
Practical Approach to Anonymity in Large Scale

Electronic Voting Schemes

Andreu Riera, Joan Borrell
Departament d'Inform�atica | Universitat Aut�onoma de Barcelona

Edi�ci C | 08193 Bellaterra | Catalonia (Spain)
E-mail: fariera,jborrellg@ccd.uab.es

Abstract

Anonymity of ballots in electronic voting schemes

usually relies on the existence of some kind of anony-

mous channel between voters and ballot collecting au-

thorities. Currently, there exist solutions based on the

mix concept, which allow for anonymous e-mail com-

munications. However, integration of such solutions

into the implementation of a voting scheme has some

problems. In this paper we propose a large scale voting

scheme based on the concurrent operation of multiple

electronic electoral colleges, with no need for indepen-

dent anonymous channels. Anonymity of ballots is as-

sured by shu�ing of ballot boxes by a set of mobile

agents acting on behalf of a central voting authority.

Our voting scheme is totally self-contained and suit-

able to be implemented over large internets.

1. Introduction

The objective of electronic voting schemes is to allow
elections to take place securely over general-purpose
and open computer networks. During the ballot col-
lecting process, a set of eligible voters use the computer
network to cast their ballots. After some time, the sys-
tem stops accepting ballots. The counting process is
initiated and, �nally, the tally is published.

Di�erent security requirements for voting schemes
have been proposed. The following list includes the
most widely accepted ones [2, 7]:

Accuracy: A voting scheme is accurate if (1) it is
not possible for a validated ballot to be altered,
(2) it is not possible for a validated ballot to be
eliminated from the �nal tally, and (3) it is not
possible for an invalid ballot to be counted in the
�nal tally.

Democracy: A voting scheme is democratic if (1) it
permits only eligible voters to vote, and (2) each
eligible voter can vote only once.

Privacy: A voting scheme is private if (1) neither bal-
lot collecting authorities nor anyone else can link
any ballot to the voter who has cast it, (2) no voter
can prove that he or she voted in a particular way,
and (3) all ballots remain secret while the voting
is not completed.

Veri�ability: A voting scheme is veri�able if voters
can independently verify that their ballots have
been counted correctly.

The �rst privacy property, known as anonymity, is
probably the cornerstone of secure voting schemes.
There are no obvious solutions to anonymity, since
in order to preserve the democracy requirement, vot-
ing authorities responsible for collecting ballots should
have assurance of the identity of voters who contact
them. The most widely accepted solution to this prob-
lem found in the literature consists of assuming the
existence of an anonymous communication channel. A
voter casts his or her ballot in two sessions. The objec-
tive of the (non-anonymous) �rst session is to assure
the democracy requirement. This is achieved by au-
thenticating the voter and providing him or her with
some sort of one-time voting token or authorization.
Some cryptographic mechanism is usually involved in
this step to prevent voting authorities from knowing
exactly which authorization each voter has received.
The second session consists of using the anonymous
channel to cast the desired vote, together with the au-
thorization, to the appropriate ballot collecting author-
ity.

Most references on electronic voting schemes do not
specify how the required anonymous channel can be
implemented. Nonetheless, anonymous channels are

1 of 14

normally implemented by a sequence of mixes (a mix-
net). The concept of a mix was �rst introduced in [3].
Even though current implementations of this concept
can realistically be used for anonymous e-mail commu-
nications, they have disadvantages (listed in Section 2)
when used as anonymous channel between voters and
ballot collecting authorities in voting schemes.

This paper presents a voting scheme based on the
concept of electronic Electoral College (EC) introduced
in [13]. An EC is responsible for collecting ballots from
a reduced set of registered voters. By coordinating a
number of concurrent ECs, the voting scheme is scal-
able and therefore it may be used to perform large scale
elections over large internets. Moreover, the voting
scheme does not need any mix-net or any other means
of independent anonymous channel. Only the usual
communication facilities of networks are required. Vot-
ers cast the desired ballots, specially enveloped, to the
respective ECs during a single non-anonymous voting
session. In this way, every EC accumulates enveloped
ballots in its own ballot box. The desired anonymity is
provided by shu�ing ballot boxes a number of times.
The process of shu�ing ballot boxes is implemented at
the end of the election by a set of mobile agents. See [5]
for an introduction to mobile agents and a description
of a possible security infrastructure to operate them.

Our proposal represents a concrete solution to the
anonymity of electronic voting schemes which does not
rely on any external mixes. Only the components
of the voting system themselves are needed. Still,
anonymity of ballots is provided through the same
functionality which constitutes the essence of mix-nets.
In particular, the processing of ballots described in this
paper is strongly based on the mixing techniques pre-
sented in [8]. The results of this paper allow the de-
velopment of an anonymous voting scheme totally self-
contained, thus solving one of the currently most im-
portant issues concerning practical implementation of
secure voting schemes. In addition, all disadvantages
inherent to the use of mix-nets in voting schemes are
removed.

The rest of the paper is structured as follows. In
Section 2, the concept of a mix-net is reviewed, and the
disadvantages of its use in electronic voting schemes
are listed. Section 3 is devoted to the operation of
our voting scheme. The set of voting authorities and
the procedures performed during each of the election
phases are described. In Section 4 we discuss how the
proposed scheme assures anonymity. The ful�llment of
all other security requirements is discussed in Section
5. Finally, Section 6 contains the conclusions of the
paper.

