
Security Enhanced (SE) Android:
Bringing Flexible MAC to Android

Stephen Smalley and Robert Craig
Trusted Systems Research
National Security Agency

Motivation
● Android security relies on Linux DAC.

● To protect the system from apps.
● To isolate apps from one another.
● To prevent bypass of Android permissions.

● DAC shortcomings are well established.
● Fundamentally inadequate to protect against

flawed and malicious applications.

● SELinux can address these shortcomings.

2

Challenges
● Kernel

● No support for per-file security labeling (yaffs2).

● Unique kernel subsystems lack SELinux support.

● Userspace

● No existing SELinux support.

● All apps forked from the same process (zygote).

● Sharing through framework services.

● Policy

● Existing policies unsuited to Android.

3

Kernel Support
● Implemented per-file security labeling for yaffs2.

● Using recent support for extended attributes.
● Enhanced to label new inodes at creation.

● Analyzed and instrumented Binder for SELinux.

● Permission checks on IPC operations.

4

Userspace Support
● xattr and AT_SECURE support in bionic.

● Minimal port of SELinux libraries and tools.

● Labeling support in build and updater tools.

● Policy loading, device & socket labeling (init).

● App security labeling (zygote, dalvik, installd).

● Property service and zygote controls.

● Runtime policy management support.

5

Policy Configuration
● Enforce a small set of platform security goals.

● Confine privileged services.
● Sandbox and isolate apps.

● Key properties:
● Small, fixed policy.
● No policy writing for app developers.
● Invisible to users.

6

Policy Size & Complexity

7

SE Android Fedora

Size 71K 4828K
Domains 39 702
Types 182 3197
Allows 1251 96010
Transitions 65 14963
Unconfined 3 61

Middleware MAC (MMAC)
● Many attacks occur entirely at middleware layer.

● Cannot be addressed via kernel layer MAC.

● SELinux userspace object manager model not
readily applicable.

● Binder IPC, multi-stage call chains.

● checkPermission API.

● Implications for SELinux policy.

● Required a separate middleware MAC layer.

8

MMAC mechanisms
● Install-time MAC

● Enforced by PackageManagerService.
● Based on app certificate, package name.
● Can disable even pre-installed apps.
● Linkage to SELinux policy via seinfo tag.

● Permission revocation

● Intent MAC, Content Provider MAC

9

Case Studies

● Root exploits.
● Exploid, RageAgainstTheCage, GingerBreak,

KillingInTheNameOf, Zimperlich, mempodroid.

● Flawed apps.
● Skype, Lookout Mobile, Opera Mobile.

● All mitigated by SE Android.

10

Case Study: /proc/pid/mem
● /proc/pid/mem

● Kernel interface for accessing process memory.
● Write access enabled in Linux 2.6.39+.

● CVE-2012-0056
● Incorrect permission checking.
● Induce setuid program into writing own memory.

● Demonstrated by mempodroid exploit.

11

Mempodroid: Overview
● Some complexity omitted.

● Exploit invokes setuid root run-as program with
open fd to /proc/pid/mem as stderr and
shellcode as argument.

● run-as program overwrites self with shellcode
when writing error message.

● Shell code sets uid/gid to 0 and execs shell or
command.

12

Mempodroid vs SE Android Part 1

● With no specific policy for run-as.
● Write to /proc/pid/mem will still succeed.
● But run-as program runs in caller's

security context.
● Still restricted by SELinux policy.
● No privilege escalation.
● But also no support for run-as functionality.

13

Mempodroid vs SE Android Part 2

● With policy and code changes for run-as.
● Sufficient to support legitimate functionality.

● Open file to /proc/pid/mem closed by
SELinux due to domain transition.
● No memory overwrite, exploit fails.

● run-as confined to least privilege.
● Minimal capabilities, required transition.

14

Case Study: Lookout Mobile
● Security app for Android.
● LOOK-11-001

● Created files via native calls without setting
umask.

● Leaving them world-readable and -writable.

● Any other app on the device could:
● Disable or reconfigure Lookout.
● Read private user data.

15

SE Android vs Lookout vulnerability

● Classic example of DAC vs. MAC.
● DAC: Permissions are left to the discretion of each

application.

● MAC: Permissions are defined by the administrator
and enforced for all applications.

● All third party apps denied access to files
created by other apps.

● Each app and its files have a unique SELinux
category set.

16

AOSP merging

● 4.1: Changes below dalvik merged, conditional
under HAVE_SELINUX.

● 4.2: Many more changes merged, including dalvik
and frameworks support, still conditional under
HAVE_SELINUX.

● Current master: HAVE_SELINUX guards removed,
userspace support unconditional in build.

17

Size Comparison (maguro, 4.2)

18

AOSP SE ANDROID INCREASE

boot 4400K 4552K +152K

system 194072K 194208K +136K

recovery 4900K 5068K +168K

AnTuTu (maguro, 4.2)

19

memory integer float score2d score3d sdread sdwrite database
0

200

400

600

800

1000

1200

1400

AOSP
SE Android

Related Work

● Android middleware extensions (e.g. Kirin, SAINT, TaintDroid, Porscha,
AppFence, IPC Inspection, QUIRE)

● Depend on underlying kernel protections.

● SE Android ensures unbypassability of middleware mechanisms.

● Kirin and SAINT similar to install-time MAC.

● Prior work on SELinux for Android (e.g. Shabtai et al)

● Good start but did not address many of the challenges, demonstrate
effectiveness or merge to AOSP.

● TrustDroid & XManDroid

● Most similar in goals and approach.

● MAC for middleware and kernel layers.

● SE Linux as a better foundation than TOMOYO. 20

Questions?
● http://selinuxproject.org/page/SEAndroid
● Public SE Android list: Send “subscribe

seandroid-list” to
majordomo@tycho.nsa.gov.

● NSA SE Android team:
● seandroid@tycho.nsa.gov

21

mailto:majordomo@tycho.nsa.gov

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

