put in place for accessing the data.
Another possibility is to require that data remain only on
secured servers to which researchers have remote access.
Violations of these requirements, particularly the former,
can be difficult to detect, however. An even more cumber-
some approach is to require that analysis be performed by

trusted individuals from the publishing organization itself,
thereby preventing any direct access to the data by third par-
ties. While inefficient, this method allows for better privacy
than is offered by anonymization methodologies currently
in use. That said, it may also significantly impede many
types of research.

7 Conclusion and Future Work

In this paper we provide new algorithms for inferring
sensitive information from network traces that have been
anonymized using state-of-the-art techniques. Our work
shows that network topology information can be inferred
as an artifact of usable network packet traces, and that be-
haviors of hosts are an important piece of identifying infor-
mation that can be leveraged to subvert an anonymization
system. At the least, our evaluation shows that selective re-
covery of sensitive information from anonymized network
data is not as difficult as once thought [10, 19]. Moreover,
obfuscating behavioral and network topology information
is not a trivial task. Hence, although there are substantial
benefits from releasing anonymized data, publishers of such
data need to be more cognizant of the thin line between the
utility of the data and the privacy it provides.

Our results naturally raise questions as to what network
trace data, if any, should be released for research. This,
however, is a policy decision that we believe each network
owner must make for himself. The results reported in this
paper should not be construed as an indication of our opin-
ion on the propriety of releasing network data in any par-
ticular form. Rather, our goal has simply been to inform
the continuing debate over the release of network traffic for
research purposes. It is our belief that the creation of any
overarching policy should be formulated through the com-
bined perspective of the network security research commu-
nity as a whole.

On the technical front, our study underscores the need
for a better understanding of the conditions under which
a particular anonymization method (e.g., prefix-preserving
anonymization for IP addresses) may provide an adequate
privacy solution for a particular set of network traces. For
instance, while this paper has shown that servers are at risk
of deanonymization through behavioral profiling, it remains
unclear to what extent the privacy of clients is threatened.
Indeed, if the lack of client privacy turns out to be a seri-
ous issue, then a prudent course of action is to re-examine
which types of transformation are appropriate solutions to
the problem. As part of future work, we intend to explore a
formal framework for examining this question, and in par-
ticular, for expressing the privacy properties of anonymiza-
tion techniques in general.

11

Acknowledgments

The authors would like to thank Michael Bailey and
Patrick McDaniel for their suggestions for improving an
earlier draft of this work. We also thank the anonymous
reviewers for their insightful comments. This work is sup-
ported in part by NSF Grant CNS-0546350.

References

[1] F. Baccelli and K. B. Kim. TCP Throughput Analysis Under
Transmission Error and Congestion Losses. In Proceedings
of IEEE INFOCOM, pages 2833–2843, March 2004.

[2] M. Bishop, B. Bhumiratana, R. Crawford, and K. Levitt.
How to Sanitize Data. In Proceedings of the 13th IEEE
International Workshops on Enabling Technologies: Infras-
tructure for Collaborative Enterprises, pages 217–222, June
2004.

[3] T. Brekne and A. Årnes. Circumventing IP-Address
Pseudonymization. In Proceedings of the 3rd IASTED In-
ternational Conference on Communications and Computer
Networks, October 2005.

[4] T. Brekne, A. Årnes, and A. Øslebø. Anonymization of IP
Traffic Monitoring Data – Attacks on Two Prefix-preserving
Anonymization Schemes and Some Proposed Remedies. In
Proceedings of the Workshop on Privacy Enhancing Tech-
nologies, pages 179–196, May 2005.

[5] H. Chang, S. Jamin, Z. M. Mao, and W. Willinger. An Em-
pirical Approach to Modeling Inter-AS Traffic Matrices. In
Proceedings of the ACM SIGCOMM Internet Measurement
Conference, October 2005.

[6] Cisco IOS NetFlow. http://www.cisco.com/go/
netflow.

[7] M. P. Collins and M. K. Reiter. Finding Peer-to-Peer File-
Sharing Using Coarse Network Behaviors. In Proceedings
of the 11th European Symposium on Research in Computer
Security, pages 1–17, September 2006.

[8] CRAWDAD: A Community Resource for Archiving Wire-
less Data at Dartmouth. http://crawdad.cs.
dartmouth.edu.

[9] J. Early, C. Brodley, and C. Rosenberg. Behavioral authen-
tication of server flows. In Proceedings of the 19th Annual
Computer Security Applications Conference, pages 46–55,
December 2003.