2. Use of mix-nets in voting schemes

Implementing an anonymous channel in a computer
network is not a straightforward matter. Communica-
tion protocols include headers in each datagram which
contain both source and destination addresses. Among
the proposals for anonymous channels found in the lit-
erature, the most suitable to be implemented are those
in [3] (the �rst paper dealing with anonymous commu-
nications) and [12]. Nonetheless, a successful attack
against [12] is described in [11]. There are possible
countermeasures, but they actually make the proposal
equivalent to that in [3]. As a consequence, anonymous
channels are normally implemented in computer net-
works by using the concept of a mix described in [3],
or slight variations of it (see for example [8]).
A mix is an entity that, in addition to forwarding

incoming messages, hides the relationship between in-
coming and outgoing messages. This is done by group-
ing together a number of incoming messages, replacing
the original source addresses by the address of the mix
itself, shu�ing the messages and, �nally, forwarding
them to the intended recipients. Both the contents
and the destination address of any message sent to a
mix are encrypted. Decryption has to be possible only
by the mix. To prevent correlation between encrypted
incoming messages and decrypted outgoing messages,
successive encryptions of the same message should give
di�erent results. It is also necessary that all messages
have uniform length. Otherwise, every outgoing mes-
sage could be correlated to the incoming message(s) of
the same length.
Using a mix as a common message forwarder for a

group of users assures unlinkability of senders and re-
ceivers to anyone except to the mix itself. To avoid
having to trust a single entity, several mixes are ar-
ranged in a sequence, thus constructing a mix-net as
depicted in Figure 1. Messages are processed by each
mix, in turn. In a mix-net, a single mix is required
to be honest in order to prevent other mixes from cor-
relating incoming and outgoing messages to/from the
mix-net. Still, if all mixes collude, the origin of every
outgoing message can be traced back.
Currently, implementations of the mix concept are

available on the Internet [8, 6], but they are oriented to
e-mail communications. Furthermore, the use of mix-
nets in voting schemes has some disadvantages:

� Delivery of ballots to ballot collecting authorities
is performed during the voting process, so that the
third privacy property cannot be properly assured.

� Two di�erent sessions are required to cast a ballot.
One is to obtain a voting authorization from a

2 of 14

...shufflingshuffling shuffling

of messages of messagesmessagesof

SENDER 3

SENDER 2

SENDER 1

MIX 1 MIX 2 MIX n

RECIPIENT 2

RECIPIENT 3

RECIPIENT 1

Figure 1: Schematic diagram of a mix-net architecture.

certain voting authority, and the other to cast the
ballot through the mix-net.

� Malicious voters can obtain valid authorizations
and then skip casting their ballots. When the tally
is published, they can claim that the voting system
has removed validated ballots.

� Under low tra�c conditions (i.e. at moments when
few ballots are cast), mixes introduce random-
looking decoy ballots. However, ballot collecting
authorities are able to di�erentiate between valid
ballots and decoy ballots. Therefore, this mecha-
nism does not assure anonymity if ballot collecting
authorities are undertaking tra�c analysis tasks.
In addition, it increases the load on the system.

� The whole voting system relies very much on a set
of external entities.

3. Operation of the voting scheme. Elec-
tion phases

Operation of our voting scheme is based on the hier-
archical arrangement of voting authorities presented in
[13]. A global Election Authority (EA) of permanent
nature is situated at the root of the hierarchy. The
EA is in charge of the whole election and it is respon-
sible for the creation and maintenance of the electoral
roll. Actually, it represents the electronic version of the
o�cial authority in charge of elections in most coun-
tries. The EA plays a central role in the security of
the scheme. As in the case of regular elections, it has
to be considered a trusted and secure entity. If the EA
is compromised, the whole system may be defeated.
For this reason, the EA should be operated o�-line, by
expert and trusted personnel. Ballot collecting capa-
bilities are distributed among a set of ECs, situated
at the leaves of the hierarchy. Every EC receives bal-
lots from a relatively small group of registered voters.

Every voter has to interact only with the EC which
he or she is registered to. Figure 2 represents graphi-
cally the described hierarchical model. The existence
of multiple concurrent ECs prevents the existence of
bottlenecks in large scale elections.
The operation of our voting scheme can be divided

in three phases: preliminary phase, voting phase, and
shu�ing phase. The procedures undertaken during
each of these phases will be described in separate sub-
sections. Speci�c notation will be introduced as it be-
comes necessary. Nonetheless, we use the following
general notation:

� EA: The Election Authority.

� ECi: Identi�er of the i-th Electoral College.

� V : A particular Voter.

� Pentity and Sentity : The asymmetric key pair (re-
spectively, public key and private key) owned by
entity.

� Pentity [M]: Digital enveloping of message M to
recipient entity. This comprises the symmetric
encryption of M with a random session key, and
the asymmetric encryption of that key with public
key Pentity .

� Sentity [M]: The digital signature of message M
created with the private key of entity over a digest
of M . For our purposes, Sentity [M] denotes both
message M in clear and the associated signature.

� HfMg: Digest of messageM produced by an one-
way hash function.

� M1 j M2: Concatenation of messagesM1 and M2.

� vote: A data string which uniquely identi�es one
of the voting options.

� elect: A data string identifying the current elec-
tion (e.g. the date).

3 of 14

EC EC EC EC

EA

...

Figure 2: Hierarchical arrangement of voting authorities.

3.1. Preliminary phase

Prior to the preliminary phase, voters and ECs have
to generate their own pairs of asymmetric keys. The
public component of every key pair has to be certi-
�ed by a suitable Certi�cation Authority. Actually,
the process of generation and certi�cation of asym-
metric keys would be common to other applications of
the communicating society (e.g. electronic commerce
or contract signing).
The �rst step to be undertaken during the prelimi-

nary phase consists of the creation of the electoral roll
by the EA, as the list of eligible voters. ITU-T X.500
Directory Service [9] may be used to support the elec-
toral roll in a distributed, standardized, reliable, and
secure manner. It is the task of the EA to decide how
many ECs will be operated, and which EC each voter
will be registered to. All this information is included
in the electoral roll, according to the object entries'
de�nition given in [13].
In addition of the regular asymmetric keys gener-

ated and owned by every participant, the EA gener-
ates, during the preliminary phase, a set of asymmet-
ric key pairs which will be useful only for the current
election. For each EC, an special list of n asymmetric
key pairs is generated. The public keys will be used by
voters for anonymity purposes. The parameter n rep-
resents the number of times that ballot boxes will be
shu�ed during the shu�ing phase. Since it has great
impact on the security and complexity of the scheme
(to be discussed in Section 4) the value of parameter n
has to be accurately determined by the EA. Higher val-
ues of n mean higher security. However, lower values
mean less complexity.
We denote by (P 1

i ,S
1
i), (P

2
i ,S

2
i), � � � (P

n
i ,S

n
i) the n

asymmetric key pairs (respectively, public and private
key) generated by the EA for ECi. Private keys are

kept secret by the EA. The list of public keys (the
order of keys is relevant) is signed by the EA, together
with the identi�er of the current election (elect) and
the identi�er of ECi itself (the Distinguished Name
included in the certi�cate of ECi can be used as its
identi�er):

SEA[P
1
i j P 2

i j � � � j Pn
i j elect j ECi]

This data is sent to ECi together with other
security-related information that we will introduce in
Subsection 3.3 and with any other administrative infor-
mation needed during the preliminary phase. There-
fore, only one communication step is required during
this phase between the EA and each EC.

