
Sybil In Online Social Networks (OSNs) 
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  Sybil (sɪbəl): fake identities controlled by attackers 
 Friendship is a pre-cursor to other malicious activities 
 Does not include benign fakes (secondary accounts) 

  Research has identified malicious Sybils on OSNs 
 Twitter [CCS 2010] 
 Facebook [IMC 2010] 
 Renren [IMC 2011], Tuenti [NSDI 2012] 



Real-world Impact of Sybil (Twitter) 
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  Russian political protests on Twitter (2011)  
 25,000 Sybils sent 440,000 tweets 
 Drown out the genuine tweets from protesters  
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Security Threats of Sybil (Facebook) 

  Large Sybil population on Facebook 
 August 2012: 83 million (8.7%) 

  Sybils are used to: 
 Share or Send Spam 
 Theft of user’s personal information 
 Fake like and click fraud 
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Community-based Sybil Detectors 

  Prior work on Sybil detectors 
  SybilGuard [SIGCOMM’06], SybilLimit [Oakland '08], SybilInfer [NDSS’09] 

  Key assumption: Sybils form tight-knit communities 
  Sybils have difficulty “friending” normal users? 
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Do Sybils Form Sybil Communities? 
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  Measurement study on Sybils in the wild [IMC’11] 
  Study Sybils in Renren (Chinese Facebook) 

  Ground-truth data on 560K Sybils collected over 3 years 

  Sybil components: sub-graphs of connected Sybils 
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Edges Between Sybils 

  Sybil components are internally sparse 
  Not amenable to community detection 
  New Sybil detection system is needed 



Detect Sybils without Graphs 

  Anecdotal evidence that people can spot Sybil profiles 
  75% of friend requests from Sybils are rejected 
 Human intuition detects even slight inconsistencies in Sybil profiles 

  Idea: build a crowdsourced Sybil detector 
  Focus on user profiles 
  Leverage human intelligence and intuition 

  Open Questions 
 How accurate are users?  

  What factors affect detection accuracy? 

 How can we make crowdsourced Sybil detection cost effective?  
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Outline 7 

  Introduction 

  User Study 

  Feasibility Experiment 

  Accuracy Analysis 

  Factors Impacting User Accuracy 

  Scalable Sybil Detection System 

  Conclusion 
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User Study Setup*  

  User study with 2 groups of testers on 3 datasets 
  2 groups of users 

  Experts – Our friends (CS professors and graduate students) 
  Turkers – Crowdworkers from online crowdsourcing systems 

  3 ground-truth datasets of full user profiles  
  Renren – given to us by Renren Inc. 
  Facebook US and India – crawled 

 Sybils profiles – banned profiles by Facebook 
 Legitimate profiles – 2-hops from our own profiles 
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Data collection details 
*IRB Approved 
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Experiment Overview 

Dataset # of Profiles Test Group # of 
Testers 

Profile 
per 

Tester 
Sybil Legit. 

Renren 100 100 
Chinese Expert 24 100 

Chinese Turker 418 10 

Facebook 
US 

32 50 
US Expert 40 50 

US Turker  299 12 

Facebook 
India 

50 49 
India Expert 20 100 

India Turker 342 12 
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More Profiles per Experts 
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Much Lower 
Accuracy 

Excellent! 
80% of experts have 

>80% accuracy! 

• Experts prove that humans can be accurate 
• Turkers need extra help… 



Wisdom of the Crowd 

  Is wisdom of the crowd enough? 

  Majority voting 
 Treat each classification by each tester as a vote 
 Majority vote determines final decision of the crowd 

  Results after majority voting (20 votes) 
 Both Experts and Turkers have almost zero false positives 
 Turker’s false negatives are still high 

 US (19%), India (50%), China (60%) 
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• False positive rates are excellent 
• What can be done to improve turker accuracy? 



Eliminating Inaccurate Turkers 
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Removing inaccurate turkers can effectively 
reduce false negatives! 



Outline 14 

  Introduction 

  User Study 

  Scalable Sybil Detection System 
  System Design 
  Trace-driven Simulation 

  Conclusion 



A Practical Sybil Detection System 
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1.  Scalability 
  Must scale to millions of users 
  High accuracy with low costs 

2.  Preserve user privacy when giving data to turkers 

Key insight to designing our system 
•  Accuracy in turker population highly skewed 
•  Only 10% turkers > 90% accurate 0 
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Rejected! 

•  Continuous Quality Control 
•  Locate Malicious Workers 



Trace Driven Simulations 

 Simulation on 2000 profiles 
 Error rates drawn from survey data 
 Calibrate 4 parameters to: 

 Minimize false positives & false negatives 
 Minimize votes per profile (minimize cost) 
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Results (Details in Paper) 
•  Average 6 votes per profile 
•  <1% false positives 
•  <1% false negatives 

Accurate Turkers 

Very Accurate 
 Turkers 

Results++ 
•  Average 8 votes per profile 
•  <0.1% false positives 
•  <0.1% false negatives 



Estimating Cost 

  Estimated cost in a real-world social networks: Tuenti 
  12,000 profiles to verify daily 
  14 full-time employees 
 Annual salary 30,000 EUR* (~$20 per hour)  $2240 per day  

  Crowdsourced Sybil Detection 
  20sec/profile, 8 hour day  50 turkers 
  Facebook wage ($1 per hour)  $400 per day 
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Augment existing automated systems 

Cost with malicious turkers 
•  25% of turkers are malicous  
•  $504 per day 

*http://www.glassdoor.com/Salary/Tuenti-Salaries-E245751.htm 



Conclusion 
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  Designed a crowdsourced Sybil detection system 
 False positives and negatives <1% 
 Resistant to infiltration by malicious workers 
 Low cost 

  Currently exploring prototypes in real-world OSNs 



Questions? 20 

Thank you! 



Ground-truth Data Collection (Legit.) 

  Facebook Crawl 
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Ground-truth Data Collection (Sybil) 

  Facebook Crawl 

Profile Pictures 

Publicly 
Available Image 

Do not consider 
Facebook links 

Google Search 
By Image 

Users 

If >90% of 
pictures on web  

Suspicious Profiles 

Suspicious Profiles Dataset 

Confirmed Sybils 
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Sybils 

Banned by 
Facebook 
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Preserving User Privacy 
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  Showing profiles to crowdworkers raises privacy issues 
  Solution: reveal profile information in context 
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Survey Fatigue  
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US Experts US Turkers 
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Fatigue matters All testers speed up over time 



Wisdom of the Crowd 

  Treat each classification by each tester as a vote 
  Majority vote determines final decision 
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Dataset Test Group 
False 

Positives 
False 

Negatives 

Renren 
Chinese Expert 0% 3% 

Chinese Turker 0% 63% 

Facebook 
US 

US Expert 0% 10% 

US Turker  2% 19% 

Facebook 
India 

India Expert 0% 16% 

India Turker 0% 50% 

Almost Zero 
False Positives Experts 

Perform Okay 

Turkers Miss 
Lots of Sybils 

• False positive rates are excellent 
• Turkers need extra help against false negatives 
• What can be done to improve accuracy? 



Sybil Profile Difficulty 
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• Some Sybils are more stealthy 
• Experts catch more tough Sybils than turkers 



How Many Votes Do You Need? 
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• Only need a few votes 
• False positives reduce quickly 
• Fewer votes = less cost 



Individual Tester Accuracy 
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• Experts prove that humans can be accurate 
• Turkers need extra help… 

Excellent! 
80% of experts have 

>90% accuracy! 


