
Practical Timing Side Channel Attacks Against Kernel Space ASLR

Ralf Hund, Carsten Willems, and Thorsten Holz
Horst-Goertz Institute for IT Security (HGI)

Ruhr-University Bochum, Germany

Abstract

Due to the prevalence of control-flow hijacking attacks,
a wide variety of defense methods to protect both user space
and kernel space code have been developed. A few exam-
ples that have received widespread adoption include stack
canaries, non-executable memory, and Address Space Lay-
out Randomization (ASLR). When implemented correctly
(i.e., a given system fully supports these protection methods
and no information leak exists), typical exploitation strate-
gies are severely thwarted.

In this short paper, we study the limitations of kernel
space ASLR against a local attacker with restricted privi-
leges. We show that an adversary can implement a generic
side channel attack against the memory management system
to deduce information about the privileged address space
layout. Our approach is based on the intrinsic property that
the different caches are shared resources on computer sys-
tems. We introduce two implementations of our method-
ology and show that our attacks are feasible on four dif-
ferent x86-based CPUs (both 32- and 64-bit architectures)
and also applicable to virtual machines. As a result, we can
successfully circumvent kernel space ASLR on systems both
running Windows and Linux.

1 Introduction

Modern operating systems employ a wide variety of
methods to protect both user and kernel space code against
memory corruption attacks that leverage vulnerabilities
such as stack overflows, integer overflows, and heap over-
flows. These control-flow hijacking attempts pose a sig-
nificant threat and have attracted a lot of attention in the
security community due to their high relevance in practice.
To thwart such attacks, many mitigation techniques have
been developed over the years. A few examples that have
received widespread adoption include stack canaries [5],
non-executable memory [10], and Address Space Layout
Randomization (ASLR) [2, 12, 17]. Especially ASLR plays
an important role in protecting computer systems against

software faults. The key idea behind this technique is to
randomize the system’s virtual memory layout either every
time a new code execution starts or every time the system is
booted. While the initial implementations focussed on ran-
domizing user mode processes, modern operating systems
randomize both user and kernel space. All major operat-
ing systems such as Windows, Linux, and Mac OS X have
adopted ASLR and also mobile operating systems like An-
droid and iOS have recently added support for ASLR.

In combination with DEP, a technique that enforces the
W ⊕ X (Writable xor eXecutable) property of memory
pages, ASLR significantly reduces the attack surface. Un-
der the assumption that the randomization itself cannot be
predicted due to implementation flaws (i.e., not fully ran-
domizing the system or existing information leaks), typical
exploitation strategies are severely thwarted.

In this paper, we study the limitations of kernel space
ASLR against a local attacker with restricted privileges. We
introduce a generic attack for systems running on the In-
tel Instruction Set Architecture (ISA). More specifically, we
show how a local attacker with restricted rights can mount a
timing-based side channel attack against the memory man-
agement system to deduce information about the privileged
address space layout. We take advantage of the fact that
the memory hierarchy present in computer systems leads
to shared resources between user and kernel space code
that can be abused to construct a side channel. In practice,
timing attacks against a modern CPU are very complicated
due to the many performance optimizations used by current
processors such as hardware prefetching, speculative exe-
cution, multi-core architectures, or branch prediction that
significantly complicate timing measurements [11]. Previ-
ous work on side-channels attacks against CPUs [1, 6, 16]
focused on older processors without such optimization and
we had to overcome many challenges to solve the intrinsic
problems related to modern CPU features [11].

We have implemented two attack strategies that are capa-
ble of successfully reconstructing (parts of) the kernel mem-
ory layout. We have tested these attacks on different Intel
and AMD CPUs (both 32- and 64-bit architectures) on ma-
chines running either Windows 7 or Linux. Furthermore,

1



we show that our methodology also applies to virtual ma-
chines. As a result, an adversary learns precise information
about the (randomized) memory layout of the kernel. With
that knowledge, she is able to perform control-flow hijack-
ing attacks to escalate her privileges since she now knows
where to divert the control flow to, thus overcoming the pro-
tection mechanisms introduced by kernel space ASLR.

An extended version with implementation details and
more attacks is available as a full paper [8].