3.2. Voting phase

During the voting phase, every voter contacts his
or her corresponding EC to cast the desired ballot in
a single session. The voting protocol executed during
these voting sessions is outlined in Figure 3.
The initial step consists of the establishment of a

security context between voter and electoral college,
which may be based on the Simple Public-Key Mecha-
nism (SPKM) [1] accessed through GSS-API [10]. This
GSS-API mechanism consists of an initial (bilateral,
for our purposes) authentication and an authenticated
key establishment, which allow for further data inter-
changes using message authenticity, integrity and con-
�dentiality services. Even though not all these security
services would really be needed in all subsequent steps
of the voting protocol, the associated overheads are
low and the complexity of the implementation remains
the same. Therefore, for simplicity, we have considered
their use in all the steps. However, to improve readabil-
ity, we do not represent the provision of these services

4 of 14

VOTER V ELECTORAL

COLLEGE ECi

� -
Security context establishment (for SPKM)

step 1 -
Hfvoteg j elect (blinded)

step 2 �
SECi

[Hfvoteg j elect] (blinded)

step 3 �
SEA[P

1
i j P 2

i j � � � j Pn
i j elect j ECi]

step 4 -
SV [P

1
i [P

2
i [� � �P

n
i [PECi

[SECi
[Hfvoteg j elect] j vote]] � � �]]]

step 5 -
SV [V j elect]

��

HH

Con�dentiality

Authenticity

Integrity

(via SPKM)

Figure 3: Outline of the voting protocol.

together with the interchanged data in each of the steps
of Figure 3, but o� to side. For the same reason, the
protocol is presented as if it comprised �ve steps. Ac-
tually, the protocol would consist of only three steps,
since steps 2 and 3 (and 4 and 5) would really be a
single step.

As a consequence of the initial bilateral authentica-
tion, ECi gains assurance of the identity of the voter
V who is contacting it, and vice-versa. The electoral
roll has to be consulted by ECi at this point to check
whether V is an eligible voter, whether V is registered
to ECi, and whether V has not voted yet. After V has
been authenticated and following the consultation of
the electoral roll by ECi, V can eventually be autho-
rized to cast a ballot. If the chosen vote was sent to
ECi protected by means of the con�dentiality service
o�ered by GSS-API, this would assure privacy of bal-
lots against eavesdroppers. However, ECi would know
in which way any of its registered voters has voted.
Moreover, ECi would be able to do selective receipt:
after examining the received vote in clear, ECi could
decide whether to accept the ballot or reject it.

To properly assure anonymity and to prevent selec-
tive receipt, ECi has to be committed to vote, without
knowing what vote really is. This could be achieved by

requiring the voter to send a digest of the vote obtained
through a one-way hash function, Hfvoteg, and then
requiring ECi to sign the received digest. However, a
blind signature mechanism [4] has to be used, in order
to prevent ECi from being able to defeat anonymity,
since vote will �nally be published on the tally. A blind
signature mechanism consists of masking the message
to be signed through a random \blinding factor" so
that the signer cannot derive any useful information
from the \blinded" message. After the blinded mes-
sage has been signed, the originator of the message is
able to remove the blinding factor, thus obtaining the
true signature of the signer over the original intended
message.

In step one of the voting protocol, V sends (blinded)
Hfvoteg j elect to ECi. Actually, if vote consists of few
bits (less than the number of bits of the outcome of the
hash function), some random padding should be added
before computing the digest Hfvoteg. The inclusion of
the string elect in the message sent to ECi is justi�ed
to produce validated ballots which are valid only for
the current election. In step two, V receives the blind
signature of ECi over this data. This validation string
received from ECi proves that vote is a valid vote for
the current election and therefore it makes impossible

5 of 14

for ECi to later reject the ballot.

Since ECi is blindly signing the received data, there
is no way to prevent a malicious voter from accompany-
ing Hfvoteg with a wrong election's identi�er. In fact,
ECi could be required to sign any other kind of more
dangerous statements. To prevent these attacks, blind
signatures have to be combined with cut-and-choose
techniques [16]. In this way, in step one V sends in fact
to ECi a certain number, say p, of blinded messages.
ECi chooses at random one of the received messages
and requests V to reveal the blinding factor of all other
messages. By checking that all p � 1 unblinded mes-
sages are of the correct form, ECi is convinced that the
message that still remains blinded is also of the same
form. The probability of the voter successfully getting
the signature of ECi on a malicious message is 1=p,
which can be made as small as desired. Note that use
of cut-and-choose techniques does not reveal the way
in which the voter is voting since only digests of the
vote with some random padding become known.

Step three of the voting protocol consists of sending
to V the signed list of public keys received by ECi

from the EA during the preliminary phase. V veri�es
EA's signature to check the authenticity of this data.
After that, V is convinced that this is the precise list
of public keys the EA has generated for ECi, for the
current election. V creates now his or her ballot as the
concatenation of the validation string obtained from
ECi in step two, and the desired vote. This ballot is
enveloped to be readable only by ECi. Next, the list
of public keys P j

i are used in turn, from Pn
i to P 1

i , to
successively envelope the ballot n more times. At each
enveloping operation, a new random symmetric key is
chosen. This key is used to encipher all data resulting
from previous enveloping. The symmetric key itself
is then asymmetrically encrypted using the public key
corresponding to the current step.

