
Practical Experiences with ATM Encryption

Gregory T. Byrd
NC State University

Raleigh, NC

Nathan Hillery
Cylink

Morrisville, NC

Jim Symon
Cylink

Morrisville, NC

Abstract

CellCase is a commercial high-speed encryptor for
Asynchronous Transfer Mode (ATM) networks, available
since 1997. It provides data confidentiality and entity au-
thentication at the ATM layer, encrypting ATM cell pay-
loads at rates from T1 (1.5 Mb/s) to OC-12c (622 Mb/s).
Though deployed prior to the adoption of the ATM Forum
Security Specification (1999), CellCase implements many
of the mechanisms defined by that standard. In this pa-
per, we describe how CellCase is deployed in actual net-
works, as well as customer experience with services such
as counter-mode encryption, key exchange, and key up-
date. Based on this experience, we also discuss possible
changes to the ATM Forum specification.

1 Introduction

Asynchronous Transfer Mode (ATM) [4] is the most
widely deployed network technology for broadband com-
munications applications. Its presence has been less no-
ticed since it generally has been placed only within the
inner workings of the public carrier networks. Since
no well-established alternatives exist for high-speed wide
area communications, the continued growth of ATM in
the future is very likely. Some analysts are predicting
that ATM will be the common multi-service platform for
consolidating the numerous application-specific networks
that exist today.

ATM has powerful multiplexing capabilities that can
be used to provide quality of service (QoS) guarantees to
end-user applications. QoS guarantees allow ATM to de-
liver time-sensitive information such as voice, video, and
telepresence applications over the same network infras-
tructure as time-insensitive applications such as bulk data
movement. QoS has been difficult to achieve in packet
networks, since packets monopolize the link while they
are being transmitted, blocking other packets that are to
be routed over the same link. The delayed packets may
cause the end-user application to experience degraded per-
formance.

The features of ATM present some unique challenges
for encryption. At any one point in the network many
connections (228, or more than 250 million) can exist at
a time; therefore, an encryption device must be capable
of managing a large number of security contexts. Fur-
thermore, the security context can—and generally does—
change with each cell. At the OC-12c rate (622 Mb/s),
the cryptographic state information for the new security
context must be retrieved, used, and updated in less than
705 nanoseconds (the transmission time of a single 53-
byte cell).

While the time and memory demands of ATM en-
cryption are daunting, the data movement operations are
highly regular. This allows the bulk of the encryptor de-
sign to be straightforward, leading to a minimization of
failure modes. The implementation of the encryptor de-
sign is partitioned so that the regular, very high-speed
operations are carried out exclusively in hardware, while
unpredictable, complex operations are carried out in soft-
ware. Once a secure connection has been established, the
software portion of the encryptor is no longer involved in
the handling of the data transported over that connection.

The experiences we have obtained from helping cus-
tomers use the encryptor in their networks indicate that
the encryptor design and implementation are indeed ro-
bust, usable, and efficient. However, as in all cases when
a device is moved from a laboratory environment to de-
ployment in the real world, we have encountered a number
of new situations at customer sites that have been educa-
tional. This paper shares our experience in implement-
ing and deploying one of the few commercially-available
ATM encryptors. We discuss the impact on the encryption
system of in-band network management, aggregation of
multiple channels into paths, and traffic policing. In addi-
tion, we discuss the ATM Forum specifications that relate
to security, pointing out some consequences of their cur-
rent provisions and offering several suggestions for how
the specifications could be enhanced.

2 System Overview

The CellCase system provides key-agile ATM-layer en-
cryption, for network rates from T1 (1.5 Mb/s) to OC-12c



Public

WAN

Private

LAN

Private

LAN

CU

CU

CUHost

Host

Host

Private

LAN

Figure 1. ATM Encryption. Each cryptographic unit (CU) encrypts data as it moves from the secure private LAN
to the unsecure public WAN. The CU on the other side of the connection decrypts the data as it moves from the
public WAN to the secure private LAN. Hosts may be any type of ATM end-user equipment. In key-agile systems,
a separate key is used for each virtual connection through the public network.

(622 Mb/s). The cryptographic unit (CU) serves as a gate-
way between a secure private network (or host) and the
unsecure public network. The 48-byte payload of each
ATM cell is encrypted, while the five-byte header is left
unchanged, so that the cell may be switched and routed
through the public network normally. Each virtual con-
nection, denoted by a virtual path identifier (VPI) and vir-
tual channel identifier (VCI) in the cell header, has its own
key and its own cryptographic state.

2.1 Hardware

The CU hardware is responsible for cell encryption and
interfacing to the public and private networks. Higher-
level functions, such as ATM signaling, key exchange,
and key update, are performed by capturing selected cells,
delivering them to software for processing, and inserting
cells generated by software.

Figure 2 shows the hardware that controls the flow of
cells between the private network and the public network.
This is known as the “private flow.” An identical set of
hardware controls the public flow, from the public net-
work to the private, except that cells are decrypted, rather
than encrypted. Each flow is independent; there is no
cryptographic state shared between the two pipelines.