2 Timing Side Channel Attacks

We focus in this work on local attacks against kernel
space ASLR: we assume an adversary who already has re-
stricted access to the system, i.e., she can run arbitrary
applications, but does not have access to privileged ker-
nel components and thus cannot execute privileged (ker-
nel mode) code. We also assume the presence of a user
mode-exploitable vulnerability within kernel or driver code,
a common problem [4]. The exploitation of this software
fault requires to know (at least portions of) the kernel space
layout since the exploit at some point either jumps to an at-
tacker controlled location or writes to an attacker controlled
location to divert the control flow. Furthermore, we assume
that the system correctly implements ASLR (i.e., the com-
plete system is randomized and no information leaks exist)
and that it enforces the W ⊕X property. Hence, all typical
exploitation strategies are thwarted.

Side channels emerge from intricacies of the underlying
hardware and the fact that parts of the hardware (such as
caches and physical memory) are shared between both priv-
ileged and non-privileged code. Note that all the approaches
are applicable to many operating systems: while we tested
our approach mainly on Windows 7 and Linux, we are con-
fident that the attacks also apply for other versions of Win-
dows or even other operating systems. Furthermore, our
attacks apply to both 32- and 64-bit systems.

The methodology behind our timing measurements is as
follows: At first, we attempt to set the system in a specific
state from user mode. Then we measure the duration of
a certain memory access operation. The time span of this
operation then (possibly) reveals certain information about
the kernel space layout. Our timing side channel attacks can
be split into two categories:
• L1/L2/L3-based Tests: These tests focus on the

L1/L2/L3 CPU caches and the time needed for fetch-
ing data and code from memory.

• TLB-based Tests: These tests focus on TLB and pag-
ing structure caches and the time needed for address
translation.

To illustrate the approach, consider the following exam-
ple: we make sure that a privileged code portion (such as the
operating system’s system call handler) is present within the

caches by executing a system call. Then, we access a desig-
nated set of user space addresses and execute the system call
again. If the system call takes longer than expected, then
the access of user space addresses has evicted the system
call handler code from the caches. Due to the structure of
modern CPU caches, this reveals parts of the physical (and
possibly virtual) address of the system call handler code as
we show in our experiments.

3 Implementation and Results

We now briefly sketch two different implementations of
timing side channel attacks. The goal of each attack is to
precisely locate some of the currently loaded kernel mod-
ules from user mode by measuring the time needed for cer-
tain memory accesses. Note that an attacker can already
perform a ROP-based attack once she has de-randomized
the location of a few kernel modules or the kernel [7, 14].

We have evaluated our implementation on the 32-bit and
64-bit versions of Windows 7 Enterprise and Ubuntu Desk-
top 11.10 on the following (native and virtual) hardware ar-
chitectures to ensure that they are commonly applicable on
a variety of platforms:

1. Intel i7-870 (Nehalem/Bloomfield, Quad-Core)
2. Intel i7-950 (Nehalem/Lynnfield, Quad-Core)
3. Intel i7-2600 (Sandybridge, Quad-Core)
4. AMD Athlon II X3 455 (Triple-Core)
5. VMWare Player 4.0.2 on Intel i7-870 (with VT-x)
Table 1 provides a high-level overview of our methods,

their requirements, and the obtained results.

3.1 First Attack: Cache Probing

Our first method is based on the fact that multiple mem-
ory addresses have to be mapped into the same cache set
and, thus, compete for available slots. This can be utilized
to infer (parts of) virtual or physical addresses indirectly by
trying to evict them from the caches in a controlled man-
ner. More specifically, our method is based on the follow-
ing steps: first, the searched code or data is loaded into
the cache indirectly (e.g., by issuing an interrupt or calling
sysenter). Then certain parts of the cache are consecu-
tively replaced by accessing corresponding addresses from
a user-controlled eviction buffer, for which the addresses
are known. After each replacement, the access time to the
searched kernel address is measured, for example by issu-
ing the system call again. Once the measured time is signif-
icantly higher, one can be sure that the previously accessed
eviction addresses were mapped into the same cache set.
Since the addresses of these colliding locations are known,
the corresponding cache index can be obtained and obvi-
ously this is also a part of the searched address.

2



Method Requirements Results Environment Success
Cache Probing large pages or physical address of

eviction buffer
ntoskrnl.exe and hal.sys all X

Double Page Fault TLB entry creation on access violation allocation map, several drivers all but AMD X

Table 1. Summary of timing side channel attacks against kernel space ASLR.