Figure 4 depicts the format of a successively en-
veloped ballot of this form. Ellipses represent asym-
metric encryptions while boxes represent symmetric
encryptions. All data contained within an ellipse is
asymmetrically encrypted with the public key situated
at the top right corner of the ellipse. In the same way,
the contents of a box are symmetrically encrypted with
the key situated at the top right corner of the box. All
symmetric keys (in the �gure denoted as K1, K2, � � �
Kn+1) are random session keys. In contrast, public
asymmetric keys are those already de�ned in Subsec-
tion 3.1.

After all enveloping steps are done, V signs the re-
sulting data. The enveloped ballot and the associated
signature are sent to ECi in step four. ECi adds the
received ballot to its ballot box. V 's signature of the

ballot is stored separately. Finally, in step �ve, V sends
to ECi a proof that he or she has voted for this elec-
tion. This proof consists of V 's signature of his or her
own identity and the identi�er of the current election.
ECi has to store the list of all such proofs. These data
will be published, together with the tally, at the end
of the election.
After this last step, ECi updates the electoral roll,

crossing o� V 's entry to indicate that he or she has
already voted. After that, the session between V and
ECi is closed.

3.3. Shu�ing phase

At the end of the voting phase, when ECs stop ac-
cepting ballots from voters, each EC owns a ballot box
containing successively enveloped ballots. Only the EA
has knowledge of private keys needed to open the dig-
ital envelopes, except the innermost one which can be
opened only by the adequate EC. The task of opening
envelopes over ballots will be done by a set of mo-
bile agents launched by the EA and that will use ECs
themselves as agent servers. In this way, election tasks
remain naturally distributed at the leaves of the voting
hierarchy and the system keeps on being free of bot-
tlenecks. The EA itself does not have to process even
a single ballot. Even though the same goals could be
achieved without using mobile agents, distribution of
shu�ing software and cryptographic keys can be made
in a secure and elegant way using this technology. In
addition, our model based on mobile agents allows for
an easier coordination by the EA, while keeping the
responsibilities of ECs at a minimum.
Since the agent server which hosts a mobile agent

has full control over it, mobile agents should not open
ballots' envelopes at the same EC which has collected
the ballots. This would allow every EC to break
anonymity. Instead, other ECs have to be used as
agent servers. In order to simplify the reading of the
text, from now on we will refer to ECs as shu�ing

servers when they act as agent servers hosting mobile
agents which shu�e ballot boxes of other ECs during
the shu�ing phase.
At the beginning of the shu�ing phase, the EA

launches a mobile agent to every EC. These mobile
agents consist of two parts. First, the code, which is
identical for all of them. Second, the so-called baggage,
data carried by mobile agents across the network and
processed at agent servers. The baggage carried by ev-
ery mobile agent is unique and it is initially set by the
EA, before launching the mobile agent. In addition of
this initial baggage, each mobile agent is responsible
for fetching the ballot box from the EC where the mo-
bile agent has been launched to. The ballot box is then

6 of 14

i
nP

PEC n+1K

2K 1K

nK

P1
i

K2K1 Kn Kn+1

Pi
2

... i
validation

string vote

Figure 4: Format of a successively enveloped ballot.

added to the baggage and taken to n shu�ing servers,
in turn. We denote by EC1

i , EC
2
i , � � � EC

n
i the shuf-

ing servers which host the mobile agent responsible
for the ballot box of ECi. The list of shu�ing servers
will be referred as a shu�ing sequence. At each vis-
ited shu�ing server, a mobile agent opens one envelop-
ing layer of ballots and shu�es the whole ballot box,
thus implementing the mix functionality. The reason
of performing more than a single shu�ing step is to
strengthen security, in the same way that a mix-net is
made up of several mixes.

To be able to open digital envelopes over ballots,
every mobile agent has to carry the list of required n
private keys. However, private keys cannot be carried
in clear. This would allow any shu�ing server (and ac-
tually anyone who intercepts a mobile agent during one
of its hops across the network) to gain knowledge of the
private keys. With this knowledge and the collabora-
tion of the EC which collected the ballots, anonymity
may be defeated.

Private keys required to open envelopes over ballots
should ideally be known only by the corresponding mo-
bile agent, acting on behalf of the EA. Unfortunately,
agent servers cannot be prevented from gaining knowl-
edge of the data which is handled by the mobile agents
they host. For this reason, the best way to protect pri-
vate keys carried by mobile agents is to encrypt them,
allowing decryption of each private key by only one
shu�ing server. Each private key has then to be used
only at the server where it can be decrypted. To allow
this process, the initial baggage of any mobile agent
when it is launched consists of n+ 1 entries, as repre-
sented in Figure 5 (note that the �rst entry is a special
one which contains no private key). Each entry is en-
veloped by the EA to be readable only by one of the
shu�ing servers (�rst entry is readable only by the
EC which has collected the ballots). For coherency, in
Figure 5 we have represented digital enveloping of the
n + 1 baggage entries using the same graphical nota-

tion as in Figure 4. However, symmetric keys K, K1,
� � � Kj , � � � Kn are random session keys which have no
relation with those used in Figure 4. Respective en-
tries can be identi�ed by shu�ing servers through the
entries' identi�ers, randomly chosen by the EA during
the preliminary phase. The entries' random identi�ers
are represented in the �gure by square boxes �lled with
di�erent patterns. First entry is not accompanied by
any random identi�er. This entry can be identi�ed by
ECi because of its position.

In a fair distribution of shu�ing responsibilities, all
ECs have to act as shu�ing servers for the same num-
ber of ballot boxes. This leads to the conclusion that
every EC has to be included as shu�ing server in n
di�erent shu�ing sequences. In this way, every server
has to be provided by the EA with the n distinct bag-
gage entries' identi�ers that it will need. This is actu-
ally done during the preliminary phase, in the single
communication step between the EA and every EC.
In the shu�ing phase, when a shu�ing server receives
a mobile agent, it just has to check the identi�ers of
the baggage entries. When a matching is found with
one of the identi�ers received during the preliminary
phase, it means that the right baggage entry has been
identi�ed. Such entry can therefore be read only if the
shu�ing server's own private key is used to open the
digital envelope that protects it.

