
© 2013 IBM Corporation1

Anil Kurmus

February 25th, 2013 – NDSS'13

Anil Kurmus, Reinhard Tartler, Daniela Dorneanu, Bernhard Heinloth, Valentin Rothberg,
Andreas Ruprecht, Wolfgang Schröder-Preikschat, Daniel Lohmann and Rüdiger Kapitza

Attack Surface Metrics
and

Automated Compile-Time Kernel Tailoring

© 2013 IBM Corporation2

Why (still) care about kernel security?

Linux Kernel

drivers securityfs ...

© 2013 IBM Corporation3

Why (still) care about kernel security?

Linux Kernel

drivers securityfs ...

SELinux, LXC,
...

© 2013 IBM Corporation4

Why (still) care about kernel security?

Linux Kernel

drivers securityfs ...

SELinux, LXC,
...

POSIX ACLs

© 2013 IBM Corporation5

Why (still) care about kernel security?

Linux Kernel

drivers securityfs ...

SELinux, LXC,
...

POSIX ACLs

PTRACE_SETREGS
exploit (CVE-2013-0871)

© 2013 IBM Corporation6

Why (still) care about kernel security?

Linux Kernel

drivers securityfs ...

100+ CVEs in 2012
SELinux, LXC,

...

POSIX ACLs

PTRACE_SETREGS
exploit (CVE-2013-0871)

© 2013 IBM Corporation7

Why (still) care about kernel security?

Linux Kernel

drivers securityfs ...

100+ CVEs in 2012
SELinux, LXC,

...

POSIX ACLs

PTRACE_SETREGS
exploit (CVE-2013-0871)

Linux 3.2: 14M LOC

© 2013 IBM Corporation8

Making the kernel smaller

~ 5000 features
(ubuntu 12.04)

© 2013 IBM Corporation9

Making the kernel smaller

~ 5000 features
(ubuntu 12.04)

RDS
CVE-2010-3904

© 2013 IBM Corporation10

Making the kernel smaller

~ 5000 features
(ubuntu 12.04)

~ 500 features
(realistic use case)

© 2013 IBM Corporation11

Making the kernel smaller

Remove unnecessary features from the kernel
by leveraging built-in configurability

~ 5000 features
(ubuntu 12.04)

~ 500 features
(realistic use case)

© 2013 IBM Corporation12

Make (menuconfig) your way to a smaller kernel

Now with
~5K features

to choose from!
(on x86)

© 2013 IBM Corporation13

Don't take my word for it

© 2013 IBM Corporation14

Don't take my word for it

“many of the support infrastructure questions are very
opaque, and I have no idea which of them any
particular distribution actually depends on.”

© 2013 IBM Corporation15

Automatic Kernel-Configuration Tailoring

© 2013 IBM Corporation16

Automatic Kernel-Configuration Tailoring

Distribution kernel
and use case

© 2013 IBM Corporation17

Automatic Kernel-Configuration Tailoring

Distribution kernel
and use case

Tailored kernel

© 2013 IBM Corporation18

Automatic Kernel-Configuration Tailoring

Distribution kernel
and use case

Tailored kernel

© 2013 IBM Corporation19

Automatic Kernel-Configuration Tailoring

Distribution kernel
and use case

Tailored kernel

© 2013 IBM Corporation20

Resulting kernel

© 2013 IBM Corporation21

Resulting kernel

 Is there a performance difference?

 Is tracing sufficient?

 How much attack surface reduction?

© 2013 IBM Corporation22

Resulting kernel

 Is there a performance difference?

 Is tracing sufficient?

 How much attack surface reduction?

© 2013 IBM Corporation23

Obtaining the attack surface: an example

© 2013 IBM Corporation24

Obtaining the attack surface: an example

FunctionsFunctions

© 2013 IBM Corporation25

Obtaining the attack surface: an example

Functions

CallsCalls

Functions

© 2013 IBM Corporation26

Obtaining the attack surface: an example

© 2013 IBM Corporation27

Obtaining the attack surface: an example

Functions
Entry

functions

© 2013 IBM Corporation28

Obtaining the attack surface: an example

Functions
Entry

functions

Entry
points
Barrier

functions

© 2013 IBM Corporation29

Obtaining the attack surface: an example

© 2013 IBM Corporation30

Obtaining the attack surface: an example

© 2013 IBM Corporation31

Code-quality metrics

10

20

50

200 50

20

20

© 2013 IBM Corporation32

Attack surface metrics

 Example:

 Code-quality metrics used:
– source lines of code (SLOC),
– cyclomatic complexity,
– CVE-based metric

 See paper for formal definitions and an alternative attack surface metric (AS2)