First, the ATM Receive Interface converts the physical
signal from the private network into ATM cells. The con-
nection identifier (VPCI) is extracted from the cell header
and used as an index for the VC Lookup Table (VLT).
(The VPCI is a concatenation of the virtual path identifier
(VPI) and the virtual channel identifier (VCI).) Other parts
of the cell header are used to detect special cell types, such
as Operation and Maintenance (OAM) cells. Such cells
may require special processing, such as being extracted
for software processing.

The VLT contains an entry for each enabled Virtual
Connection (VC). (VC’s are enabled by software, as de-
scribed in the next section.) The VLT entries are sorted by
VPCI, and a binary search is used to find the correct entry
for the incoming cell. If no corresponding entry is found
in the VLT, the cell is discarded. The VLT entry contains
flags that determine the disposition of this cell: it may be
extracted (either before or after encryption), encrypted, or
passed through in the clear. If encryption is required, the
flags also indicate the mode of encryption to be used. The
flags travel with the cell through the rest of the pipeline.

The VLT entry also contains an index into the VC State
Memory. This unsorted table contains an entry for each
active connection. The entry contains the encryption keys
and any other state information that must be kept for a
connection. For each connection, two separate key banks
are maintained in the state memory, with a bit that indi-
cates which bank is currently being used. The unused
bank is available for installing a new key as part of the
key update procedure; after the new key is installed, the
bank bit is changed and the new key is used for encryp-
tion/decryption. Some state must be updated after the cell
is encrypted, such as the state vector for counter-mode en-
cryption.

After the VLT, a pair of FIFO queues are available for
cell extraction and insertion. Complete cells are inserted
and removed from each FIFO, not individual words or
bytes. If a cell is marked for capture and there is not
enough room in the extraction FIFO, then the entire cell
is discarded. A cell is removed from the insertion FIFO
only when there is an idle cell (in the data stream) that can
be replaced; a cell from the FIFO will never overwrite a
data cell in the cell stream. (Therefore, it can be difficult
to insert cells when a high percentage of the ATM link
bandwidth is filled with data cells.)



P
ri
va

te
N

e
tw

o
rk

P
u
b
lic

N
e
tw

o
rk

ATM Receive
Interface

Security Services
(Key Exchange, Key Update, Counter-Mode Synchronization)

hardware

software

Random
Number

Generator

VC Lookup
Table

VC State
Memory

Encryption
Engine

ATM Transmit
Interface

Post-encrypt
Insert FIFO

Pre-encrypt
Insert FIFO

Pre-encrypt
Extract FIFO

index

new state

keys and state

Post-encrypt
Extract FIFO

User Interface

Figure 2. ATM encryptor—private-to-public flow.

Next, the received or inserted cell is passed to the en-
cryption engine, along with the flags from the VLT and
the keys and state information from the state memory.
The payload of the cell is encrypted accordingly, while
the header is unchanged. A cell that is not encrypted still
flows through the engine, with the same latency as an en-
crypted cell.

After encryption is another pair of FIFO queues for cell
extraction and insertion. As before, extraction is con-
trolled by a flag in the VLT entry for this connection, and
insertion occurs when an idle cell may be overwritten. Fi-
nally, the cell is transmitted to the public network by the
ATM Transmit Interface.

In addition to the two cell pipelines described above,
the hardware provides a single true random number gen-
erator. Random bits are accumulated into a 32-bit random
register that may be read by software.

2.2 Software

The cryptographic unit software is responsible for man-
aging the state of active connections, associating keys
with secure connections, monitoring hardware status, and
providing a management interface.

Connections are established through normal ATM sig-
naling protocols, in the case of Switched Virtual Channels
(SVC’s), or by user action, in the case of Permanent Vir-
tual Channels or Paths (PVC’s and PVP’s). In the case
of SVC’s, the calling and called end system addresses
are matched against an access control list to determine
whether a connection should be encrypted, passed in the
clear, or disallowed. The cryptographic parameters of a
PVP/PVC connection are set by the user when the con-
nection is established.

Cryptographic parameters, such as key length, encryp-
tion mode, and key update interval, are independent for

each connection. In this system, Triple-DES is the only
algorithm provided, but the user may choose 56-bit, 112-
bit, or 168-bit keys (equivalent to one-key, two-key, and
three-key DES encryption, respectively). Two encryp-
tion modes are supported: electronic codebook (ECB) and
ATM Forum counter mode (CM) [2], described in Sec-
tion 2.3.1.

Output feedback modes, such as cipher-block chaining
(CBC), reduce the throughput of Triple-DES by a factor
of three. These modes are not supported, because no com-
mercial encryption chips were available to match OC-3c
or OC-12c cell rates when the system was designed. The
initial research prototype [12] used experimental encryp-
tion chips [3] to achieve Single-DES with CBC at OC-12c
rates.

Counter mode encryption and key update are imple-
mented according to the ATM Forum Security Specifica-
tion, described below. Both require the insertion of Op-
eration and Maintenance (OAM) cells for cryptographic
synchronization and for key distribution. The software
is responsible for inserting these cells. As described
above, hardware is responsible for capturing incoming
OAM cells for processing by software.