Together with the private key Sji required to open
one enveloping layer of ballots, the baggage entry read-
able by the shu�ing server ECj

i contains also the iden-

tity of the next server in the shu�ing sequence, ECj+1
i .

In this way, adequate transmission of the mobile agent
is allowed. The identity of the �rst shu�ing server,
EC1

i , is included in the �rst entry, readable only by
ECi.

When the mobile agent sent by the EA to ECi is
forwarded by ECi to EC

1
i , its baggage comprises two

parts. First, the enveloped entries shown in Figure 5
which are set initially by the EA, and that will re-

7 of 14

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

P

P

P

EC

EC

EC

i i

j j+1
S EC

j

i i

21
S ECnext

i i

n
S EC

K

K1

Kn

i

j

i

1

n

i

randomly ordered

randomly ordered

private
key: server:

private
key:

next
server:

private
key:

next
server:Kj

Kn

K1

P KEC

i

1
EC

i
private
key:

next
server:K voidvoid

Figure 5: Baggage carried by a mobile agent when launched.

main static along the whole shu�ing sequence. Sec-
ond, the ballot box fetched from ECi which will be
processed and modi�ed at each shu�ing server. When
the mobile agent is received by a shu�ing server, the
mobile agent is �rst provided by the server with the
adequate private key once the corresponding baggage
entry has been identi�ed and read. With this private
key, the mobile agent opens the outermost digital en-
velope that protects all ballots in the ballot box. After
this is done, the contents of ballots still appear as gar-
bled bits, due to next enveloping layers. However, the
fact of removing one digital envelope has shortened bal-
lots. To overcome this, the mobile agent has to append
random padding at the end of each ballot, following the
scheme shown in Figure 6. The number of bits added
must equal the number of bits removed, that is the
length of the asymmetric encryption of a symmetric
key. To assure that adding random bits at the end of
a ballot does not a�ect the vote itself, the encryption
algorithm should be such that correct decryption of a
given block depends only on previous blocks, but not
on following blocks. This condition is ful�lled by most
encryption algorithms. After this step of opening en-
velope and padding has been done for all ballots, the
mobile agent shu�es the ballot box (i.e. it randomly
exchanges the position of all ballots). Next, the mobile
agent, with its new version of ballot box, has to be sent
to the next shu�ing server in the sequence.

At the end of the shu�ing sequence, shu�ing server
ECn

i obtains the identity of the original ECi as the
next shu�ing server where to send the mobile agent
(see Figure 5). However, after inspecting the static
part of the baggage of the received mobile agent, ECi

detects that in fact the mobile agent is the same that
originally fetched its ballot box. As a conclusion, the
received ballot box is its own one which has already
been shu�ed n times. Ballots are already protected
only by the innermost envelope. Therefore, ECi can
use its own public key to open the last envelope over
ballots, obtaining �nally a list of readable ballots. Ev-
ery ballot consists of a validation string produced by
ECi itself during the voting phase, followed by the
string vote, and altogether followed by unreadable gar-
bled padding. Since validation strings were produced
through blind signatures, they cannot be used to link
ballots with voters. Still, these validation strings al-
low ECi to verify that ballots have not been tampered
with during the shu�ing process.

4. Discussion

A malicious or tampered mobile agent could accu-
mulate or reveal knowledge of all private keys as they
are being used along the shu�ing sequence. This could
lead to defeat of anonymity. For this reason, whenever
a mobile agent is received by a shu�ing server, the

8 of 14

i
nP

PEC n+1K

2K 1K

nK

P1
i

K2K1 Kn Kn+1

Pi
2

i
nP

PEC n+1K

2K

nK

K2 Kn Kn+1

Pi
2

i
nP

PEC n+1K

2K

nK

K2 Kn Kn+1

Pi
2

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

Padding

Opening
envelope

... i

... i

... i
validation

string vote

validation
string vote

validation
string vote

Figure 6: Opening the outermost envelope over a ballot.

authenticity and integrity of the mobile agent and its
initial baggage must be veri�ed by using the security
infrastructure described in [5]. Basically, the EA's sig-
nature of each mobile agent when it is launched is used
for this purpose. Since the carried ballot box is not ini-
tially signed by the EA and it actually changes from
server to server, its authenticity and integrity have to
be protected at each hop by means of a digital signa-
ture applied by the shu�ing servers themselves. Any
time a server forwards a mobile agent, it must �rst sign
the shu�ed ballot box. This signature can be veri�ed
by the next server. After the signature has been ver-
i�ed, a copy of the received ballot box is stored (the
objective will become clear in Subsection 4.2).

The format of ballots in our scheme is very similar
to the one when using a mix-net composed of n mixes
as de�ned in [8]. In both cases, the size of ballots
corresponds to the size of the vote portion plus n times
the size of the asymmetric encryption of a symmetric
key. Ballots are transmitted across the network n +
1 times, in both cases again. However, when a mix-
net is used, every ballot is transmitted independently
and therefore it requires its own datagram headers.
On the other hand, our scheme requires transmission
of the code of the mobile agents themselves, together
with ballot boxes. Nonetheless, under the parameters
expected for regular elections, the size of the mobile

agents' code would not be signi�cant. As a conclusion,
our scheme implies roughly the same communication
costs than a mix-net composed of n mixes.

Not only communication costs, but also the security
level of our voting scheme is equivalent to the use of
a mix-net. Anonymity of ballots is guaranteed as long
as at least one out of n entities remains honest. As
a consequence, the system becomes more secure as n
is increased. Unfortunately, to increase n means also
to increase network's load during the shu�ing phase.
Therefore, the adequate balance between security and
communication costs must be found by the EA when
deciding the value of n.

In the following discussion we will assume the worst
scenario, i.e. when only one shu�ing server in a shuf-
ing sequence is honest, while all other n � 1 servers
collude with the original EC to try to defeat anonymity
of ballots. If collusion takes place, they cannot skip the
single honest shu�ing server (independently of its posi-
tion within the shu�ing sequence). The corresponding
enveloping layer of ballots can be opened only by using
a private key, which is, in turn, enveloped to be read-
able only by the honest server. Therefore, the only
way for a collusion of n� 1 shu�ing servers to try to
defeat anonymity is by analyzing the input and the
output to/from the single honest server. Both passive
and active attacks are possible.

