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Leaks in Web Traffic

...↑778,↓720,↑621,↓735, ↑615,↓746,↑607,↓726...

...↑633,↓720,↓738,↑66, ↓1320,↑66,↓1291,↓619...

I an attack: compare distributions of packet sizes (Liberatore et al.’06)

I a countermeasure: Traffic morphing (Wright et al.’09)

I other attacks still possible (Lu et al.’10, Dyer et al.’12)

How to show that a countermeasure is “good”?

I previous work: empirically show that a particular attack does not work
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Our approach

Reason formally about strength of countermeasures

1. models of web applications, web traffic, users and adversaries

2. derive security guarantees based on model

↪→ models provide explicit assumptions

Main contributions:

I simple, yet realistic models

I efficient algorithms for measuring and reducing information leakage

I demonstrate approach in case studies
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Modeling web applications

Static website Auto-suggest input field
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The traffic channel
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Measuring security in the system

I security measure: difficulty of guessing X when Y is known

I expected # guesses: captured by entropy H (Massey’94)

I initial uncertainty H(X )

I remaining uncertainty H(X |Y )
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Traffic modifiers: countermeasures, network protocols

Basic traffic modifiers:

padding

dummy

split

shuffle

Example (Packet segmentation)
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Composition theorem

Composed traffic modifier f2 ◦ f1:

Theorem
H(X |Y2 ◦ Y1) ≥ H(X |Y1)

I proof relies on data processing inequality

Consequence: relative security guarantees for free

I countermeasure f2 ◦ f1 at least as strong as f1
I security guarantees preserved when message passes

protocol stack
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How to evaluate real-world websites?

Computing the remaining uncertainty:

I H(X |Y ) ≥ H(X )− H(Y )

I direct computation of H(X ) not feasible:
have to enumerate of all paths

Our approach:

I assume X = X1, . . . ,X` is a Markov chain

I assume P[X1] = stationary distribution

⇒ H(X ) = H(X1) + (`− 1)H(X2|X1)

Obtaining the stationary distribution: use PageRank algorithm

I PageRank algorithm computes the stationary distribution of X

I random surfer: follow random link or jump to random page
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Path-aware countermeasures

Countermeasures make vertices indistinguishable

I e.g. c order: order objects by size, pad, add dummy objects

I countermeasure induces partition of vertices

Paths may not be indistinguishable

⇒ ensure partition of vertices is a probabilistic bisimulation
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Path-aware countermeasures (2)

I there are many possible bisimulations

I our approach: consider random bisimulations

1. start from random bi-partition
2. refine it to coarsest bisimulation /* Derisavi et al.’03 */
3. repeat
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Case study

Trading security for overhead : 500 random bisimiulations
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Case study (2)

Analyzed website:

I bar.wikipedia.org (≈ 3,500 pages)

Initial uncertainty:

` 1 3 5 9 15 25 40
H(X ) 10.1 21 31.8 53.4 85.9 139.9 221

# paths 3496 236.5 259.8 2106 2176 2295 2472

No countermeasure:

I H(X |Y ) = 0

Applying path-aware countermeasures (path length ` = 5):

I make all webpages have the same fingerprint:
expected overhead 73.5 × original size
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Case study (3)

Trading security for overhead: 500 random bisimiulations
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Bonus material in the paper

I limits on overhead of path-aware countermeasure

I case study: auto-complete field

I using other entropy measures

I timing leaks: combining security guarantees with predictive timing
mitigation (Askarov et al.’10)

15 / 16



Summary

I formal framework for reasoning about security of web applications

I models of web traffic, user and adversary

I algorithm for practical evaluation of websites using PageRank

I path-aware countermeasures based on probabilistic bisimulations

I demonstrate approach in case studies
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