[10] J. Fan, J. Xu, M. H. Ammar, and S. B. Moon. Prefix-
preserving IP Address Anonymization: Measurement-
based Security Evaluation and a New Cryptography-based
Scheme. Computer Networks, 46(2):253–272, 2004.

[11] A. Gunnar, M. Johansson, and T. Telkamp. Traffic Matrix
Estimation on a Large IP Backbone - A Comparison on Real
Data. In Proceedings of the ACM SIGCOMM Internet Mea-
surement Conference, pages 149–160, October 2004.

[12] P. Gupta and N. McKeown. Packet Classification Using Hi-
erarchical Intelligent Cuttings. In Proceedings of Hot Inter-
connects VII, pages 147–160, 1999.

[13] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and
D. Towsley. Measurement and Classification of Out-of-
Sequence Packets in a Tier-1 IP Backbone. In Proceedings
of IEEE INFOCOM, pages 1199–1209, April 2003.

[14] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and
D. Towsley. Inferring TCP Connection Characteristics
Through Passive Measurements. In Proceedings of IEEE
INFOCOM, pages 1582–1592, March 2004.

[15] H. Jiang and C. Dovrolis. Source-Level IP Packet Bursts:
Causes and Effects. In Proceedings of ACM SIGCOMM In-
ternet Measurement Conference, October 2003.

[16] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. BLINC:
Multilevel Traffic Classification in the Dark. In Proceedings
of ACM SIGCOMM, pages 229–240, August 2005.

[17] P. McDaniel, S. Sen, O. Spatscheck, J. V. der Merwe,
W. Aiello, and C. Kalmanek. Enterprise Security: A Com-
munity of Interest Based Approach. In Proceedings of Net-
work and Distributed Systems Security, February 2006.

[18] A. W. Moore and D. Zuev. Internet Traffic Classification Us-
ing Bayesian Analysis Techniques. In Proceedings of ACM
SIGMETRICS, pages 50–60, June 2005.

[19] R. Pang, M. Allman, V. Paxson, and J. Lee. The Devil and
Packet Trace Anonymization. ACM Computer Communica-
tion Review, 36(1):29–38, January 2006.

[20] R. Pang and V. Paxson. A High-Level Environment for
Packet Trace Anonymization and Transformation. In Pro-
ceedings of SIGCOMM, pages 339–351, August 2003.

[21] K. Papagiannaki, N. Taft, and A. Lakhina. A Distributed
Approach to Measure IP Traffic Matrices. In Proceedings
of the ACM SIGCOMM Internet Measurement Conference,
pages 161–174, October 2004.

[22] V. Paxson. Strategies for Sound Internet Measurements. In
Proceedings of the ACM SIGCOMM Internet Measurement
Conference, pages 263–271, October 2004.

[23] PREDICT: Protected Repository for the Defense of In-
frastructure Against Cyber Threats. http://www.
predict.org.

[24] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet
Classification Using Multidimensional Cutting. In Proceed-
ings of ACM SIGCOMM, pages 213–224, August 2003.

[25] A. Slagell, J. Wang, and W. Yurcik. Network Log
Anonymization: Application of Crypto-PAn to Cisco Net-
Flows. In Proceedings of NSF/AFRL Workshop on Security
Knowledge Management, September 2004.

[26] A. Slagell and W. Yurcik. Sharing Computer Network Logs
for Security and Privacy: A Motivation for New Methodolo-
gies of Anonymization. In Proceedings of SECOVAL: The
Workshop on the Value of Security through Collaboration,
pages 80–89, September 2005.

[27] TCPdPriv. http://ita.ee.lbl.gov/html/
contrib/tcpdpriv.html.

[28] TCPurify. http://irg.cs.ohiou.edu/

˜eblanton/tcpurify/.
[29] V.Paxson. Bro: A System for Detecting Network Intruders

in Real-Time. Computer Networks, 31(23-24):2435–2463,
December 1999.

[30] R. Wang, G. Pau, K. Yamada, M. Y. Sanadidi, and M. Gerla.
TCP Startup Performance in Large Bandwidth Delay Net-
works. In Proceedings of IEEE INFOCOM, pages 796–805,
March 2004.

12

[31] C. V. Wright, F. Monrose, and G. M. Masson. On Infer-
ring Application Protocol Behaviors in Encrypted Network
Traffic. Journal of Machine Learning Research, Special
Topic on Machine Learning for Computer Security, To ap-
pear, 2006.