9 of 14

4.1. Passive attacks

Passive attacks against the single honest shu�ing
server consist of trying to correlate the incoming bal-
lots delivered to it, with the resulting outgoing shu�ed
ballots. This correlation could be done either by con-
tents or by length.
Correlation by contents is not possible because the

enveloping layer of ballots that is opened at the honest
server involves random session keys chosen by voters.
These symmetric keys are known only by the mobile
agent when it is executed at the honest shu�ing server.
The mobile agent destroys (actively erases from mem-
ory) these symmetric keys after being used. In this
way, any passive attacker would have to guess the key
used in each encryption, in order to be able to en-
crypt again outgoing ballots in the same way they were
encrypted when reaching the honest server. This re-
quires trying all possible keys, i.e. a brute-force attack.
The padding that is appended to ballots at the honest
server provides no information at all, since it is ran-
dom. Correlation by length is also prevented because
all ballots are always of the same length.
Note that all ballots in a ballot box arrive to (and

leave from) the honest shu�ing server at the same
time. As a consequence, passive attacks by causal-
ity (i.e. time of arrival and departure) are not possible.
This represents a remarkable di�erence from the use
of a mix-net, since in that case ballots arrive to the
mixes when they are cast by voters and hence at dif-
ferent times.

4.2. Active attacks

Ballots collected during the voting phase by di�er-
ent ECs are enveloped using di�erent lists of public
keys. This makes attacks based on exchanging en-
veloped ballots between ECs unfeasible, because the
exchanged ballots would not be successfully decrypted
in other shu�ing sequences. For the same reason, it
is not possible to include in a ballot box some ballots
from previous elections. Replay attacks based on send-
ing the same ballot box (or some variations of it) more
than one time are prevented if shu�ing servers record
the already-used baggage entry identi�ers. These iden-
ti�ers cannot be modi�ed by attackers because of the
EA's signature of the initial baggage of each mobile
agent. Therefore, active attacks are restricted to those
based on modifying in some way a ballot box before
sending it to the honest shu�ing server. The objec-
tive of such modi�cations is to allow identi�cation of
some ballots after the shu�ing performed at the honest
server. At the end of the shu�ing sequence, identi�ed

ballots could then be traced back to the voters who
cast them.

One way to modify a ballot box in order to allow
future identi�cation of a ballot consists of duplicating
the ballot inside the ballot box. Nonetheless, this at-
tack can be easily detected by the mobile agent when
it is executed at the honest shu�ing server, by check-
ing that all ballots are di�erent. This can be done
by comparing the symmetric keys used in the ballots'
outermost envelopes. If two symmetric keys turn out
to be equal, then with very high probability a ballot
has been duplicated (the chances of two random sym-
metric keys being accidentally equal are insigni�cant).
Attackers could duplicate a ballot and then modify the
(asymmetrically encrypted) symmetric key in the du-
plicate. However, if only a single bit was changed, that
would make the duplicate absolutely indecipherable at
the end of the shu�ing sequence.

Another possible active attack consists of isolating
a ballot inside the ballot box. To do this, all ballots
except one are removed. The ballot box can then be re-
�lled again with other decoy ballots. Decoy ballots can
even end up looking like valid ballots if the original EC
(where the ballot box was fetched from) participates in
the attack. Although anonymity of a single voter would
be a�ected, this kind of attack represents a powerful
threat in the sense that it cannot be detected by the
honest shu�ing server. Moreover, the only possible
countermeasures increase both the complexity of the
scheme and the network's load and, actually, the attack
is still not thwarted completely. For these reasons, our
approach does not try to counteract the attack when it
takes place. Instead, a-posteriori measures are taken.
First, note that the attack becomes very apparent, at
the end of the shu�ing phase. Only one voter of those
registered to a certain EC would be satis�ed with the
published tally. Since our voting scheme is veri�able,
the rest of voters would detect that their respective
ballots have not been counted. In such case, the tally
is suspended by the EA, and the causes of the prob-
lem are analyzed. Even though the attack is very ap-
parent, the identity of the attacker is not obvious. It
could have been the EC, trying to defeat anonymity of
a voter. It could also happen that one (or some) of the
shu�ing servers eliminated ballots. It is even possi-
ble that some voters conspired, sending invalid ballots
during the voting phase to the EC, in an attempt to
undermine the EC's trustworthiness or the reliability
of the whole voting scheme.

To �nd out the origin of the attack, the EA asks ev-
ery server of the shu�ing sequence for a copy of the bal-
lot box received from the previous server. Authenticity
and integrity of these instances of ballot boxes can be

10 of 14

veri�ed by means of digital signatures performed by
shu�ing servers before they forward the mobile agent.
Since the EA knows all private keys used by the mo-
bile agent along the shu�ing sequence, it is able to re-
peat locally all steps, comparing the outcomes with the
signed ballot boxes with which it has been provided.
If one of the shu�ing servers has removed ballots from
the ballot box, the shu�ing server is identi�ed. If this
is not the case, then the root of the problem is located
at the original ballot box fetched by the mobile agent
from the original EC. This means that either the EC
has deliberately substituted certain validated ballots
by invalid ballots, or that some voters have sent invalid
ballots to the EC. Since any EC stores the signatures
of voters of the original enveloped ballots, the EA can
easily discern if the attacker is the EC or, alternatively,
some voters. As a conclusion, given the ease of detec-
tion and fear of reprisals, it can be assumed that this
kind of attack would not take place.

Finally, active attacks may consist of the modi�ca-
tion of a ballot itself. If this modi�cation a�ects any
of the symmetric keys used in the digital envelopes,
it would prevent proper decryption of the ballot. As a
consequence, anonymity of the a�ected voter would not
be defeated. In the same way, assuming that the en-
cryption algorithm is used in a mode such that correct
decryption of a given block depends on previous blocks,
modi�cation of even a single bit of the encrypted blocks
containing the vote portion of the ballot makes the
string vote indecipherable since it is situated in the
last block. Attackers can modify a ballot without af-
fecting either symmetric keys or the vote portion, but
only the random padding, e.g. by adding some con-
cealed identi�cation information. However, this action
is absolutely useless to allow future identi�cation of
the ballot because, at the honest server, the padding
will be symmetrically \decrypted" with the symmet-
ric key used in the (at that moment) outermost digital
envelope of each ballot. This will actually produce the
e�ect of enciphering the padding with a key known
only by the mobile agent.

