Taming Hosted Hypervisors with
(Mostly) Deprivileged Execution

Chiachih Wut, Zhi Wang’, Xuxian Jiang?®

TNorth Carolina State University, ‘'Florida State University

NC STATE UNIVERSITY

Computer Science

Virtualization is Widely Used

o “There are now hundreds of thousands of companies
around the world using AWS to run all their business, or
at least a portion of it. They are located across 190
countries, which is just about all of them on Earth.”

Werner Vogels, CTO at Amazon
AWS Summit ‘12
amazon

webservices™

o “Virtualization penetration has surpassed 50% of all
server workloads, and continues to grow.”

Magic Quadrant for x86 Server Virtualization Infrastructure

Gartner.
June ‘12

Computer Science

NC STATE UNIVERSITY

Threats to Hypervisors

= Large Code Bases

Xen (4.0) 194K
VMware ESXi’ 200K
Hyper-V1 100K
KVM (2.6.32.28) 33.6K

1. Data source: NOVA (Steinberg et al., EuroSys ’10)

- Vulnerabilities

KVM 24

VMware ESXi 43

VMware Workstation 49
& =N

Data source: National Vulnerability Database (‘09~'12)

Computer Science

Threats to Hosted Hypervisor

Host OS &

Physical Hardware @ & @

Can we prevent the compromised hypervisor
from attacking the rest of the system?

Computer Science

DeHype

Decomposing the KVM hypervisor codebase

De-privileged part - user-level (93.2% codebase)
Privileged part - small kernel module (2.3 KSLOC)

Applications ~ Applications
Applications ~ Applications S S
Guest OS Guest OS De-privilege DeHyped DeHyped
KVM KVM’
KVM |
Host OS Host OS ~4% overhead

Physical Hardware [Physical Hardware (&

Computer Science

Challenges
Providing the OS services in user mode
Minimizing performance overhead

Supporting hardware-assisted memory
virtualization at user-level

Computer Science

Challenge |

o Providing the OS services in user mode

De-privileged Hypervisor

Hypervisor;--------

T

Original Hosted Hypervisor DeHype'd Hosted Hypervisor

Computer Science

Dependency Decoupling

Abstracting the host OS interface and
providing OS functionalities in user mode

For examp

Memory a
Kernel AP

e
locator: kmalloc/kfree, alloc_page, etc.

s for memory access: virt_to_page, etc.

Scheduling, signal handling, invoking system calls
Leveraging GLIBC

Computer Science

Dependency Decoupling

T
10 privileged services provided by Hypelet

Privileged
instrustions

Service
routines

Lomputer Science

Challenge |l

04
- Minimizing performance overhead

[QEMU ‘ QEMU |
1system call A User
1function call v 195187 privileged instructions Kernel

'I
R 195187 system calls

ANIRIAA rr‘
(
V]

VIV1V IAA u

HypeLet

N |

Computer Science

Optimization: Caching VMCS

VMCS (Virtual Machine Control Structure)

~90% of the privileged instructions issued by the
hypervisor are for accessing VMCS

Accessed by the hypervisor for monitoring or
controlling the behavior of the guest VM

Indirectly affected by the guest VM throughout the
running period in guest mode

Computer Science

Optimization: Caching VMCS

Maintaining cached copy of VMCS in user-level
Caching only the most frequently accessed fields

Caching 8 VMWRITE'd fields: 98.28% VMWRITE
system calls reduced

CPU_BASED VM_EXEC_CONTROL EPT POINTER HIGH EPT POINTER GUEST RIP
VM_ENTRY_INTR_INFO_FIELD GUEST_RFLAGS GUEST_CR3 GUEST_RSP

Caching 28 VMREAD'd fields: 99.86% VMREAD
system calls reduced

Computer Science

STATE UNIVERS

Challenge Il

Supporting hardware-assisted memory
virtualization at user-level
Maintaining nested page tables which translate
guest-physical to host-physical addresses

Memory may be paged out
Virtual-physical mapping information is unknown

Preventing the untrusted hypervisors from
accessing memory areas not belonged to them

Bactch-processing NPT updates with sanity checks in
HypelLet

Computer Science

Implementation and Evaluation

Prototype
KVM 2.6.32.28 with gemu-kvm-0.14.0
~93.2% of KVM codebase is de-privileged
2.3K SLOC small kernel module (HypelL et)

Evaluation
Security benefits
Non-security benefits
Performance

Computer Science

Testing real-world vulnerabilities

1 CVE-2010-0435

Guest OS causing a NULL pointer
dereference (accessing debug registers with
MOYV) in KVM running in privileged mode

. 4
Applications
Appiications Applicatfons
Guest OS
Guest OS KVM!
Particular
Instance of
QEMU+KVM
Whole System Host OS Crashes Only

Crashes

S 49,

Physical Hardware

Computer Science

Facilitating hypervisor development

o e.g., debugging the
NPT fault handler with
GDB

continue the program

register dump

call trace

admin@DeHype

admin@DeHype:~$ gdb -q ./qemu-kvm-0.14.0/x86_64-softmmu/qemu-system-x86_64
Reading symbols from /home/admin/qemu-kvm-0.14.0/x86_64-softmmu/qemu-system
-Xx86_64...done.

