
Taming Hosted Hypervisors with
(Mostly) Deprivileged Execution
Chiachih Wu†, Zhi Wang*, Xuxian Jiang†

†North Carolina State University, *Florida State University

Virtualization is Widely Used
2

  “There are now hundreds of thousands of companies
around the world using AWS to run all their business, or
at least a portion of it. They are located across 190
countries, which is just about all of them on Earth.”

Werner Vogels, CTO at Amazon
AWS Summit ‘12

  “Virtualization penetration has surpassed 50% of all
server workloads, and continues to grow.”

Magic Quadrant for x86 Server Virtualization Infrastructure
June ‘12

Threats to Hypervisors

  Large Code Bases

Hypervisor Vulnerabilities

Xen 41

KVM 24

VMware ESXi 43

VMware Workstation 49

Hypervisor SLOC

Xen (4.0) 194K

VMware ESXi1 200K

Hyper-V1 100K

KVM (2.6.32.28) 33.6K

1: Data source: NOVA (Steinberg et al., EuroSys ’10)

Data source: National Vulnerability Database (‘09~’12)

3

  Vulnerabilities

Threats to Hosted Hypervisors

Hypervisor

Applications

Guest OS

Physical Hardware

… Applications

Guest OS

Host OS

4

Can we prevent the compromised hypervisor
from attacking the rest of the system?

DeHype

  Decomposing the KVM hypervisor codebase
 De-privileged part  user-level (93.2% codebase)
 Privileged part  small kernel module (2.3 KSLOC)

Guest VM

KVM

Applications

Guest OS

Physical Hardware

… Applications

Guest OS

Host OS

DeHyped
KVM

Applications

Guest OS

Physical Hardware

… Applications

Guest OS

Host OS

DeHyped
KVM’

HypeLet

De-privilege

5

~4% overhead

Challenges
6

  Providing the OS services in user mode

  Minimizing performance overhead

  Supporting hardware-assisted memory
virtualization at user-level

Challenge I

  Providing the OS services in user mode

Hypervisor

Physical Hardware

Host OS

Hypervisor

Physical Hardware

Host OS

User

Kernel

De-privileged Hypervisor

HypeLet

7

Original Hosted Hypervisor DeHype’d Hosted Hypervisor

Dependency Decoupling

  Abstracting the host OS interface and
providing OS functionalities in user mode

  For example
 Memory allocator: kmalloc/kfree, alloc_page, etc.
 Kernel APIs for memory access: virt_to_page, etc.
 Scheduling, signal handling, invoking system calls

 Leveraging GLIBC

8

Dependency Decoupling

Name Function
VMREAD Read VMCS fields
VMWRITE Write VMCS fields
GUEST_RUN Perform host-to-guest world switches
GUEST_RUN_POST Perform guest-to-host world switches
RDMSR Read MSR registers
WRMSR Write MSR registers
INVVPID Invalidate TLB mappings based on VPID
INVEPT Invalidate EPT mappings
INIT_VCPU Initialize vCPU
MAP_HVA_TO_PFH Translate host virtual address to physical frame

10 privileged services provided by HypeLet

9

Privileged
instrustions

Service
routines

Challenge II

  Minimizing performance overhead

QEMU

KVM

QEMU

195187 privileged instructions

HypeLet
195187 system calls

1system call

Time

User

Kernel 1function call

10

DeHyped

~10%

Optimization: Caching VMCS

  VMCS (Virtual Machine Control Structure)
 ~90% of the privileged instructions issued by the

hypervisor are for accessing VMCS

 Accessed by the hypervisor for monitoring or
controlling the behavior of the guest VM

  Indirectly affected by the guest VM throughout the
running period in guest mode

11

Optimization: Caching VMCS

  Maintaining cached copy of VMCS in user-level
  Caching only the most frequently accessed fields

  Caching 8 VMWRITE’d fields: 98.28% VMWRITE
system calls reduced

Top 8 Most Frequently VMWRITE’d VMCS Fields
CPU_BASED_VM_EXEC_CONTROL EPT_POINTER_HIGH EPT_POINTER GUEST_RIP

VM_ENTRY_INTR_INFO_FIELD GUEST_RFLAGS GUEST_CR3 GUEST_RSP

12

  Caching 28 VMREAD’d fields: 99.86% VMREAD
system calls reduced

Challenge III

  Supporting hardware-assisted memory
virtualization at user-level
 Maintaining nested page tables which translate

guest-physical to host-physical addresses
 Memory may be paged out
 Virtual-physical mapping information is unknown