4.3. Reducing the risk of collusion

When the tally is published, no correlation is pos-
sible between tabulated ballots and the original en-
veloped ballots, unless all of the servers of a shu�ing
sequence collude with the original EC which collected
the ballots. Collusion attempts before the shu�ing
phase are very unlikely because ECs do not know the
identities of the n particular shu�ing servers that will
constitute their shu�ing sequence. To make collusion
attempts during the shu�ing phase more di�cult, we

require that knowledge gained by ECs about their shuf-
ing sequences is minimal. At the beginning of the
shu�ing phase, when an EC receives the correspond-
ing mobile agent from the EA, it is able to read from
the agent's baggage only the identity of the �rst shuf-
ing server. At the end of the shu�ing sequence, when
the mobile agent is received back again, the EC gains
knowledge of the last server. The identities of all in-
termediate servers remain unknown.

Shu�ing servers in the sequence are not able to know
from which EC the ballot box was fetched. This is true
even for the �rst server in the sequence, which does
not know whether the mobile agent is received from
the original EC or from a previous shu�ing server.
Baggage entries' random identi�ers provide no knowl-
edge about the identities of the corresponding shu�ing
servers. Therefore, any server in a shu�ing sequence
gains knowledge only about the identities of the pre-
vious server (where the mobile agent comes from) and
the next server (read from the baggage entry), but not
of the rest.

The time needed for transmission and for process-
ing at each shu�ing server may be di�erent for every
mobile agent. As a consequence, there is no synchro-
nization between the number of shu�ing servers al-
ready visited by every mobile agent. This feature can
actually be reinforced if the EA launches the mobile
agents at di�erent times. Therefore, when a shu�ing
server receives a mobile agent, it cannot deduce from
the time of arrival the number of shu�ing servers pre-
viously visited by the mobile agent (i.e. its own position
within the shu�ing sequence). Entries in the baggage
are carried in random order and therefore their posi-
tions provide also no knowledge. The carried ballots
have always the same form and size independently of
the number of servers previously visited. Each ballot
consists of two parts. The �rst part is the successively
enveloped vote portion, while the second part is ran-
dom padding that has been successively symmetrically
enciphered. As the ballot box is shu�ed at new shuf-
ing servers, the �rst part becomes smaller, and the
second part larger, but the overall length remains con-
stant. However, shu�ing servers are not able to deter-
mine the border between the two parts because they
both look as random bits.

5. Security of the election

After the discussion on how shu�ing sequences pro-
vide anonymity of ballots in our voting scheme, we turn
now to analyze the ful�llment of the rest of security re-
quirements listed in Section 1.

11 of 14

5.1. Accuracy

Accuracy in our voting scheme is guaranteed be-
cause all validated ballots incorporate digital signa-
tures of the corresponding ECs over the digest of vote.
These signatures assure the authenticity and integrity
of votes. Nobody other than the corresponding EC is
able to modify a vote, while still o�ering a valid signa-
ture on the digest of it. Still, if a certain EC modi�es
(or removes) a ballot, the a�ected voter is able to prove
the fraud to the EA. The voter just has to show the
validation string obtained during step two of the vot-
ing protocol (note that the one-way hash function used
to compute the digest of votes must be collision-free in
order to prevent attacks from malicious voters). The
EA can check that no ballot in the tally appears to
match the voter's validation string. This claim can ac-
tually be made as a public objection to the tally. The
voter can openly show the validation string to every-
one without revealing in which way he or she voted,
because the validation string includes only the digest
of the vote and not the vote itself. The concept of
open objections to the tally was �rst introduced in
[15]. However, the solution o�ered in such reference
has a practical problem since it combines generation of
random asymmetric key pairs by voters with blind sig-
natures (and therefore, from a practical point of view,
with cut-and-choose techniques). As a consequence,
any voter is forced to generate many pairs of asymmet-
ric keys, what requires signi�cant time. Use of one-way
hash functions, as we have described, serves the same
purpose and it is several orders of magnitude faster.
Furthermore, in contrast with the proposal in [15], if a
malicious voter casts purposely an invalid ballot, this
can be detected by the EA in our scheme, as it has
been discussed in previous section.
Addition of invalid ballots to a certain ballot box

can only be done by the corresponding EC, because
no other entities can create the adequate signature on
validation strings. To prevent any malicious EC from
adding invalid ballots on behalf of abstaining voters,
the results of the election are published in our scheme
using two lists, according to the format shown in Fig-
ure 7. The main list of ballots is accompanied by a
secondary list containing the identities of all voters
who have voted, signed by themselves. This data is
collected from voters at step �ve of the voting proto-
col. If the number of entries in the list of ballots was
greater than the number of voters who have voted, it
would mean cheating by the involved EC.

5.2. Democracy

Democracy in our voting scheme is assured through

proper authentication of voters to ECs, and adequate
policies of access control to the electoral roll. Secure
access to X.500 Directory ensures that only the EA is
able to register eligible voters to the electoral roll, and
only ECs are able to set the boolean attribute which
indicates that one of the registered voters has already
voted. Not only voters are prevented from attacking
the democracy requirement, but also ECs cannot do it
without being detected. If a certain EC accepts bal-
lots from non-eligible users (or if it accepts more than
one ballot from the same eligible voter), this would be
reected when the results are published. The list of
ballots would contain more entries than the list of eli-
gible voters who voted. Therefore, these cases can be
treated analogously, as if the EC added ballots on its
own.

