Sybil In Online Social Networks (OSNs)

Linked[[j] twittery

0 Sybil (sibal): fake identities controlled by attackers
O Friendship is a pre-cursor to other malicious activities

0 Does not include benign fakes (secondary accounts)

0 Research has identified malicious Sybils on OSNs
o Twitter [CCS 2010]
0 Facebook [IMC 2010]
o Renren [IMC 201 1], Tuenti [NSDI 201 2]



Real-world Impact of Sybil (Twitter)
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0 Russian political protests on Twitter (2011)
o 25,000 Sybils sent 440,000 tweets

O Drown out the genuine tweets from protesters



Security Threats of Sybil (Facebook)

[ 3
0 Large Sybil population on Facebook
0 August 2012: 83 million (8.7%)

0 Sybils are used to:

O Share or Send Spam Malicious URL
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Community-based Sybil Detectors
I

0 Prior work on Sybil detectors
0 SybilGuard [SIGCOMM06], SybilLimit [Oakland '08], Sybilinfer [NDSS’09]

0 Key assumption: Sybils form tight-knit communities

m Sybils have difficulty “friending” normal users?




Do Sybils Form Sybil Communities?

0 Measurement study on Sybils in the wild [IMC’11]
O Study Sybils in Renren (Chinese Facebook)
0 Ground-truth data on 560K Sybils collected over 3 years

0 Sybil components: sub-graphs of connected Sybils
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Detect Sybils without Graphs
I

0 Anecdotal evidence that people can spot Sybil profiles
0 75% of friend requests from Sybils are rejected

O Human intuition detects even slight inconsistencies in Sybil profiles

0 ldea: build a crowdsourced Sybil detector
0 Focus on user profiles

O Leverage human intelligence and intuition

0 Open Questions

1 How accurate are users?

B What factors affect detection accuracy?

0 How can we make crowdsourced Sybil detection cost effective?



o Introduction

= User Study

»  Feasibility Experiment

»  Accuracy Analysis
Details in
»  Factors Impacting User Accuracy Paper

"= Scalable Sybil Detection System

N Conclusion



User Study Setup-
I

0 User study with 2 groups of testers on 3 datasets
0 2 groups of users

0 Experts — Our friends (CS professors and graduate students)

O Turkers — Crowdworkers from online crowdsourcing systems

0 3 ground-truth datasets of full user profiles

O Renren — given to us by Renren Inc.
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The below profile is: Save changes If fake, mark suspicious content (multiple choice)

e Classifying
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Experiment Overview

Dataset  # of Profiles Test Group # of Profile
Sybil

Legit. Testers per
Tester

24 100
Chinese Turker 418 10

Chinese Expert

100 100

Renren

US Expert 40 50
Facebook 32 50 P
US US Turker 299 12
India Expert
Fqceb.ook 50 49 P
India India Turker 342

More Profiles per Experts



Individual Tester Accuracy
e

Much Lower

Accuracy

* Experts prove that humans can be accurate

* Turkers need extra help...

o) 10 20 30 40 50 60 70 80 90 100

Accuracy Per Teser (%)



Wisdom of the Crowd

0 Is wisdom of the crowd enough?

0 Maijority voting
o0 Treat each classification by each tester as a vote
O Maijority vote determines final decision of the crowd

* False positive rates are excellent

* What can be done to improve turker accuracy?




Eliminating Inaccurate Turkers
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Removing inaccurate turkers can effectively

reduce false negatives!
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" |ntroduction

= User Study

= Scalable Sybil Detection System

»  System Design
>  Trace-driven Simulation

"  Conclusion



A Practical Sybil Detection System

1. Scalability

0 Must scale to millions of users

O High accuracy with low costs

2. Preserve user privacy when giving data to turkers

Key insight to designing our system

* Accuracy in turker population highly skewed
* Only 10% turkers > 90% accurate

CDF (%)

Accuracy (%)



System Architecture
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Trace Driven Simulations
T2
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. . . 4
O Simulation on 2000 profiles [ Very Accurate \
O Error rates drawn from survey data = Turkers
O Calibrate 4 parameters to: =
B Minimize false positives & false negatives |
. o . . . . I Accurate Turkers
B Minimize votes per profile (minimize cost) |

\

S

Results++
* Average 8 votes per profile

* <0.1% false positives

* <0.1% false negatives




Estimating Cost
I

00 Estimated cost in a real-world social networks: Tuenti
o 12,000 profiles to verify daily Qtuenti
O 14 full-time employees

er hour) 2 $2240 per day

Cost with malicious turkers

e 259% of turkers are malicous

IUIKEers

0 Facebook wage ($1 per hour) 2 $400 per day

Augment existing automated systems

*http://www.glassdoor.com/Salary /Tuenti-Salaries-E245751 .htm



Conclusion
19

0 Designed a crowdsourced Sybil detection system
O False positives and negatives <1%
O Resistant to infiltration by malicious workers

0 Low cost

0 Currently exploring prototypes in real-world OSNs

dV\renren Linkedm




n Questions?

Thank you!



Ground-truth Data Collection (Legit.)
51

0 Facebook Crawl
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Ground-truth Data Collection (Sybil)

0 Facebook Crawl
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Preserving User Privacy
I

0 Showing profiles to crowdworkers raises privacy issues

O Solu’r"@Wle information in confext

Crowdsourced
Evaluation

Crowdsourced

Evaluation

Friends




Survey Fatigue
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Wisdom of the Crowd
T

0 Treat each classification by each tester as a vote
0 Majority

Almost 7 arn

False Pos Experts

™ (o ”~ 1

Dataset

* False positive rates are excellent

* Turkers need extra help against false negatives

* What can be done to improve accuracy?




S)’bil Profile Diffic Experts perform well on

26 | most difficult Sybils
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* Some Sybils are more stealthy

* Experts catch more tough Sybils than turkers

U T e of
profiles
U I I I
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Sybil Profiles Ordered By Turker Accuracy




How Many Votes Do You Need?

10¢

* Only need a few votes

* False positives reduce quickly

S :
bl * Fewer votes = less cost hina
= India
S 40
i
False Positives
20
—_ US
0 T ——

6 8 10 12 14 16 18 20 22 24

Votes per Profile



Individual Tester Accuracy
25

100

“*=Chinese Turker Much Lower

80 Accuracy
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* Exper ~~~ can be accurate

Excellentl

* Turker 80% of experts have

>90% accuracy! _ ‘
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