 Preventing the untrusted hypervisors from
accessing memory areas not belonged to them
 Bactch-processing NPT updates with sanity checks in

HypeLet

13

Implementation and Evaluation
14

  Prototype
 KVM 2.6.32.28 with qemu-kvm-0.14.0
 ~93.2% of KVM codebase is de-privileged
 2.3K SLOC small kernel module (HypeLet)

  Evaluation
 Security benefits
 Non-security benefits
 Performance

Testing real-world vulnerabilities

  CVE-2010-0435
 Guest OS causing a NULL pointer

dereference (accessing debug registers with
MOV) in KVM running in privileged mode

15

KVM

Applications

Guest OS

Physical Hardware

… Applications

Guest OS

Host OS

Guest VM

KVM

Applications

Guest OS

Physical Hardware

… Applications

Guest OS

Host OS

KVM’

HypeLet

DeHype

Whole System
Crashes

Particular
Instance of
QEMU+KVM
Crashes Only

Facilitating hypervisor development

  e.g., debugging the
NPT fault handler with
GDB

set breakpoint
continue the program

NPT fault occurs

register dump

call trace

16

Running multiple hypervisors

  Running each hypervisor in a different security level
 Suspicious guests: running on VMI-enabled hypervisors
 Others: running on normal hypervisors

  Live-migrating guests to another hypervisor in the
same host computer
1.  New vulnerability reported and fixed
2.  Starting a patched hypervisor
3.  Live-migrating all guests one-by-one

17

Performance Evaluation

  Test platform
 Dell OptiPlex 980: Intel Core i7 860 + 3G RAM
 Host: Ubuntu 11.10 desktop + Linux kernel

2.6.32.28
 Guests: Ubuntu 10.04.2 LTS server

  Benchmarks
Software Package Version Configuration
SPEC CPU2006 v1.0.1 Reportable int
Bonnie++ 1.03e bonnie++ -f -n 256
Linux kernel 2.6.39.2 untar_kernel: tar zfx <KERNEL-

TARBALL>
make_kernel: make defconfig vmlinux

18

Relative Performance

93%
94%
95%
96%
97%
98%
99%

100%

DeHype
DeHype+VMCS caching
DeHype+VMCS caching+securely NPT updates

19

Discussion
20

  HypeLet and the host OS are a part of the TCB
  HypeLet is the main attack surface in the cloud

environment
  HypeLet is highly constrained (2.3 KSLOC, 10 services)

  Prototype limitations
  Pinning guest memory

  Could be extended with Linux MMU notifier
  Not supporting all KVM features

  SMP
  Para-virtualized I/O

Related Work

  Improving hypervisor security
  seL4 (Klein et al., SOSP ’09), NOVA (Steinberg et al.,

EuroSys ’10), HyperLock (Wang et al., EuroSys ’12)
…

  Isolating untrusted device drivers
 Nooks (Swift et al., SOSP ‘03), Microdrivers

(Ganapathy et al., ASPLOS ‘08) …

  Applying virtualization to host security
 HookSafe (Wang et al., CCS ‘09), Lockdown

(Vasudevan et al., TRUST ‘12) …

21

Conclusion

  DeHype substantially reduces hosted hypervisor’s
attack surface and brings additional benefits
 Better development and debugging
 Concurrent execution of multiple hypervisors

22

DeHyped
KVM

Applications

Guest OS

Physical Hardware

… Applications

Guest OS

Host OS

DeHyped
KVM’

HypeLet

93.2% of
original KVM

2.3 KSLOC

Thanks, Questions?