Keys may be assigned explicitly by the user (for PVC’s
and PVP’s only), or they may be generated automatically
and distributed between cryptographic units through a key
exchange protocol. The key exchange protocol is similar
to the three-exchange protocol in the ATM Forum Security
Specification. It provides confidentiality, mutual authenti-
cation, and protection from replay and man-in-the-middle
attacks.

2.3 ATM Forum Security Specification

The ATM Forum is a consortium of ATM vendors
and users that establishes standards for ATM equip-



State Vector
Update
Function

EncryptKey

Plaintext PlaintextCiphertext

Keystream

State Vector
Update
Function

EncryptKey

Keystream

Encryption Decryption

Figure 3. ATM Forum Counter Mode Encryption

ment. In February 1999, a specification for ATM secu-
rity was approved by the Forum [2]. It establishes stan-
dard algorithms and protocols for data security in the
user plane—providing transfer of user data across vir-
tual connections—and the control plane—providing con-
nection establishment, release and other connection func-
tions.

The following security services are defined for the user
plane: entity authentication, data confidentiality, data ori-
gin authentication and integrity, and access control. In the
control plane, services for entity authentication and data
origin authentication and integrity are defined. We will
concentrate on data confidentiality and entity authentica-
tion in the user plane, since those are the services provided
by the CellCase system.

Data confidentiality protects user data from unautho-
rized disclosure. The payload of each ATM cell is
encrypted using a symmetric-key algorithm, such as
DES [6], two-key EDE Triple-DES [1], or FEAL [11].
Symmetric-key algorithms are chosen because of their
speed and because of the availability of high-speed hard-
ware implementations. Encryption is performed at the
ATM level, with the payload of each ATM cell encrypted
and the cell header left in the clear. The standard spec-
ifies two modes of encryption: CBC and counter mode.
(For more information about these algorithms and encryp-
tion modes, see Schneier [10], chapters 12, 13, and 15, or
Menezes et al. [5], chapter 7.)

Entity authentication determines whether the identities
of the called and calling parties in an ATM connection are
genuine. This service is essential for establishing secure
connections, since it protects against attacks that involve
impersonation of a trusted entity. Approved algorithms
for authentication include symmetric-key-based message
authentication codes (MAC’s), using DES and FEAL, and
public-key digital signatures, such as those provided by
RSA [9], DSA [7], and ESIGN [8]. (See Schneier [10],
chapters 19–20, or Menezes et al. [5], chapters 9 and 11.)

To support these services, the Security Specification de-

fines protocols for security message exchange, key ex-
change, and key update. Security message exchange is
supported by the definition of standard information ele-
ments (IE’s) that are used to construct and parse secu-
rity messages. The information elements are defined to
be consistent with IE’s used in UNI (User-Network Inter-
face) signaling [4].

The next three sections introduce the parts of the ATM
Forum Security Specification that are most relevant to the
CellCase system: counter-mode encryption, key update,
and key exchange.

2.3.1 Counter-Mode Encryption

Counter mode is a method for implementing a stream ci-
pher using a block cipher. The block cipher encrypts
a changing state vector, and the result is used as a key
stream. As shown in Figure 3, the key stream is bitwise
exclusive-ORed with the plaintext to generate ciphertext.
To decrypt, the same key stream is generated by the re-
ceiver (by encrypting the same sequence of state vector
values with the same key) and is exclusive-ORed with the
ciphertext, recovering the original plaintext.

Like CBC, counter mode encryption masks patterns in
the plaintext. Unlike CBC, counter mode does not re-
quire feedback from the ciphertext stream into the plain-
text stream. This is particularly important for Triple-DES,
since the feedback reduces throughput by a factor of three.
Counter mode takes full advantage of the fastest encryp-
tion chips available, leading to a system that scales natu-
rally with technology to OC-12c and multi-gigabit trans-
mission rates.

The state vector defined by the ATM Forum is designed
for high-performance encryption of ATM cells. Each
cell payload is 48 bytes, which corresponds to six 64-bit
blocks. Part of the state vector is a counter from zero to
five, identifying the six blocks in the cell. These state
vector values can be generated independently, so all six
blocks can be encrypted or decrypted in parallel. Another



part of the state vector is a 21-bit linear feedback shift
register (LFSR), which is advanced one state for each cell.
This definition allows 221�1 key stream values to be gen-
erated with no repeated elements.

Most of the remainder of the state vector is devoted to a
35-bit jump counter. The sender and receiver are period-
ically resynchronized by incrementing the jump counter
and resetting the LFSR to its starting value (5A5A16).
Resynchronization is necessary to recover from lost cells;
without synchronization, counter mode encryption expe-
riences infinite error extension when a ciphertext cell is
lost.

Even without cell loss, synchronization must occur to
avoid repeating the key stream. Therefore, a connection
must be synchronized at least every 221 cells. For a full-
rate OC-12c connection, this corresponds to about 0.7 sec-
onds worth of data.