3.2 Second Attack: Double Page Fault

The second attack allows us to reconstruct the alloca-
tion map of the entire kernel space from user mode. To
achieve this goal, we take advantage of the behavior of the
TLB cache on Intel CPUs and within the virtual machine.
The TLB typically works in the following way: whenever
a memory access results in a successful page walk due to a
TLB miss, the MMU replaces an existing TLB entry with
the result of the page walk. Accesses to non-allocated vir-
tual pages (i.e., the present bit in the PDE or PTE is set
to zero) induce a page fault and the MMU does not create
a TLB entry, since future accesses to the same page will
always produce a page fault which is costly anyway. How-
ever, when the page translation was successful, but the ac-
cess permission check fails (e.g., when kernel space is ac-
cessed from user mode), a TLB entry is indeed created.

This behavior can be exploited to reconstruct the entire
kernel space from user mode by accessing each kernel space
page p twice and measuring the access time. Due to perfor-
mance optimizations of modern CPUs and the concurrency
related to multiple cores, a single measurement can contain
noise and outliers. We thus probe the kernel space multiple
times and only use the observed minimal access time for
each page to reduce measurement inaccuracies.

4 Conclusion

In this short paper, we have discussed a generic, timing-
based side channel attack against kernel space ASLR. We
apply the basic principle behind side channel attacks (e.g.,
[3, 6, 9, 13, 15]) and introduced different ways how this
methodology can be used to obtain information about the
memory layout of a given system. To the best of our knowl-
edge, we are the first to demonstrate timing attacks against
ASLR implementations.

More information about our work and implementation
details are available in a full paper [8]. In this extended
version, we also discuss a third attack against kernel space
ASLR.

References

[1] O. Aciiçmez, B. B. Brumley, and P. Grabher. New Results on
Instruction Cache Attacks. In Workshop on Cryptographic

Hardware and Embedded Systems (CHES), 2010.
[2] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address Obfus-

cation: An Efficient Approach to Combat a Broad Range of
Memory Error Exploits. In USENIX Security Symposium,
2003.

[3] D. Brumley and D. Boneh. Remote Timing Attacks are Prac-
tical. In USENIX Security Symposium, 2003.

[4] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An
Empirical Study of Operating Systems Errors. In ACM Sym-
posium on Operating Systems Principles (SOSP), 2001.

[5] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and Q. Zhang.
StackGuard: Automatic Adaptive Detection and Prevention
of Buffer-Overflow Attacks. In USENIX Security Sympo-
sium, 1998.

[6] D. Gullasch, E. Bangerter, and S. Krenn. Cache Games –
Bringing Access-Based Cache Attacks on AES to Practice.
In IEEE Symposium on Security and Privacy, 2011.

[7] R. Hund, T. Holz, and F. C. Freiling. Return-Oriented
Rootkits: Bypassing Kernel Code Integrity Protection
Mechanisms. In USENIX Security Symposium, 2009.

[8] R. Hund, C. Willems, and T. Holz. Practical Timing Side
Channel Attacks Against Kernel Space ASLR. In IEEE Sym-
posium on Security and Privacy, 2013.

[9] P. C. Kocher. Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems. In International
Crytology Conference (CRYPTO), 1996.

[10] Microsoft. Data Execution Prevention (DEP). http://
support.microsoft.com/kb/875352/EN-US/,
2006.

[11] K. Mowery, S. Keelveedhi, and H. Shacham. Are AES x86
Cache Timing Attacks Still Feasible? In ACM Cloud Com-
puting Security Workshop (CCSW), 2012.

[12] PaX Team. Address Space Layout Randomization (ASLR).
http://pax.grsecurity.net/docs/aslr.txt.

[13] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey,
you, get off of my cloud: exploring information leakage in
third-party compute clouds. In ACM Conference on Com-
puter and Communications Security (CCS), 2009.

[14] E. J. Schwartz, T. Avgerinos, and D. Brumley. Q: Ex-
ploit hardening made easy. In USENIX Security Symposium,
2011.

[15] D. X. Song, D. Wagner, and X. Tian. Timing Analysis of
Keystrokes and Timing Attacks on SSH. In USENIX Secu-
rity Symposium, 2001.

[16] E. Tromer, D. A. Osvik, and A. Shamir. Efficient Cache
Attacks on AES, and Countermeasures. J. Cryptol., 23(2),
Jan. 2010.

[17] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent Runtime
Randomization for Security. In Symposium on Reliable Dis-
tributed Systems (SRDS), 2003.

3

http://support.microsoft.com/kb/875352/EN-US/
http://support.microsoft.com/kb/875352/EN-US/
http://pax.grsecurity.net/docs/aslr.txt

	Introduction
	Timing Side Channel Attacks
	Implementation and Results
	First Attack: Cache Probing
	Second Attack: Double Page Fault

	Conclusion