Chiachih Wu cwu10@ncsu.edu

23

Backup Slides

24

Memory Rebasing
virtual

physical

1. Pre-allocating pinned
memory in kernel space

k_bas
e

u_base

u_addr

k_addr

p_addr

2. Remapping the
pinned memory
to user space

3. u_addr  k_addr

4. k_addr  p_addr

25

user
kernel

Securely Update NPT Entries

  Preventing the untrusted hypervisor from
updating the NPT tables directly
 Recording the update operations into buffer
 Batch-processing the updates in next host-to-

guest switch with sanity check (by HypeLet)
  Issue: the hypervisor needs the actual NPTs to

traverse the layer-based NPTs

A

i

j

k
l
m

R B
C

Update entry l
1. Allocate A; R[i]=A
2. Allocate B; A[j]=B
3. Allocate C; B[k]=C
4. Update C[l]

Update entry m
1. A=R[i]
2. B=A[j]
3. C=B[k]
4. Update C[m]

Recording only
Cannot traverse

26

Pseudo NPT

i

j

k

R’
A’

B’
C’

i

j

k

R
A

B
C

Time

VM Entry Privileged Service Request

Buffer

Allocate A; R[i]=A
Allocate B; A[j]=B
Allocate C; B[k]=C

Real NPTs (allocated from
the remapped memory pool)

Pseudo NPTs (allocated from heap)

27

Host mode, User-level

Host mode, Kernel-level

Guest Mode

Guest
Access

Intel VT-x: World Switches
28

  VM Entry
  Transition from VMM to Guest (VMLAUNCH/VMRESUME)
  Enters VMX non-root operation (guest mode)
  Saves VMM state in VMCS
  Loads Guest state and exit criteria from VMCS

  VM Exit
  Transition from Guest to VMM (VMEXIT)
  Enters VMX root operation (host mode)
  Saves Guest state in VMCS
  Loads VMM state from VMCS Hypervisor

Virtual Machine

Applications

Guest OS

Physical Hardware

…

Virtual Machine

Applications

Guest OS

Host OS

VM Entry VM Exit

Optimization: Caching VMCS

Top 28 Most Frequently VMREAD’ed VMCS Fields
GUEST_INTERRUPTIBILITY_INFO EXIT_QUALIFICATION GUEST_CS_BAS

E
GUEST_RSP

IDT_VECTORING_INO_FIELD GUEST_CS_SELECT
OR

GUEST_DS_BAS
E

GUEST_RIP

GUEST_PHYSICAL_ADDRESS_HI
GH

GUEST_CS_AR_BYTE
S

GUEST_ES_BAS
E

GUEST_CR0

GUEST_PHYSICAL_ADDRESS GUEST_PDPTR0_HIG
H

GUEST_PDPTR0 GUEST_CR3

VM_EXIT_INTR_INFO GUEST_PDPTR1_HIG
H

GUEST_PDPTR1 GUEST_CR4

VM_EXIT_INSTRUCTION_LEN GUEST_PDPTR2_HIG
H

GUEST_PDPTR2 GUEST_RFLAGS

CPU_BASED_VM_EXEC_CONTRO
L

GUEST_PDPTR3_HIG
H

GUEST_PDPTR3 VM_EXIT_REASON

29

Combining privileged instructions

  VMPTRLD: a privileged instruction to load guest states before
switching to guest mode

  CPU intensive workload
  KVM handles most VM Exits
  One VMPTRLD is followed by multiple runs of (VMRESUME, VMEXIT)
  The latency of VMPTRLD is not significant

30

DeHype’d KVM

HypeLet

User
Kernel

VMPTRLD VMRESUME VMEXIT
guest

Time

VMRESUME VMEXIT
guest …

QEMU

…

KVM_RUN

Combining privileged instructions

  IO intensive workload
  QEMU handles most VM exits for issuing IO instructions
  One VMPTRLD is followed by one run of (VMRESUME, VMEXIT)
  VMPTRLD introduces significant latency

  Postponing the VMPTRLD instruction until the first VMRESUME
instruction

31

DeHype’d KVM

HypeLet

User
Kernel

VMPTRLD VMRESUME VMEXIT
guest

Time

QEMU

KVM_RUN

HypeLet
VMPTRLD VMRESUME VMEXIT

guest

Testing real-world vulnerabilities

  CVE-2009-4031
 KVM attempting to interpret wrong-size (too

long) instructions
 Being exploited

 Causing large latencies in non-preempt hosts

 With DeHype
  Instruction emulation is done in user-level where

preemption is natively enabled

32

Testing real-world vulnerabilities

  CVE-2010-3881
 KVM copying certain data structures to user

program without clearing the padding
 Being exploited

 QEMU processes potentially obtaining sensitive
information from kernel stack

 With DeHype
 QEMU process obtaining information from the stack

of the hypervisor paired with it, not from the kernel
stack

33