Synchronization is accomplished through the use of
special OAM cells, called Session Key Changeover (SKC)
cells. The payload of the SKC cell contains a new jump
number; upon receiving an SKC cell, the cryptographic
unit sets the jump number for that connection to the value
contained in the cell, and the LFSR and other parts of the
state vector are reset to their starting values.

2.3.2 Key Update

The Security Specification defines a protocol for changing
the data encryption key for an active connection without
disrupting data flow. The new key is encrypted (using a
previously negotiated shared key) and placed in another
special OAM cell, called a Session Key Exchange (SKE)
cell, which is sent along with user data on the connection.
Upon receiving an SKE cell, the cryptographic unit de-
crypts the enclosed key and installs it in the unused key
bank for that connection.

A Session Key Changeover (SKC) cell signals that the
new key should be used for subsequent cells. This is the
same SKC used for counter mode synchronization, de-
scribed above. In addition to a new jump number, the SKC
cell contains a key bank identifier, which indicates which
key bank should be used for encryption for subsequent
data cells. In connections that do not use counter mode,
only the key bank identifier is used—the jump number is
ignored.

2.3.3 Key Exchange Protocol

The Security Specification defines two key exchange pro-
tocols. The two-exchange protocol is intended for in-band
key exchange, combined with the normal call setup proce-
dure. It allows no negotiation of security parameters, and
it relies on timestamps for replay protection. The three-
exchange protocol performs key exchange on the user data

channel, after it has been setup through the normal sig-
naling mechanism. This protocol allows the responder to
choose security parameters from a list presented by the
initiator, and it uses challenge and response to protect
against replay.

3 Customer Experiences
In this section, we illustrate the practical realities of de-

ploying ATM encryption in customer networks. Gener-
ally, our experiences have been very good, validating that
encryption can effectively be applied at the ATM layer.
Full line rates for commonly deployed network band-
widths from 1.5 Mb/s to 622 Mb/s are supported. There
is essentially no impact on traffic distribution patterns and
negligible delay is introduced. Encryption has very small
impact on delay variation. The degree of interoperation of
ATM network equipment has proven to be high.

Of course, much can be learned from the unanticipated
situations that occur in real-world environments. For the
rest of this section, we describe some of those situations
and the lessons learned from them.

3.1 Network Equipment Issues

A customer observed that channels encrypted in counter
mode would occasionally have corrupted data. The error
rate was correlated to the amount of traffic that the net-
work switch was handling.

The switch supported two modes of handling OAM
cells: it could be configured to intercept end-to-end OAM
cells or let them pass through undisturbed. Even with the
intercept function disabled, the problem behavior was still
observed. However, when a virtual path connection (VPC)
was established through the switch and the same counter
mode traffic sent over it no errors were reported. The
OAM cell intercept function was not available for VPC’s.

An ATM analyzer was attached directly to the switch
and configured to generate a stream of user cells with
OAM cells periodically intermixed. The tester was also
configured to receive the cell stream output from the
switch and compare the content of the data cells to assure
their values were correct.

At the start of the test, the traffic rate was low and
the traffic distribution cell stream output from the switch
matched the traffic distribution of the input cell stream.
As the rate of data input to the switch was gradually
increased, the distribution of cells in the output stream
changed more and more from the pattern of the input
stream. In particular, position of the OAM cells relative
to the user cells shifted later in time. Eventually this shift-
ing in time caused an OAM cell to leave the switch after a
data cell that occurred later in the input cell stream.

Since OAM cells are used for counter mode synchro-
nization, this re-ordering of the cell stream would cause



loss of synchronization between the encryptor and the de-
cryptor. In other words, a cell would be decrypted with a
portion of the key stream different from that used to en-
crypt the cell; the resulting plaintext cell would be cor-
rupted.

The setting of end-to-end OAM cell interception did not
seem to have much impact on this behavior. The problem
was reported to the switch vendor, who determined that in-
terception of end-to-end OAM cells was never completely
disabled. The vendor created a test build of the switch
software with a fix for this anomaly. When this test code
was loaded on the switch in the test network and the ATM
analyzer test rerun, the cell sequence integrity of OAM
cells was preserved. Running the customer application
with this test build also showed that the problem had been
resolved.

The lesson here is that the intercept function can never
be reliably used on a counter mode channel connection.
A customer must choose between counter mode encryp-
tion for security and OAM cell interception for network
management. In order to support both functions: (1) The
switch must recognize synchronization OAM cells (SKC
cells) and pass them without interception. (2) The encryp-
tor must recognize non-SKC OAM cells and pass them in
the clear. If the OAM cells are not encrypted, then they
may be reordered with respect to data cells without affect-
ing the decryption process. (This feature is supported by
the CellCase encryptor.)

3.2 Virtual Path Connections

The CellCase system and its research prototype [12]
were both designed to provide encryption for virtual chan-
nel connections (VCC’s). ATM networks also support vir-
tual path connections (VPC’s), in which switching and
routing is based only on a cell’s virtual path identifier
(VPI). From a management standpoint, we decided to sup-
port paths in the encryptor, partly to ease administration
of large numbers of related channels and also to provide
an interface that was similar to the management of ATM
switches and interfaces.

