
InteGuard:
Toward Automatic Protection of

Third-Party Web Service Integrations

Luyi Xing (Indiana University)
Yangyi Chen (Indiana University)

XiaoFeng Wang (Indiana University)
Shuo Chen (Microsoft Research)

INTRODUCTION

•  Web applications integrate third-party Web services.

1. Introduction

Introduction

•  Web applications integrate third-party Web services.

1. Introduction

Introduction

•  Security challenge: coordinate Website (Integrator),
Service Provider and Web Client.

•  Integrator error-prone, difficult to be secure
([Oakland’11, Oakland’12]).

1. Introduction

Introduction-cont.

Introduction-Cont.
•  Protection

1. Introduction

  Integrator side more error-prone.
  Traffic among integrator, provider and clients is

generally mechanic.

BACKGROUND

Background
•  Third-Party Web Service Integration

 RT
(HTTP request/response pair, or HTTP Round Trip)

2. Background

(e.g. Bestbuy.com, Newegg.com)

(e.g. shopper)

(e.g. PayPal)

Logic Flaws

RT1.request = https://Jeff.com/placeOrder

RT2.request = https://PayPal/pay?amount=9.99&&orderID=123
 AccountId=alice&sig=cde

RT3.request = https://alice.com/finishOrder?gross=9.99&orderID=123
 &payeeEmail=alice@email.com AccountId = bob payeeEmail =

bob@email.com
2. Background

Previous Research

•  Web Logic Flaws.
 Swift, Ripley, Swaddler, MiMoSA, Waler,

Rolecast, Execution After Redirect, SAFERPHP,
WAPTEC, APP_LogGIC, Fix_Me_Up, NoTamper,
Block

•  Conventional two-party settings (websites, clients).

2. Background

Adversary Model
•  Logic flaws in Integration
•  Service provider is trusted
•  Client is not trusted

2. Background

Contribution
•  Integuard

  First step toward automatic and generic protection
of Web service integrations.

 New challenges in multiple-party settings.
 Effective false positive control.
 Evaluate with real exploits and performance test.
 Practical protection.

2. Background

DESIGN

Design – Architecture

3. Design

Integuard

Design – Architecture

3. Design

Design – Training Trace Collection

3. Design

•  Traces  Security Invariants
•  Challenge

 Random transactions for invariant extraction
  False Positive

Different users
Different products
Different quantities
Different addresses

…

Design – Training Trace Collection

3. Design

•  Four traces
•  Integrator opens two accounts at service provider,

 e.g. open two PayPal Merchant accounts Different transactions
Same integrator Integrator 1 and Integrator 2 are

the same Web application,
configured with different

merchant accounts

Design – Training Trace Collection

3. Design

•  Four traces

Same user
Same products
Same quantity
Same address

…

Same transactions
Different integrators

Design – Training Trace Collection

3. Design

•  Four traces

Same Transactions
Different Integrators

Design – Training Trace Collection

3. Design

•  Four traces

Differential Analysis

Design – Invariant Analysis

3. Design

•  Integrator-specific invariant
•  Local Invariant

  Transaction-specific invariant
•  Other invariant

 Start of transaction
 End of transaction
 API sequence

Design – Invariant Analysis

3. Design

•  Integrator-specific invariant
•  Local Invariant

  Transaction-specific invariant
•  Other invariant

 Start of transaction
 End of transaction
 API sequence

3. Design

Integrator-
Specific
Invariant:
RT3.payeeEmail

jeff@email.com
Specific to
Integrator 1

alice@email.com
Specific to
Integrator 2

3. Design

Drop such
Invariant

payMethod =
creditCard

Design – Invariant Analysis

3. Design

•  Integrator-specific invariant
•  Local Invariant

  Transaction-specific invariant
•  Other invariant

 Start of transaction
 End of transaction
 API sequence

Local Invariant:
amount == gross

amount = gross

amount = gross

amount = gross

amount = gross

3. Design

Drop Invariant
With

Length < 3

returnFlag = status

returnFlag = status

returnFlag = status

returnFlag = status

3. Design

Design – Invariant Analysis
•  Integrator-specific invariant
•  Local Invariant

  Transaction-specific invariant
•  Other invariant

 Start of transaction
 End of transaction
 API sequence

3. Design

transactionID
==

orderID

3. Design

Specific to
each

transaction

0519

0520

0521

0522

3. Design

Local Invariant


Transaction
specific
invariant

3. Design

Same transactions
Different integrators

9.99

9.99

amount = gross

3. Design

Transaction-specific Invariant

Is RT4 different?

