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Making the kernel smaller

Remove unnecessary features from the kernel 
by leveraging built-in configurability

~ 5000 features
(ubuntu 12.04)

~ 500 features
(realistic use case)
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Make (menuconfig) your way to a smaller kernel

Now with
~5K features 

to choose from!
(on x86)
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Don't take my word for it

“many of the support infrastructure questions are very 
opaque, and I have no idea which of them any 
particular distribution actually depends on.”
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 Example:

 Code-quality metrics used:
– source lines of code (SLOC), 
– cyclomatic complexity, 
– CVE-based metric

 See paper for formal definitions and an alternative attack surface metric (AS2)
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e.g., SLOC
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Attack surface measurement: AS1
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Attack surface measurements: summary

Program source
 and configuration

Entry and barrier
functions

Call graph:
functions and calls
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Attack surface measurements: summary
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Σ = 370 SLOC

What security model?
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GenSec Linux Kernel Security Model

 Entry functions:
– all

 Barrier functions:
– none

 Overestimates attack surface 
– attacker is privileged?
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Evaluation

 Questions to answer experimentally:
– Is there a performance difference?
– Is tracing sufficient? 
– How much attack surface reduction?

 Popular and recent Linux distribution

 Typical server use case: LAMP

 There is also an NFS server use case in the paper.
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Results: performance

No significant performance difference
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Results: tracing

 Httperf benchmark triggers new features
– Stabilizes at 495 features

 Skipfish: high coverage of the web application
– Goes beyond real-world workload

Tracing at feature-granularity stabilizes quickly 

No new 
features
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Conclusion

 We presented a framework for measuring attack surfaces
– Takes into account the security model, kernel configuration (e.g., unlike sloccount)
– Designed for the Linux kernel, but may be adapted to other programs
– Coherent results under different use cases, code-quality metrics, security models

 Kernel tailoring is a proactive approach reducing kernel attack surface
– Effective: 80-85% attack surface reduction (SLOC), 50-65% in terms of CVEs
– Assumes well-defined use cases (e.g., servers, embedded systems)
– Automated, no performance overhead

 Source code available at: 
http://vamos.informatik.uni-erlangen.de/trac/undertaker/wiki/UndertakerTailor

 Future work:
– Android and KVM use cases.
– Implications in run-time attack surface reduction.

http://vamos.informatik.uni-erlangen.de/trac/undertaker/wiki/UndertakerTailor
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Questions?
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Backup
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Comparison to kernel extension fault isolation
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