In CellCase, a path is implemented as a collection of
independent channels, managed as an integral unit. In the
initial implementation, each channel in the path uses the
same encryption key, but the state of each channel is main-
tained separately.

For a counter mode path, this means that each chan-
nel has an independently maintained state vector, as well.
This has two important consequences. First, each channel
must be synchronized independently. Second, using the
same key for each channel means that the same key stream
is generated to encrypt data on the separate channels.

When two plaintexts are encrypted with the same key
stream, an attacker can exclusive-OR (XOR) the two re-

sulting ciphertexts together to retrieve the XOR of the
original plaintexts. In other words, for plaintexts A and
B, and keystreamK, (A�K)� (B �K) = (A�B)�

(K � K) = (A � B) � 0 = A � B: This may reveal
information to the attacker that makes it easier to recover
one or both plaintext messages. For instance, if one plain-
text contains a well-known or easily guessed pattern, this
is enough to recover part of the other plaintext.

One approach to solving the problem is to use different
ranges of the jump number for each channel in the path.
This reduces the effective lifetime of a key, however, since
the number of cells that can be encrypted is determined by
the number of unique values of the state vector. For a large
path, one with many active secure channels, the effective
key lifetime becomes impractically short if the state vector
space is divided among the channels.

To solve this problem, the CellCase software was
changed to use a separate key for each channel in the path.
The key for each channel is derived from a path’s session
key and the relative position of the channel in the path. A
key exchange or key update operation establishes the ses-
sion key for the path as a whole, and this session key is
then used to derive keys for each channel in the path.

Another customer-reported problem further illustrates
the consequences of implementing a path as a collection
of channels. The customer reported that they enabled a
secure path that appeared to be passing data properly, but
the decrypting CU reported failures on key updates. Ob-
viously, the appropriate key values were installed, at least
for the channels that carried the test data traffic. However,
since the key update was reported as failing, the key value
for at least one of the channels was not being set properly.

Further analysis showed that not all the channels in the
range of the secure path had been established through the
public network. In other words, a particular range of VCI
values was enabled as a path in each CU, but not ev-
ery channel in that range was provisioned in the network.
For example, suppose the user at each end of the connec-
tion provisions path 10 with channels 32 through 255. In
the network, however, channels 10/32 through 10/63 are
provisioned as permanent virtual channels (PVC’s). The
other channels (10/65–10/255) are not provisioned in the
network. Perhaps the user intends that they will be es-
tablished later, and he does not wish to reconfigure the
cryptographic state at that time.

During a key update operation, the new key is transmit-
ted using SKE cells on one channel of the path, specifi-
cally the channel with the lowest VCI (32, in our exam-
ple). However, since the state of each channel is main-
tained separately, SKC cells must be sent on each channel
to complete the changeover process. Therefore, the key
update process could not be completed on the channels
that were not provisioned in the network (10/65 through



10/255), and the decrypting CU reported this as a failure.
The ATM Forum Security Specification views a VPC

as a single connection, with a single cryptographic state.
This is consistent with the treatment of VPC’s in the ATM
network: only the VPI of a cell is significant. (Certain
VCI values are reserved for network use, however, and
cells containing those VCI values must be passed in the
clear.) This view of a VPC can be implemented with the
current CellCase hardware by referring all channels in the
path to a common state memory index. (Since each cell in
the VPC updates the state vector, and thus the key stream,
the duplicate keystream problem described above would
not occur.) A more space-efficient approach, however, re-
quiring fewer VLT entries, would be to change the hard-
ware to examine only the VPI of a cell associated with a
VPC.

3.3 Traffic Policing

One of the attractive features of ATM is its provisions
for guaranteed bandwidth allocated to a connection. A
bandwidth contract is established between the end user
and the network when a connection is established, and the
network equipment is expected to enforce that contract
by giving priority to cells on that connection or discard-
ing cells if the end user exceeds the allocated bandwidth.
When the end user tries to match its traffic to the provi-
sioned bandwidth, it is called traffic shaping. The actions
taken by the network to enforce the bandwidth contract
are called traffic policing.

Two behaviors can manifest themselves when using
ATM encryptors in networks in which traffic flows are po-
liced. The simplest behavior results from the rate of data
from the source of traffic entering the network through
the encryptor. During periods when the traffic source is
transmitting data at exactly the policed rate, there is no
bandwidth available for security functions, such as key
exchange, key update, and counter mode synchronization.
The CU inserts the cells required for these functions any-
way, since it has no awareness of the bandwidth contract
that the customer has with the service provider. Hence,
both the data cells and the security function cells enter the
public network. Cells exceeding the contracted rate may
be discarded by the public network. The cells discarded
might be data cells, security cells, or a mix of both.

During key exchange, a lost cell means that the key ex-
change message is not received properly at the peer CU.
Depending on the protocol, the message may be resent or
the entire key exchange may be abandoned. Since no data
is being sent on the connection during a key exchange,
problems with policing during this phase are typically due
to the burstiness of the key exchange traffic.