© 2013 IBM Corporation33

Attack surface metrics

 Example:

 Code-quality metrics used:
– source lines of code (SLOC),
– cyclomatic complexity,
– CVE-based metric

 See paper for formal definitions and an alternative attack surface metric (AS2)

Attack surface
metric

© 2013 IBM Corporation34

Attack surface metrics

 Example:

 Code-quality metrics used:
– source lines of code (SLOC),
– cyclomatic complexity,
– CVE-based metric

 See paper for formal definitions and an alternative attack surface metric (AS2)

Code quality
metric

Attack surface
metric

© 2013 IBM Corporation35

Attack surface metrics

 Example:

 Code-quality metrics used:
– source lines of code (SLOC),
– cyclomatic complexity,
– CVE-based metric

 See paper for formal definitions and an alternative attack surface metric (AS2)

Code quality
metric

Attack surfaceAttack surface
metric

© 2013 IBM Corporation36

Attack surface metrics

 Example:

 Code-quality metrics used:
– source lines of code (SLOC),
– cyclomatic complexity,
– CVE-based metric

 See paper for formal definitions and an alternative attack surface metric (AS2)

Code quality
metric

Attack surfaceAttack surface
metric

e.g., SLOC
of a function

© 2013 IBM Corporation37

Attack surface measurement: AS1

10

20

50

200 50

20

20

Σ = 370 SLOC

© 2013 IBM Corporation38

Attack surface measurements: summary

Program source
 and configuration

Entry and barrier
functions

Call graph:
functions and calls

Attack surface

Attack surface
measurement

Attack surface
metric

Σ = 370 SLOC

© 2013 IBM Corporation39

Attack surface measurements: summary

Security
model

Program source
 and configuration

Entry and barrier
functions

Call graph:
functions and calls

Attack surface

Attack surface
measurement

Attack surface
metric

Σ = 370 SLOC

What security model?

© 2013 IBM Corporation40

System call interface

Hardware interface

Core Kernel LKM

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(on-demand

loadable)

LKM
(driver)

LKM
(other)

IsolSec Linux Kernel Security Model

attacker entry

partial a.s.

running kernel

© 2013 IBM Corporation41

System call interface

Hardware interface

Core Kernel LKM

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(on-demand

loadable)

LKM
(driver)

LKM
(other)

IsolSec Linux Kernel Security Model

attacker entry

partial a.s.

running kernel

Attacker controls
unprivileged process

© 2013 IBM Corporation42

System call interface

Hardware interface

Core Kernel LKM

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(on-demand

loadable)

LKM
(driver)

LKM
(other)

IsolSec Linux Kernel Security Model

 Entry functions:
– system calls

 Barrier functions:
– Functions calling capable()

attacker entry

partial a.s.

running kernel

Attacker controls
unprivileged process

© 2013 IBM Corporation43

System call interface

Hardware interface

Core Kernel LKM

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(on-demand

loadable)

LKM
(driver)

LKM
(other)

IsolSec Linux Kernel Security Model

 Entry functions:
– system calls

 Barrier functions:
– Functions calling capable()

attacker entry

partial a.s.

running kernel

Drivers and
non-ODL LKMs

are not considered

Drivers and
non-ODL LKMs

are not considered

Attacker controls
unprivileged process

© 2013 IBM Corporation44

System call interface

Hardware interface

Core Kernel LKM

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(on-demand

loadable)

LKM
(driver)

LKM
(other)

IsolSec Linux Kernel Security Model

 Entry functions:
– system calls

 Barrier functions:
– Functions calling capable()
– Drivers and “other” LKMs

attacker entry

partial a.s.

running kernel

Drivers and
non-ODL LKMs

are not considered

Drivers and
non-ODL LKMs

are not considered

Attacker controls
unprivileged process

© 2013 IBM Corporation45

System call interface

Hardware interface

Core Kernel LKM

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(on-demand

loadable)

LKM
(driver)

LKM
(other)

IsolSec Linux Kernel Security Model

 Entry functions:
– system calls

 Barrier functions:
– Functions calling capable()
– Drivers and “other” LKMs
– (procfs, sysfs, debugfs)attacker entry

partial a.s.

running kernel

Drivers and
non-ODL LKMs

are not considered

Drivers and
non-ODL LKMs

are not considered

Attacker controls
unprivileged process

© 2013 IBM Corporation46

System call interface

Hardware interface

Core Kernel LKM

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(on-demand

loadable)

LKM
(driver)

LKM
(other)

IsolSec Linux Kernel Security Model

 Entry functions:
– system calls

 Barrier functions:
– Functions calling capable()
– Drivers and “other” LKMs
– (procfs, sysfs, debugfs)