[32] Y. Xiang, J.-C. Liu, K. G. Shin, and W. Zhao. On the Model-
ing and Optimization of Discontinuous Network Congestion
Control Systems. In Proceedings of IEEE INFOCOM, pages
2812–2820, March 2004.

[33] K. Xu, Z. Zhang, and S. Bhattacharyya. Profiling Internet
Backbone Traffic: Behavior Models and Applications. In
Proceedings of ACM SIGCOMM, pages 169–180, August
2005.

[34] Y. Zhang, M. Roughan, C. Lund, and D. Donoho. An
Information-Theoretic Approach to Traffic Matrix Estima-
tion. In Proceedings of ACM SIGCOMM, pages 301–312,
August 2003.

A Crypto-PAn

To illustrate the flaw in Crypto-PAn, consider the case
where a single anonymized address a′ = a′1a

′
2. . .a

′
n−1a

′
n

has been deanonymized to reveal its true address a =
a1a2. . .an−1an. Then, because of the prefix-preserving na-
ture of Crypto-PAn’s transformation, the attacker also learns
the pseudonym for the address a∗ = a1a2. . .an−1ān. Be-
cause a and a∗ share a prefix of length n − 1, the attacker
knows that their pseudonyms, a′ and a∗′, must also share
an n − 1 bit prefix. Therefore the only valid pseudonym
for a∗ must be a∗′ = a′1a

′
2. . .a

′
n−1ā

′
n. In general, for any

remaining anonymized host with pseudonym address b′, the
attacker can remove m + 1 bits of uncertainty about the
host’s true address b by deanonymizing a host which shares
an m-bit prefix with b.

1

0 1

1
1
0

1
1
1

1
0
0

1
0
1

0 1

0
1
0

0
1
1

0 1

0
0
0

0
0
1

0 Unknown bits

Known bits

Compromised
address

Inferred bits

0 1 0 1 0 1

Inferred
address

Figure 2. Binary tree with nodes indicating bits of the
anonymized address. Root indicates left-most bit, and shaded
nodes indicate compromised bits where the mapping to the
unanonymized address is known.

For concreteness, consider a simple example with n = 3,
given by the binary tree in Figure 2. At the onset, the
anonymization maintains 7 bits of uncertainty with regard
to the permutation used to anonymize the addresses. In
other words, there are 128 possible permutations that are
allowed by the prefix-preserving anonymization, and each
of those permutations is equally likely. Suppose that we are

then able to deanonymize the address 011, as shown in Fig-
ure 2. In this case, the bits represented by the shaded nodes
are now compromised and therefore lose their uncertainty.
The remaining, unknown bits provide 4 bits of uncertainty
for this anonymization, or 16 valid permutations for the re-
maining addresses. In this example, a single deanonymiza-
tion provides an 87% reduction in the anonymized address
space. This reduction can lead to further deanonymization
as the set of possible permutations remaining allows the at-
tacker to better refine their search for public information and
thereby deanonymize more hosts.

As can be seen by this simple example, within conserved
anonymization spaces a single deanonymization can be dev-
astating to the CryptoPAn anonymization system. For in-
stance, consider the application of CryptoPAn to the Johns
Hopkins University trace given in Section 4. This trace con-
tains a subnet with an address space of 28 and an associated
anonymized address space with 255 bits of uncertainty. To
deanonymize this entire space requires a significant number
of individual deanonymizations, 128 to be exact. In prac-
tice, however, organizations frequently allocate addresses
in contiguous fashion. This concentrates the density of
hosts within a conserved subtree of the entire anonymiza-
tion space, in essence reducing the entire tree with 255 bits
of uncertainty to a substantially smaller subtree. These re-
alistic scenarios underscore the danger of using the prefix-
preserving anonymization methodology advocated by Fan
et al. in CryptoPAn, and shows that the methodology is
certainly much more dangerous than the analysis in [10]
suggests. Recent work by Brekne et al. takes advantage
of this very weakness by using active probing attacks to
deanonymize a small subset of hosts within anonymized
datasets, which in turn leads to the complete deanonymiza-
tion of all hosts within the dataset [4, 3].

We note that the approach of Pang et al. does not fall
prey to this attack, as they instead use a customized prefix-
preserving scheme that decouples the host and subnet por-
tions of the IP address. Specifically, Pang et al. use Cryp-
toPAn only to anonymize external addresses, but performs
a pseudo-random permutation on the subnet and host por-
tions of internal addresses. This decoupling still allows for
the compromised host’s subnet portion of the address to be
deanonymized with the use of our attacks, but the other
hosts’ bits retain their uncertainty as do all other subnets
within the dataset.

13