After the connection is established, any data cell loss
will result in corruption of the recovered plaintext. If the

connection is encrypted in ECB mode, the impact of a data
cell being discarded is the absence of six blocks in the re-
covered plaintext. For counter mode, however, loss of a
data cell causes loss of synchronization between the en-
crypting and decrypting CU’s. All subsequent data is cor-
rupted until the next synchronization event. This is also
true if the lost cell is a synchronization (SKC) cell, since
the encrypting CU resets the state vector for this connec-
tion but the decrypting CU does not.

During key update, loss of an SKE cell (which carries
the new key value) is unlikely to cause data corruption,
because multiple SKE cells are sent for each key update
event. Loss of an SKC cell does cause corruption, how-
ever, since the encrypting CU changes to the new key but
the decrypting CU does not. Multiple SKC cells are also
sent, however, so the corruption should cease when an
SKC cell is successfully received by the decryptor.

We anticipated the effects of policing during design,
but we didn’t know how to quantify its impact. We also
didn’t have any basis for predicting how prevalent polic-
ing would be nor at what data rates it would be used. It is
exactly this kind of unanticipated—and unanticipatable—
factor that most challenge a design. As a result, the Cell-
Case implementation was changed to allow the user to
control the rate at which cells may be inserted into the
data stream.

In our experience, traffic policing at a rate greater than
10% of the line rate with 250-microsecond cell delay vari-
ation tolerance (CDVT) is unlikely to cause problems for
operation of the ATM encryptors. In practice, much lower
rates can be supported without error.

4 Suggested Changes to the ATM Forum
Specification

In the course of developing and marketing a commercial
ATM encryptor, we have uncovered several subtle aspects
of the security services that can hinder performance and
customer satisfaction. In this section, we describe a few
of those areas and suggest changes to the Forum specifi-
cation to address them.

4.1 Negotiating Key Exchange Parameters

Key exchange requires authentication of the CU’s, as
well as encryption of the session keys. In the CellCase
protocol, the RSA public-key algorithm is used to both
sign and encrypt key exchange messages. The latency of
these operations severely limits the rate at which secure
connections can be established.

To increase call setup rates, a shared secret key encryp-
tion key (KK) is established during the initial key ex-
change. The KK is used for encryption during subsequent
key exchanges between the same two CU’s. Authentica-



tion is implied by the ability to encrypt using the KK.
Each CU is able to keep a limited number of KK’s as-

sociated with other CU’s. The number of peer CU’s, how-
ever, is potentially unbounded. A KK from a previous ex-
change may be deleted in order to store a new KK from a
more recent exchange.1 The protocol must therefore deal
with the case in which one CU has a KK (and therefore
wants to use the fast key exchange protocol) and one does
not (and therefore requires the public-key-based protocol).

Another consideration for the use of symmetric-key al-
gorithms is that the CU closer to the call initiator (known
as the calling CU) may not know the identity of the CU
that will intercept the call for the call responder (known
as the called CU). First, a CU may accept calls on behalf
of many end users. Second, a different CU may handle
successive calls to the same end user, due to changes in
routing from one call to the next. Therefore, the called
party address cannot reliably predict the identity of the
CU on the responding end of the call. Since the KK is
associated with a CU, not with an end system, the calling
CU cannot determine which KK to use for a connection
until it learns the identity of the called CU.

In the CellCase system, the called CU determines
whether the fast key exchange protocol can be used. If
it has a KK associated with the calling CU, it generates
a key exchange message using that KK. When the calling
CU receives the first key exchange message, it learns the
identity of the called CU and whether that CU possesses
a KK for this exchange.If the calling CU also possesses
a KK, it continues the fast exchange protocol. If not, it
initiates a new full authentication message sequence. The
called CU then determines that the public-key protocol is
being used and responds accordingly. A new KK pair is
generated as a side-effect of executing the public-key pro-
tocol.

Consider the same scenario using the ATM Forum
three-pass protocol. (The two-pass protocol does not al-
low security parameters to be negotiated.) The calling
CU generates a list of encryption and authentication al-
gorithms that may be used for key exchange. In this case,
it lists a symmetric-key algorithm (e.g., Triple-DES) and
a public-key algorithm (RSA), even though it does not yet
know the identity of the called CU.

As before, the called CU looks in its cache to see if it has
a KK established with the calling CU. If it does have a KK,
it selects the symmetric-key algorithm and uses the KK to
encrypt the key exchange message. If it does not have a
KK, it uses the public-key algorithm. In either case, the
choice of algorithm is conveyed in the response message.

Upon receipt of the second message, the calling CU
knows the identity of the called CU. If the symmetric-

1In the CellCase system, KK’s are not persistent across system reset,
creating another situation in which one CU may not have a valid KK.

key algorithm was chosen, then the calling CU must use
the KK associated with the called CU. However, the CU
may not have a KK—as described earlier, it may have dis-
carded the KK to make room in its cache, or it may have
been reset since the last exchange. Because it does not
have a KK, the calling CU cannot complete the key ex-
change; it must be restarted, and this time only the public-
key algorithm should be listed as an alternative.