 Purpose: estimating the attack
surface from an untrusted,
unprivileged process

attacker entry

partial a.s.

running kernel

Drivers and
non-ODL LKMs

are not considered

Drivers and
non-ODL LKMs

are not considered

Attacker controls
unprivileged process

© 2013 IBM Corporation47

GenSec Linux Kernel Security Model

System call interface

Hardware interface

Core Kernel LKM

LKM
(on-demand

loadable)

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(driver)

LKM
(other)

attacker entry

attack surface

running kernel

© 2013 IBM Corporation48

GenSec Linux Kernel Security Model

 Entry functions:
– all

 Barrier functions:
– none

System call interface

Hardware interface

Core Kernel LKM

LKM
(on-demand

loadable)

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(driver)

LKM
(other)

attacker entry

attack surface

running kernel

© 2013 IBM Corporation49

GenSec Linux Kernel Security Model

 Entry functions:
– all

 Barrier functions:
– none

 Overestimates attack surface
– attacker is privileged?
– not all LKMs can be loaded

 Purpose:
– upper bound
– TCB point of view

System call interface

Hardware interface

Core Kernel LKM

LKM
(on-demand

loadable)

Application
(privileged)

Hardware

Application
(unprivileged)

LKM
(driver)

LKM
(other)

attacker entry

attack surface

running kernel

© 2013 IBM Corporation50

Evaluation

 Questions to answer experimentally:
– Is there a performance difference?
– Is tracing sufficient?
– How much attack surface reduction?

 Popular and recent Linux distribution

 Typical server use case: LAMP

 There is also an NFS server use case in the paper.

© 2013 IBM Corporation51

Results: performance

No significant performance difference

© 2013 IBM Corporation52

Results: tracing

 Httperf benchmark triggers new features
– Stabilizes at 495 features

 Skipfish: high coverage of the web application
– Goes beyond real-world workload

Tracing at feature-granularity stabilizes quickly

No new
features

© 2013 IBM Corporation53

Results: attack surface reduction

© 2013 IBM Corporation54

Results: attack surface reduction

© 2013 IBM Corporation55

Results: attack surface reduction

85%

© 2013 IBM Corporation56

Results: attack surface reduction

85%

© 2013 IBM Corporation57

Results: attack surface reduction

85%

© 2013 IBM Corporation58

Results: attack surface reduction

85%
82%

© 2013 IBM Corporation59

Results: attack surface reduction

85%
82%

© 2013 IBM Corporation60

Conclusion

 We presented a framework for measuring attack surfaces
– Takes into account the security model, kernel configuration (e.g., unlike sloccount)
– Designed for the Linux kernel, but may be adapted to other programs
– Coherent results under different use cases, code-quality metrics, security models

 Kernel tailoring is a proactive approach reducing kernel attack surface
– Effective: 80-85% attack surface reduction (SLOC), 50-65% in terms of CVEs
– Assumes well-defined use cases (e.g., servers, embedded systems)
– Automated, no performance overhead

 Source code available at:
http://vamos.informatik.uni-erlangen.de/trac/undertaker/wiki/UndertakerTailor

 Future work:
– Android and KVM use cases.
– Implications in run-time attack surface reduction.

http://vamos.informatik.uni-erlangen.de/trac/undertaker/wiki/UndertakerTailor

© 2013 IBM Corporation61

Questions?

© 2013 IBM Corporation62

Backup

© 2013 IBM Corporation63

Comparison to kernel extension fault isolation

	IBM Presentation Template Full Version
	Selecting a template (1)
	Selecting a template (2)
	Selecting a template (3)
	Selecting a template (4)
	Selecting a template (5)
	Selecting a template (6)
	page3 (1)
	page3 (2)
	Slide 10
	Slide 11
	Slide 12
	page7 (1)
	page7 (2)
	page8 (1)
	page8 (2)
	page8 (3)
	page8 (4)
	page8 (5)
	page9 (1)
	page9 (2)
	page9 (3)
	page10 (1)
	page10 (2)
	page10 (3)
	page11 (1)
	page11 (2)
	page11 (3)
	Slide 29
	Slide 30
	Slide 31
	page15 (1)
	page15 (2)
	page15 (3)
	page15 (4)
	page15 (5)
	Slide 37
	page17 (1)
	page17 (2)
	page18 (1)
	page18 (2)
	page18 (3)
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	page23 (1)
	page23 (2)
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	page28 (1)
	page28 (2)
	page28 (3)
	page28 (4)
	page28 (5)
	page28 (6)
	page28 (7)
	Slide 60
	Slide 61
	Slide 62
	Slide 63