(gdb) set args -m 1024 ~/vm/ubu10.04.2-server/disk.img

(gdb) run

Starting program: /home/admin/qemu-kvm-0.14.0/x86_64-softmmu/qemu-system-x8
6_64 -m 1024 ~/vm/ubul0.04.2-server/disk.img

[Thread debugging using libthread_db enabled]

~C

Program received signal SIGINT, Interrupt.

oxb7fdf424 in kernel vsyscall (.

(gdb f

Breakpoint 1 at ©0x88ba706 S€ breaprInt
(gdb

Continuilng.

[switching to Thread 0xb51bbb70 (LWP 2592)]

Breakpoint 1, ©x088ba706 in tdp_page fault (NPT fal_"t oOCccurs
g info registers

ax UX0 °)

ecx 0x0 0

edx 0xb63bcfed -1237594144
ebx 0xb51bbo5c -1256476580
esp oxb51bafdc oxb51bafdc
ebp oxb51bafes8 0xb51bafe8
esi 0xb53d9040 -1254256576
edi 0x3f90e000 1066459136
eip 0x88ba706 0x88ba706 <tdp_page_fault+6>
eflags 0x286 [PF SF IF]

cs 0x73 115

ss 0x7b 123

ds 0x7b 123

es 0x7b 123

fs 0x0 0

gs 0x33 51

(aqdb) where

#0 0x088ba706 in tdp_page_fault ()

#1 0x088bbab9 in kvm_mmu_page_fault ()

#2 0x088bd6fa in handle_ept_violation ()

#3 0x088c3e68 in vmx_handle_exit ()

#4 0x088c9881 in kvm_arch_vcpu_1ioctl_run ()
#5 0x088acd8f in kos_entry ()

(adh)

Computer Science

Running multiple hypervisors

Running each hypervisor in a different security level
Suspicious guests: running on VMI-enabled hypervisors
Others: running on normal hypervisors

Live-migrating guests to another hypervisor in the
same host computer

New vulnerability reported and fixed
Starting a patched hypervisor
Live-migrating all guests one-by-one

Computer Science

Performance Evaluation

Test platform
Dell OptiPlex 980: Intel Core i7 860 + 3G RAM

Host: Ubuntu 11.10 desktop + Linux kernel
2.6.32.28

Guests: Ubuntu 10.04.2 LTS server
Benchmarks

SPEC CPU2006 v1.0.1 Reportable int

Bonnie++ 1.03e bonnie++ -f -n 256
Linux kernel 2.6.39.2 untar_kernel: tar zfx <KERNEL-
TARBALL>

make_kernel: make defconfig vmlinux

sl | ,-/.\-\
99% ~— ///;///!\
98% \ / /\ \Y \ y...
I\ NS \/
96% - N
95%
94%
93% I I I I I I I I I I I I I I
X N AN N
& /i>Qq/ §F @ T
VI SAIRCE I DN SR S - R s ST NN
OIS LR A SR N O N I G O D
@ ™ Q)Q) NSV W) ™ > D \{‘@ @
S > e AN o &
N b(‘bq/ ™ S I\ B

Relative Performance

DeHype

Computer Science

STATE UNIVERS

Computer Science

Discussion

HypelLet and the host OS are a part of the TCB

HypelLet is the main attack surface in the cloud
environment

HypelLet is highly constrained (2.3 KSLOC, 10 services)

Prototype limitations

Pinning guest memory

Could be extended with Linux MMU notifier
Not supporting all KVM features

SMP

Para-virtualized I/O

Computer Science

Related Work

Improving hypervisor security

selL4 , NOVA
, HyperLock

Isolating untrusted device drivers
Nooks . Microdrivers

Applying virtualization to host security
HookSafe , Lockdown

Computer Science

STATE UNIVERS

Conclusion

DeHype substantially reduces hosted hypervisor’s
attack surface and brings additional benefits

Better development and debugging

Concurrent execution of multiple hypervisors

Applications Applications

Guest OS Guest OS
93.2% of { DeHyped DeHyped
original KVM KVM KVM
HypeLet }F2.3KsLOC
Host OS

Physical Hardware

Thanks, Questions?