Currently, there does not appear to be a way for the call-
ing CU to restart the exchange without dropping and re-
establishing the connection. To save this overhead, the
Forum specification could allow the first message to be
repeated, effectively renegotiating the security parameters
for the exchange.

4.2 Key Update

The CellCase system implements the ATM Forum
mechanism for changing the encryption key of an active
connection, described in Section 2.3.2. One source of con-
fusion for customers is that the update is a unidirectional
process: only one directional flow is affected, and there is
no feedback from the decrypting CU to indicate whether
the key update was successful.

One CU initiates a key update by generating a new en-
cryption key, installing it in the alternate hardware key
bank, encrypting the key with a shared master key, and
sending the encrypted key downstream in an SKE cell.
Since the ATM connection does not insure delivery of
cells, multiple copies of the SKE cell are sent. Still, there
is no guarantee that the SKE cell is actually received by
the peer CU downstream. Also, there is no information
communicated to the initiating CU about whether the SKE
was received.

When an SKE cell is received, the cell payload is de-
crypted (using the same master key) and the resulting ses-
sion key is loaded into the peer CU’s alternate key bank.
The initiating CU waits an appropriate amount of time af-
ter sending its last SKE cell—the Forum specifies at least
one second—and then initiates a key changeover. An SKC
cell is inserted into the data stream before the encryp-
tion engine; the payload of the SKC cell causes the en-
cryption hardware to switch to the alternate key bank for
subsequent data cells. (For counter-mode connections, it
also resets the state vector to its initial value.) The SKC
cell then flows downstream to the peer CU, which also
switches to the alternate key bank. As with the SKE,
several SKC cells are sent (each indicating the same key
bank) to reduce the probability of SKC cell loss.

The key update procedure described here only affects
one direction of data flow, from the initiator to the down-
stream CU. To change the key in the other direction, a
separate key update must be initiated by the downstream
CU.



IDLE
SKE_
SENT

Start Update

Bad Ack Rec’d

Ack Rec’d

Abort Timer Expired

[send SKE]

[send SKC]

[abort]

Bad Ack Rec’d

XmitTimer Expires

[send SKE]
[send SKC]

Ack Rec’d

(a) Sender

IDLE
ACK_
SENT

SKE Rec’d

Ack Rec’d

Abort (Partial SKC)

[send ack]

[send SKC]

[abort]

SKE Rec’d

Xmit Timer Expires

Abort Timer Expires

(no SKC)

Old SKE Rec’d
[send ack]

[send rare ack]

[ignore]

(b) Receiver

Figure 4. Simplified state diagrams for the (a) sender and (b) receiver of a reliable key update.

Because there is no acknowledgement from the down-
stream CU, the initiating CU does not know whether the
new key value has been installed at the decryptor. There-
fore, the management interface on the initiating CU may
report that the key update was successful, even though
subsequent data passed on that connection will not be de-
crypted properly at the receiving end.

Feedback from customers indicates a need for a key up-
date protocol that is reliable in two ways: (1) there is a
high degree of confidence that the key update will com-
plete, even in the presence of network errors, and (2) the
sender of a key update knows whether the new key has
been received at the downstream CU. Figure 4 shows sim-
plified state diagrams for the sender and receiver in such a
protocol. (Some error handling transitions are not shown.)

The sender initiates an update by sending an SKE cell,
containing the new key to be installed (encrypted with a
master key, as described above). It then waits to receive an
acknowledgement cell (ACK) from the downstream CU.
The ACK is a specially formatted SKE cell, containing
the key number associated with the most recently received
SKE cell. The sender periodically re-sends the SKE cell
until an ACK is received.

When an ACK is received by the sender, it completes
the update process by sending an SKC cell, which tells the
receiver to start using the new key. An SKC cell is trans-
mitted each time a valid ACK is received. If an improper
ACK is received, such as one that contains the wrong key
number, then the update process is restarted—a new key
is generated and installed by the receiver, and a new SKE
cell is sent downstream.

If no ACK is received within a user-specified timeout
period, then the update is aborted and the sender reports an
error. Upon failure, a new update is automatically sched-
uled after a user-defined time interval.

At the receiver, a new SKE cell indicates the start of an
update transaction. The new key is retrieved and installed,
and an ACK cell is sent upstream. An ACK cell is sent
periodically, until an SKC cell arrives, indicating that the
new key should be used for decryption. If no SKC cell is
received within a user-specified timeout period, then an er-

ror is logged, but the receiver continues to send ACK’s at
a reduced time interval. In the case of a PVP connection,
an SKC cell must be received on all allocated channels; if
SKC’s are received on some channels, but not all, when
the timer expires, the receiver completes the update for all
channels and logs an error.

This bidirectional approach does not work for connec-
tions with no bandwidth allocated in the upstream direc-
tion. Such connections are atypical, however, except for
point-to-multipoint connections. Unidirectional connec-
tions can use the original unidirectional protocol, with the
reliable protocol provided for the more typical case of a
bidirectional point-to-point connection.