5.3. Privacy

The second privacy property, uncoercibility, requires
that voters are not able to prove in which way they
voted. The objective is to prevent coercion. Coercion
may consist either of buying of votes or of extortion
(intimidation to cast a particular vote). If voters do
not obtain any proof of the vote cast, then coercers
cannot act with certainty of success. Uncoercibility
is a very particular issue which needs some hardware
components to be included into the operation of the
voting scheme. For clarity, we have not considered un-
coercibility in the design of our voting scheme. How-
ever, the techniques presented in [14], based on smart-
cards, could be used to assure it.
The third privacy property, fairness, requires that all

votes remain secret while the voting phase is not com-
pleted. The objective is to prevent anyone (normally
ballot collecting authorities) from knowing intermedi-
ate results of the election. Such knowledge could be
used to a�ect voters' behavior. In our voting scheme,
fairness is assured because all ballots are stored en-
veloped in the respective ballot boxes. Private keys
required to open the digital envelopes are known dur-
ing the voting phase only by the EA. In addition, the
innermost envelope can be opened only by the ade-
quate EC. Only when all ECs are closed, the shu�ing
phase is started and envelopes are opened.

5.4. Veri�ability

Any voter can verify that his or her ballot has been
counted by just looking for it in the published voting
results. If the ballot does not appear, then the af-
fected voter can do a public objection, as it has been
commented.

12 of 14

SECi
[Hfvoteg j elect] vote

�
�

�

� SV [V j elect]

�

�

�
�

Figure 7: Format of the published tallies.

6. Conclusions

This paper describes a realistic electronic voting
scheme, suitable to be implemented over large inter-
nets, which ful�lls all commonly accepted security re-
quirements, except uncoercibility. Anonymity of bal-
lots is provided by using the same techniques which
constitute the essence of mix-nets. However, the mix
functionality is integrated into the design of the vot-
ing scheme itself and therefore no external mixes are
needed. Mobile agents are used to implement the mix
concept. They are hosted by the components of the
voting scheme themselves.
Even though the security level and communication

costs are the same as in the classical architecture based
on a mix-net, our scheme improves some aspects. The
fairness requirement is ful�lled since all ballots remain
enveloped while the voting phase is not completed.
The voter casts the desired ballot during a single ses-
sion established with the corresponding Electoral Col-
lege. If a ballot is removed from the tally, then there
is a mechanism by which the Election Authority can
identify the attacker. Problems of low tra�c incom-
ing at any shu�ing server disappear, because shu�ing
is performed when all ballots are already cast. The
system is totally self-contained, and therefore its im-
plementation is simpli�ed.
Our group is working on a 100% Java implemen-

tation of a large scale electronic voting system. The
solution to anonymity currently considered in our sys-
tem requires proper certi�cation of the hardware and
software which implement the ECs. Integration of the
solution presented in this paper into the development
of our system's prototype would allow to analyze its
robustness, performances and costs.

7. Acknowledgments

Special thanks to Professor Sead Muftic and the De-
partment of Computer and Systems Sciences of the
Stockholm University, for their collaboration during
the elaboration of this paper. This work has been par-

tially funded by the Spanish Government Commission
CICYT, through its grant TEL97{0663.

References

[1] Adams, C. (1996) Internet RFC 2025: SPKM:
The Simple Public-Key GSS-API Mechanism.
ftp://ftp.isi.edu/in-notes/rfc2025.txt.

[2] Cranor, L.F. and Cytron, R.K. (1996) De-
sign and Implementation of a Practical
Security-Conscious Electronic Polling System.
Washington University Report WUCS-96-02.
http://www.ccrc.wustl.edu/�lorracks/sensus/.

[3] Chaum, D. (1981) Untraceable Electronic Mail, Re-
turn Addresses and Digital Pseudonyms. Communi-
cations of the ACM, 24, 84{88.

[4] Chaum, D. (1983) Blind Signatures for Untraceable
Payments, in Advances in Cryptology { CRYPTO '82,
(Plenum Press), 199{203.

[5] Cheng, Y. (1997) A Comprehensive Security Infras-
tructure for Mobile Agents. Licentium Thesis, Stock-
holm University/KTH.

[6] Cottrell, L. (1998) Mixmaster and Remailer Attacks.
http://obscura.com/� loki/remailer-essay.html.

[7] Fujioka, A. and Okamoto, T. and Ohta, K. (1992)
A Practical Secret Voting Scheme for Large Scale
Elections, in AUSCRYPT '92, LNCS 718 (Springer-
Verlag), 244{251.

[8] G�ulc�u, C. and Tsudik, G. (1996) Mixing Email
with BABEL, in Symposium on Network and Dis-
tributed Systems Security (NDSS '96), Proceedings in
CD-ROM ISBN 0-8186-9154-9 (Internet Society), 15
pages.

[9] ITU-T (1993) Recommendation X.500 (11/93) { In-
formation technology { Open Systems Interconnection
{ The directory: Overview of Concepts, Models and
Services.

13 of 14

[10] Linn, J. (1993) Internet RFC 1508: Generic
Security Service Application Program Interface.
ftp://ftp.isi.edu/in-notes/rfc1508.txt.

[11] P�tzmann, B. (1994) Breaking an E�cient Anony-
mous Channel, in EUROCRYPT '94, LNCS 950

(Springer-Verlag), 339{348.

[12] Park, C. and Itoh, K. and Kurosawa, K. (1993) E�-
cient Anonymous Channel and All/Nothing Election
Scheme, in EUROCRYPT '93, LNCS 765 (Springer-
Verlag), 248{259.

[13] Riera, A. and Borrell, J. and Rif�a, J. (1997) Large
Scale Elections by Coordinating Electoral Colleges, in
IFIP SEC '97, Information Security in Research and
Business (Chapman&Hall), 349{362.

[14] Riera, A. and Borrell, J. and Rif�a, J. (1998) An Unco-
ercible Veri�able Electronic Voting Protocol, in IFIP
SEC '98, IT Global Security (Austrian Computer So-
ciety), 206{215.

[15] Sako, K. (1994) Electronic Voting Scheme Allowing
Open Objection to the Tally. IEICE Transactions
on Fundamentals of Electronics, Communications and
Computer Sciences Vol.E77-A, 1, 24{30.

[16] Schneier, B. (1996) Applied Cryptography. Protocols,
Algorithms and Source Code in C. 2nd ed. John Wiley
& Sons.

14 of 14