Chiachih Wu

NC STATE UNIVERSITY

Backup Slides

NC STATE UNIVERSITY

Computer Science

NC STATE UNIVERSI

Memory Rebasing

virtual
physical
)
u_addr
\
\\3. u_addr-> k_addr
\
2. Remapping the \

pinned memory
to user space

4. k_addr > p_addr

—_—

p_addr

. 1. Pre-allocating pinned

memory in kernel space

Computer Science

Securely Update NPT Entries

Preventing the untrusted hypervisor from
updating the NPT tables directly
Recording the update operations into buffer

Batch-processing the updates in next host-to-
guest switch with sanity check (by HypeLet)

Issue: the hypervisor needs the actual NPTs to
traverse the layer-based NPTs

Update entry | Update entry m
1. Allocate A;|R[i]=A 1.|A=R{[i]
Kk 2. Allocate B;|A[j]=B 2.|B=A][j]
/ 3. Allocate C;|B[k]=C 3.|C=BIk]
j m 4. Update CJl| 4, Uefat C[m]
= = 1
A C Cannot traverse

Recording only

Pseudo NPT

Host mode, User-level

Pseudo NPTs (allfcated from heap)

({""\ (" \

Privileged Service Request

Computer Science

NC STATE UNIVERSI

VM Entry

| o
] S | :
R’ I K B’ L
TN C’ Real NPTs (allocated from
the remappedlmemory pool) Timg
Allocate A; R[i]=A Guest Mode
Allocate B; A[j]=B
Allocate C; B[k]=C Access

a0

Host mode, Kernel-level

Computer Science

Intel VT-x: World Switches

VM Entry
Transition from VMM to Guest (VMLAUNCH/VMRESUME)
Enters VMX non-root operation (guest mode)
Saves VMM state in VMCS
Loads Guest state and exit criteria from VMCS

Virtual Machine Virtual Machine
VM Exit
Transition from Guest to VMM (VMEXIT) Applications ~ Applications
Enters VMX root operation (host mode)
] Guest OS Guest OS
Saves Guest state in VMCS E _
VM| Exit

VM Entr
Loads VMM state from VMCS . ’
Hypervis

Host OS

Physical Hardware [

Computer Science

Optimization: Caching VMCS

GUEST_INTERRUPTIBILITY_INFO
IDT_VECTORING_INO_FIELD
GUEST PHYSICAL _ADDRESS HI
GH

GUEST_PHYSICAL ADDRESS
VM_EXIT_INTR_INFO

VM_EXIT_INSTRUCTION_LEN

CPU_BASED_VM_EXEC_CONTRO
L

EXIT_QUALIFICATION

GUEST _CS_SELECT
OR

GUEST_CS_AR_BYTE
S

GUEST _PDPTRO_HIG
H

GUEST PDPTR1_HIG
H

GUEST_PDPTR2_HIG
H

GUEST_PDPTR3_HIG
H

GUEST_CS_BAS
E

GUEST DS_BAS
E

GUEST ES BAS
E

GUEST _PDPTRO
GUEST _PDPTR1

GUEST_PDPTR2

GUEST_PDPTR3

GUEST_RSP

GUEST_RIP

GUEST_CRO

GUEST _CR3

GUEST CR4

GUEST_RFLAGS

VM_EXIT_REASON

Computer Science

STATE

Combining privileged instructions

o VMPTRLD: a privileged instruction to load guest states before
switching to guest mode

QEMU
KVM_RU

DeHype’d KVM

User

1 T Kerne

VMPTRLD VMRESUMEVMEXIT --- VMRESUMEVMEXIT

| > Time

- CPU intensive workload
KVM handles most VM EXxits
One VMPTRLD is followed by multiple runs of (VMRESUME, VMEXIT)
The latency of VMPTRLD is not significant

Computer Science

STATE UNIVERS

Combining privileged instructions

o 10 intensive workload

QEMU handles most VM exits for issuing 10 instructions
One VMPTRLD is followed by one run of (VMRESUME, VMEXIT)
VMPTRLD introduces significant latency

 QEMU (] (]
KVM_RU
DeHype’d KVM [] [—]

i
1) S Use
|:> vele |:> Kernel
VMPTRLDVMRESUMEVMEXIT — VMPTRLDVMRESUMEVMEXIT

| > Time

Postponing the VMPTRLD instruction until the first VMRESUME
instruction

Computer Science

Testing real-world vulnerabilities

CVE-2009-4031

KVM attempting to interpret wrong-size (too
long) instructions

Being exploited
Causing large latencies in non-preempt hosts

With DeHype

Instruction emulation is done in user-level where
preemption is natively enabled

Computer Science

Testing real-world vulnerabillities

CVE-2010-3881

KVM copying certain data structures to user
program without clearing the padding
Being exploited

QEMU processes potentially obtaining sensitive
information from kernel stack

With DeHype

QEMU process obtaining information from the stack
of the hypervisor paired with it, not from the kernel
stack