5 Conclusion

Encryption at the ATM layer is a relatively new tech-
nology, one that in many ways combines the speed and
simplicity of a bulk link encryptor with the flexibility of
an application-layer encryptor. We have attempted in this
paper to pass on our experiences bringing this technology
to market. These experiences can be summarized with a
few observations:

� ATM encryption works. There are hundreds of en-
cryptors in use today in production networks. The
encryptors are transparent to the rest of the network
equipment, requiring no modifications to hardware
or software in the private or public networks. Full
line rates are supported with very little added latency.

� Interoperability with other ATM network equipment
is generally very good, but there are sometimes prob-
lems in the details, such as the OAM intercept prob-
lem (Section 3.1). In our experience, these are usu-
ally due to minor differences in interpretation of ex-
isting standards, exposed by the unique requirements
of the security features.

� The security context for a virtual path connection
(VPC) should be treated as a single entity, rather than
as a collection of channel contexts. This simplifies



the key generation and key update processes for the
path.

� Requirements for the CU to insert cells can conflict
with traffic policing. Strategies to avoid this include
shaping traffic after the encryptor, having the encryp-
tor participate in the bandwidth contract, or reducing
the rate at which cells are inserted by the CU, and
allowing for the addition of security overhead when
shaping traffic entering the CU.

� Renegotiation of security parameters should be sup-
ported during key exchange. This allows faster en-
cryption and authentication algorithms to be used
as appropriate, which is critical for sustaining high
setup rates for secure connections.

� A reliable key update mechanism should be pro-
vided, or at least a mechanism that provides feedback
as to whether the update is successful at both the en-
crypting and decrypting CU’s.

� Counter mode allows high-throughput encryption,
but it is more sensitive to network configuration and
behavior. Cell loss and cell ordering have a more pro-
found impact on counter mode than on other modes
that either do not require synchronization (ECB) or
are self-synchronizing (CBC). Also, the need to ex-
plicitly resynchronize adds the burden of inserting
and processing synchronization cells to the CU’s, and
it can aggravate problems with policing on connec-
tions that operate near their contracted bandwidth.

Our experiences demonstrate that high data rate encryp-
tion at the ATM cell layer is practical. This design can be
extended to even higher data rates through the use of ei-
ther higher speed encryption devices or multiple encryp-
tion pipelines. These changes will have little impact on
the overall architecture and on cell delay or delay varia-
tion characteristics of the current implementation.

This design offers a glimpse of the challenges that
confront the designer of high performance packet en-
cryption devices. Packet encryptors also have to handle
rapid changes of security contexts from packet to packet.
The data movement requirements are more demanding in
packet encryption than in cell encryption, since packet
payloads can be much larger (and smaller) than ATM cell
payloads and are of unpredictable length. Therefore, the
scheduling of memory and encryption resources will be
much more complicated in a packet encryptor.

Since the ATM encryptor is a flow-through device, it
can have a minimal impact on traffic distribution patterns.
Specifically, it is possible for traffic streams with varying
quality of service needs to be directed through an ATM
encryptor without the QoS requirements being violated.
We predict that the conflicting implications of the store-
and-forward nature of packet handling and the emerging
requirements for quality of service guarantees in packet
networks will pose the greatest challenges to the designers
of high performance packet encryptors.

References

[1] ANSI X9.17 (Revised). American National Standard
for Financial Institution Key Management (Wholesale).
American Bankers Association, 1985.

[2] ATM Forum. ATM security specification, version
1.0. ATM Forum Standard AF-SEC-0100.000, Feb.
1999. ftp:://ftp.atmforum.com/pub/approved-specs/af-
sec-0100.000.pdf.

[3] H. Eberle and C. P. Thacker. A 1-Gbit/second GaAs DES
chip. In Proceedings of the IEEE 1992 Custom Integrated
Circuits Conference, May 1992.

[4] R. Händel, M. N. Huber, and S. Schröder. ATM Networks:
Concepts, Protocols, Applications. Addison-Wesley, 3rd
edition, 1998.

[5] A. J. Menezes, P. C. van Oorshot, and S. A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1997.

[6] National Bureau of Standards. Data encryption standard.
FIPS PUB 46-1, US Department of Commerce, Jan. 1988.

[7] National Bureau of Standards. Digital signature standard.
FIPS PUB 186, US Department of Commerce, May 1994.

[8] T. Okamoto. A fast signature scheme based on congruen-
tial polynomial operations. IEEE Transactions on Infor-
mation Theory, 36(1):47–53, Jan. 1990.

[9] R. Rivest, A. Shamir, and L. M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems.
Commun. ACM, 21(2):120–126, Feb. 1978.

[10] B. Schneier. Applied Cryptography: Protocols, Algo-
rithms, and Source Code in C. John Wiley and Sons, Inc.,
2nd edition, 1996.

[11] A. Shimizu and S. Miyaguchi. Fast Data Encipherment
Algorithm FEAL. In EUROCRYPT ’87, pages 267–278.
Springer-Verlag, 1988.

[12] D. Stevenson, N. Hillery, G. Byrd, F. Gong, and
D. Winkelstein. Design of a key agile cryptographic sys-
tem for OC-12c rate ATM. In Symposium on Network and
Distributed System Security, Feb. 1995.