3. Design

Transaction-specific Invariant

3. Design

RT4 has no cookies

Transaction-specific Invariant

3. Design

Which transaction does a RT4 belong to?

Transaction-specific Invariant

3. Design

Transaction-specific Invariants
help

Grouping RT4 into its belonging transaction

Design – Invariant Analysis

3. Design

•  Local Invariant
•  Integrator-specific invariant

  Transaction-specific invariant
•  Other invariant

 Start of transaction
 End of transaction
 API sequence

Design – Element Extraction

3. Design

•  Challenges
 RT2 not observable
 RT2 parameters in RT1’s response
 Channels: HTTP 3xx, meta refresh, HTML Form,

JavaScript, JSON, XML

Redirection

Integuard

Design – Element Extraction

3. Design

•  Challenges
 RT2 not observable
 RT2 parameters in RT1’s response
 Channels: HTTP 3xx, meta refresh, HTML Form,

JavaScript, JSON, XML

Redirection

Integuard

Design – Element Extraction

3. Design

From RT1, extract
RT2’s parameters
Record the DOM
locations for each
parameter

•  RT2 parameters in RT1’s response

Design – Element Extraction

3. Design

Don’t parse all
content of RT1

Design – Element Extraction

3. Design

Just extract desired
parameters from
known locations

Design – Element Extraction
•  HTTP 3xx
•  Meta refresh
•  JavaScript

 Abstract Syntax Tree (AST)
•  JSON
•  XML

3. Design

Design – Element Extraction
•  RT2’s parameters in RT1’s response

 HTTP 3xx
 Meta refresh
  JavaScript
  JSON
 XML

3. Design

Design – Element Extraction
•  JavaScript

 Abstract Syntax Tree (AST)
 Mark parameters’ locations

•  JSON, XML
  Tree structure, mark locations

3. Design

Design – Security Policy Enforcement
•  Security invariants.
•  Intercept HTTP traffic on integrator.
•  Runtime detection of invariant.

3. Design

Integuard

EVALUATION

Evaluation

4. Evaluation

•  Integrations
 Web Shopping Cart applications with known

vulnerabilities.
o  Intersipre starter edition 5.5.4
o  Nopcommerce v1.60

  5 faulty SSO integrations.
o  involving sears.com, janrain.com, Google,

Facebook, PayPal

Effectiveness

4. Evaluation

•  Effectiveness
Application Service Integrated Invariant type Detected

Nopcommerce PayPal Std Local Yes
Nopcommerce Amazon Simple Pay Integrator-specific Yes
Nopcommerce Amazon Simple Pay Integrator-specific Yes

Interspire PayPal Std Transaction-specific Yes
Interspire PayPal Exp Local Yes
Interspire Google Checkout API Sequence Yes

Smartsheet.com Google ID Local Yes
Janrain Google ID Local Yes

Sears.com Facebook SSO Integrator-specific Yes
Shopgecko.com PayPal Access Local Yes

Farmville Facebook SSO N/A No

False Positives

4. Evaluation

•  Each CaaS integration, 100 to 300 checkouts.
•  Each SSO integration, 20 checkouts.
•  Altogether 1,000 real transactions.

 Random user behaviors, clicking back button,
returning through old URLs, etc.

 Randomly crawl URLs.

  No false alarms

Performance

4. Evaluation

•  32 to 256 (default MaxClients of Apache Web server)
concurrent transactions.

•  Negligible overhead (3.32%).
•  Memory:

 Almost constant 1,250 MB .
 (32 to 256 concurrency)

  150MB difference.
 (256 concurrency, with and without security check)

CONCLUSION

•  First to protect vulnerable integrations of third-party
Web services.

•  New challenges in multi-party settings.
•  Generate invariants through a suit of new techniques.
•  Effective false positive control and low performance

expense.

5. Conclusion

Conclusion

THANK YOU!

LUYI XING

ICAP

  The Internet Content Adaptation
Protocol (ICAP) is a lightweight HTTP-like
protocol which is used to extend
transparent proxy servers. ICAP is generally
used to implement virus scanning and
content filters (including censorware) in
transparent HTTP proxy caches.

